首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
刺激家鸽上纹状体对丘脑背中腹前核神经元电活动的影响   总被引:1,自引:0,他引:1  
王彬  胡昌华 《生理学报》1993,45(2):172-177
在氨基甲酸乙酯麻醉的55只鸽上,记录和分析了丘脑背中腹前核(nueleus dorsalis inter-medius ventralis anterior thalami,DIVA)对桡神经传入冲动发生反应的88个躯体感觉单位的放电其中一部分单位还对刺激坐骨神经发生反应。电刺激上纹状体的躯体传入投射区,可引致上述DIVA躯体感觉单位的自发放电和对桡神经传入的反应发生明显抑制。对自发放电抑制的程度与上纹状体的刺激频率和刺激强度呈正相关的关系;对桡神经传入反应的抑制则是使反应潜伏期增长和锋电位减少。以上结果提示,DIVA确实隶属于躯体感觉系统,而上纹状体躯体传入投射区对其躯体感觉单位有下行的抑制性影响,这种下行抑制可能使上纹状体得以对感觉输入进行反馈控制。看来中枢神经系统高级部位与丘脑之间的这种功能联系,在鸟类和哺乳类具有相似之处。  相似文献   

2.
利用辣根过氧化物酶顺、逆行追踪的方法对鸣禽栗端脑新纹状体L复合区的神经联系进行了研究。结果表明,新纹状体L复合区中的L2区主要接受来自丘脑卵圆核的传入,并与L1和L3区有纤维联系;而L1和L3区传出纤维投射至高级发声中枢腹侧的架区、古纹状体粗核喙背侧的杯区以及上纹状体腹部尾外侧等处;L复合区亦接受来自新纹状体前部巨细胞核内侧部的传入投射。  相似文献   

3.
鸣禽栗Wu新纹状体L复合区与发声控制系统的神经联系   总被引:1,自引:0,他引:1  
李东风  王学斌 《动物学报》1997,43(4):356-360
利用辣根过氧化物酶顺、逆行追踪的方法对鸣禽栗Wu端脑新纹状体L复合区的神经联系进行了研究。结果表明,新纹状体L复合区中的L2区主要接受来自丘脑卵圆核的传入,并与L1和L3区有纤维联系;而L1和L3区传出纤维投射至高级发声中枢腹侧的架区、1古纹状体粗核 背侧的杯区以及上纹状体腹部尾外侧等处;L复合区亦接受一自新纹状体前部巨细胞核内侧部的传入投射。  相似文献   

4.
用生物素示踪法和P物质 (SP)免疫组化技术研究表明 :黄喉的高级发声中枢 (HVc)接受端脑听区 (L)、新纹状体中部界面核、新纹状体巨细胞核 (MAN)、丘脑葡萄形核、桥脑蓝斑核的传入 ,并有神经纤维投射到古纹状体栎核 (RA)和嗅叶X区 (X) ;HVc壳投射到RA壳并接受L的传入。听觉控制与学习通路与发声中枢之间有许多神经联系 ,提示黄喉发声学习依赖于听觉反馈。在HVc、RA和MAN有SP阳性细胞体 ,在X、中脑背内侧核和延髓舌下神经核气管鸣管部、丘脑卵圆核壳区、中脑背外侧核壳区及中脑丘间核有SP阳性纤维和终末。SP广泛分布于发声 -听觉中枢 ,可能参与了它们的活动  相似文献   

5.
用生物素示踪法和P物质(SP)免疫组化技术研究表明:黄喉Jiu的高级发声中枢(HVc) 接受端脑听区(L)、新纹状体中部界面核、新纹状体巨细胞核(MAN)、丘脑葡萄形核、桥脑蓝斑核的传入,并有神经纤维投射到古纹状体栎核(RA)和嗅叶X区(X);HVc壳投射到RA壳并接受L的传入。听觉控制与学习通路与发声中枢之间有许多神经联系,提示黄喉Jiu发声学习依赖于听觉反馈。在HVc、RA和MAN有SP阳性细胞体,在X、中脑背内侧核和延髓舌下神经核气管鸣管部、丘脑卵圆核壳区、中脑背我 核壳区及中脑丘间核有SP阳性纤维和终末。SP广泛分布于发声-听觉中枢,可能参与了它们的活动。  相似文献   

6.
用双向神经示踪剂生物素结合的葡聚糖胺和SP-免疫组织化学方法研究白腰文鸟发声学习中枢嗅叶X区的神经投射和P物质在发声中枢及相关核团内的分布。结果表明:X区接受发声与听觉整合中枢上纹状体腹侧尾核(HVC)以及中脑AVT的传入投射,由X区发出的神经纤维投射到丘脑外侧核内侧部(DLM)。在HVC、DLM、新纹状体前部巨细胞核和发声控制中枢古纹状极核内有许多的SP-免疫阳性神经细胞,在X区、中脑背内侧核和延髓舌下神经核等有大量的SP-免疫阳性神经纤维或终末等。提示P物质可能在发声中枢内起重要的生理作用。  相似文献   

7.
用生物素示踪法和P物质(SP)免疫组化技术研究表明:黄喉wu的高级发声中枢(HVc)接受端脑听区(L)、新纹状体中部界面核、新纹状体巨细胞核(MAN)、丘脑葡萄形核、桥脑蓝斑核的传入,并有神经纤维投射到古纹状体栎核(RA)和嗅叶X区(X);HVc壳投射到RA壳并接受L的传入。听觉控制与学习通路与发声中枢之间有许多神经联系,提示黄喉wu发声学习依赖于听觉反馈。在HVc、RA和MAN有SP阳性细胞体,在X、中脑背内侧核和延髓舌下神经核气管鸣管部、丘脑卵圆核壳区、中脑背外侧核壳区及中脑丘间核有SP阳性纤维和终末。SP广泛分布于发声-听觉中枢,可能参与了它们的活动。  相似文献   

8.
用生物素示踪法和P物质(SP)免疫组化技术研究表明:黄喉(巫鸟)的高级发声中枢(HVc)接受端脑听区(L)、新纹状体中部界面核、新纹状体巨细胞核(MAN)、丘脑葡萄形核、桥脑蓝斑核的传入,并有神经纤维投射到古纹状体栎核(RA)和嗅叶X区(X);HVc壳投射到RA壳并接受L的传入.听觉控制与学习通路与发声中枢之间有许多神经联系,提示黄喉(巫鸟)发声学习依赖于听觉反馈.在HVc、RA和MAN有SP阳性细胞体,在X、中脑背内侧核和延髓舌下神经核气管鸣管部、丘脑卵圆核壳区、中脑背外侧核壳区及中脑丘间核有SP阳性纤维和终末.SP广泛分布于发声-听觉中枢,可能参与了它们的活动.  相似文献   

9.
邓超 《动物学研究》1992,13(2):100-100,108
据文献报道,鸟类端脑有可能存在三个视觉代表区,上纹状体视区(Visual area in hyperstriatum)是其中之一。迄今虽在解剖学、生理学方面对上纹状体视区进行了一些研究,但有关视神经元对光刺激的反应特征却尚未见报道。本工作就家鸽上纹状体视神经元对光刺激的反应特征进行了研究。  相似文献   

10.
本实验按照跨神经节溃变的原理,用抗氟化物酸性磷酸酶(FRAP)法和显微测量,对大鼠坐骨神经,胫神经和腓总神经感觉纤维在脊髓胶状质的定位投射进行了定量分析。大鼠坐骨神经和胫神经向胶状质的纵向投射为 L_(2~3);腓总神经为 L_(2.6)及 S_1的上中部。水平向投射,坐骨神经:L_(2~3)主要为胶状质的最内侧和中间区的部分区域,L_4~S_1,主要为内侧,中间和部分外侧区的全部胶状质,但未见向胶状质最外侧区投射;胫神经:L_2~S_1主要为内侧区,中间及部分外侧区仅部分实验动物有投射;腓总神经:仅向 L_2~S_1的中间和部分外侧区一处投射。  相似文献   

11.
Pallial and subpallial morphological subdivisions of the mouse and chicken telencephalon were examined from the new perspective given by gene markers expressed in these territories during development. The rationale of this approach is that common gene expression patterns may underlie similar histogenetic specification and, consequently, comparable morphological nature. The nested expression domains of the genes Dlx-2 and Nkx-2.1 are characteristic for the subpallium (lateral and medial ganglionic eminences). Similar expression of these markers in parts of the mouse septum and amygdala suggests that such parts may be considered subpallial. The genes Pax-6, Tbr-1 and Emx-1 are expressed in the pallium. Complementary areas of the septum and amygdala shared expression of these genes, suggesting these are the pallial parts of these units. Differences in the relative topography of pallial marker genes also define different regions of the pallium, which can be partially traced into the amygdala. Importantly, there is evidence of a novel "ventral pallium" subdivision, which is a molecularly distinct pallial territory intercalated between the striatum and the lateral pallium. Its derivatives in the mouse apparently belong to the claustroamygdaloid complex. Chicken genes homologous sequence-wise to these mouse developmental genes are expressed in topologically comparable patterns during development. The avian subpallium -the paleostriatum- expresses Dlx-2 and Nkx-2.1; expression extends as well into the septum and anterior and medial parts of the archistriatum. The avian pallium expresses Pax-6, Tbr-1 and Emx-1 and also contains a distinct ventral pallium, formed by the neostriatum and ventral intermediate parts of the archistriatum. The lateral pallium comprises the hyperstriatum ventrale, overlying temporo-parieto-occipital corticoid layer and piriform cortex, plus dorsal intermediate and posterior archistriatum. The dorsal pallium includes the dorsal, intercalated and accessory hyperstriatum, plus the dorsolateral corticoid area. The medial pallium contains the hippocampus and parahippocampal area. A dorsal part of the septum shares pallial molecular markers. Gene markers thus suggest common sets of molecular developmental determinants in either pallial or subpallial domains of the mouse and chicken telencephalon, extending all the way from the posterior pole (amygdala) to the septum. Ventral pallial derivatives identified as claustroamygdaloid in the mouse correlate with avian neostriatum and parts of the archistriatum.  相似文献   

12.
The distribution of immunoreactivity after applying an antibody against gastrin-releasing peptide (GRP) was studied in the brain of the collared dove (Streptopelia decaocto). In the forebrain GRP-immunoreactive (GRP-ir) cells were found in the hyperstriatum accessorium, medial and lateral parts of the neostriatum, corticoidea dorsolateralis and temporoparieto-occipitalis areas, hippocampus, pre- and parahippocampal areas and prepiriform cortex. In the brainstem, GRP-ir cells were restricted mainly to the substantia nigra and ventral tegmental nucleus. Areas with densely packed GRP-ir clusters of varicosities were the medial intermediate hyperstriatum ventrale and lateral septal nucleus; dense GRP-ir neuropil was found in the parolfactory lobe, and in the dorsal half of the intermediate and caudal archistriatum. The ventral lamina medullaris contained many GRP-ir fibers. Forebrain areas devoid of immunoreactivity were the basal nucleus, ectostriatum, rostral archistriatum, most of the paleostriatum augmentatum and the lateral bed nucleus of the stria terminalis. Moderate densities of GRP-ir elements were found in the other telencephalic areas and further in, among others, the preoptic and hypothalamic region, ventral area of Tsai, cerulean nuclei, parabrachial complex, dorsal glossopharyngeal and vagus motor nuclei and medial nuclei of the solitary complex. The observations are compared with data from the literature and the implications for the definition of specific centers within the avian brain are discussed, with emphasis on systems with a role in visceral and motivational functions and in learning.  相似文献   

13.
Köbbert  C.  Thanos  S. 《Brain Cell Biology》2000,29(4):271-283
The frequent use of the adult rat sciatic nerve as a model to study the neuronal responses to injury, nerve regeneration and in transplantation studies, requires a detailed knowledge of the projection pattern of motor neurons into this nerve. Thus, as a first goal we determined this topographical projection of motor neurons and labelled small contingents by applying the fluorescent dye DiI in localised incisions made in the dorsal, rostral, ventral or caudal quadrants of the nerve. As a second goal we analysed with immunohistochemical methods the response of microglial cells within the topographical area corresponding to the incision and within areas outside this location. Uptake of the dye occurred only within the area confined to the incision, thus allowing the identification of the corresponding motor neuron perikarya within the ventral horn, eight to ten days later. In serial transverse sections of the lumbosacral spinal cord the number of labelled cells, their position within the ventral horn, and their longitudinal extent have been determined. The data suggest that the gross projection of the lumbosacral motor neuron column at the mid-thigh level of the sciatic nerve is topographic. In accordance, microglial cells showed fast activation within the injured topographic area, and a less pronounced and delayed response within the non-injured areas of the ventral horn. The graded response of microglial cells suggests that these cells possess a potential of local activation by sensing whether neurons are axotomised or just irritated by axotomy of their neighbours. The topographic organisation proves to be useful in studies on local injuries to the sciatic nerve and when analysing retrograde responses within the lumbosacral spinal cord.  相似文献   

14.
The stimulation of brachial plexus and sciatic nerve resulted in a precisely timed, synchronous volley of inputs to ventroposterolateral (VPL) neurons from either forelimb or hindlimb. Such stimulation activated sensory fibers of all modalities and was therefore modality-nonspecific. Extracellular recordings of modality-nonspecific single-unit evoked responses from VPL showed that 13% of VPL projection neurons responded to both forelimb and hindlimb inputs. We also demonstrated mutually inhibitory interactions between inputs from forelimb and hindlimb in 45% of VPL units. Unlike the somatotopic map produced by others using modality-specific inputs, the modality-nonspecific evoked response map of VPL had a broadly overlapping distribution of evoked responses. This was especially true for the more caudal aspects of VPL. When the delivery of stimuli was appropriately timed, forelimb inputs caused the inhibition of responses to forelimb stimulation; similarly, hindlimb inputs inhibited responses to forelimb stimulation. The inhibition had a variable duration that may reflect a combination of processes, including recurrent inhibitory collateral input from the thalamic reticular nucleus (TRN) or an intrinsic hyperpolarizing inhibitory afterpotential of the VPL neuron. The presence of an extensive converging input on VPL neurons and an inhibitory correlate to this overlapping of inputs may explain the shifting of VPL maps following lesions of peripheral nerve, spinal cord, or dorsal column nuclei (DCN).  相似文献   

15.
Unit responses in the hyperstriatal region of the pigeon forebrain to the action of various visual stimuli were investigated. Particular attention was paid to the discovery of retinotopic projection in the Wulst region. It was shown that as the electrode was advanced in the caudal direction in the zone of visual projection of the hyperstriatum the receptive fields of the neurons recorded shifted in the opposite direction in the visual field. The receptive fields of neurons of the ventral and dorsal hyperstriatum lie higher in the visual field and are larger in diameter than those of neurons of the accessory hyperstriatum. Unit responses in the visual projection zone of the Wulst depend on the intensity of illumination, size, and speed and direction of movement of the test objects across the receptive field. The functional role of the retino-thalamo-telencephalic system in visual interpretation in birds is discussed and it is suggested that the Wulst region is comparable with the striatal and also with the frontal regions of the mammalian cortex.M. V. Lomonosov Moscow State University. Translated from Neirofiziologiya, Vol. 8, No. 3, pp. 230–236, May–June, 1976.  相似文献   

16.
Neural crest cells from brachial levels of the neural tube populate the ventral roots, spinal nerves, and peripheral nerves of the chick forelimb where they give rise to Schwann cells. The distribution of neural crest cells in the developing forelimb was examined using homotopic and heterotopic chick-quail chimeras to label neural crest cells from subsets of the brachial spinal segments. Neural crest cells from particular regions of the spinal cord populated ventral roots and spinal nerves adjacent to or immediately posterior to the graft. Crest cells also populated the brachial plexus in accord with their segmental origins. In the forelimb, neural crest cells populated muscle nerves with anterior brachial spinal segments populating nerves to anterior musculature of the forelimb and posterior brachial spinal segments populating nerves to posterior musculature. Similar patterns were seen following both homotopic and heterotopic transplantation. In both types of grafts, the distribution of neural crest cells largely matched the sensory and motor projection pattern from the same spinal segmental level. This suggests that neural crest-derived Schwann cells from a particular spinal segment may use sensory and motor fibers emerging from the same segmental level as substrates to guide their migration into the periphery.  相似文献   

17.
The thalamic relays for the conduction of impulses arising during photic stimulation of the eyes and electrical stimulation of the tectum in the general cortex, hyperstriatum (the dorsal ventricular ridge), and the striatum proper were studied in the turtleEmys orbicularis. Acute experiments on immobilized animals showed that anodal polarization temporarily and destruction of n. rotundus irreversibly suppress the main negative wave of the responses to tectal stimulation and to flashes in the hyperstriatum, whereas the corresponding responses in the general cortex still persist. Polarization and destruction of the lateral thalamic region, including the lateral geniculate body, have the opposite effect: responses in the hyperstriatum to photic and tectal stimulation are virtually unchanged whereas those in the general cortex disappear, except their late components. Preceding single stimulation of the tectum or n. rotundus depresses responses in the hyperstriatum evoked by flashes. However, during stimulation of the lateral thalamic region, combined potentials and single unit responses appear in the hyperstriatum and interact with responses evoked by tectal stimulation. It is concluded that the main pathways in turtles which supply visual information to the general cortex and hyperstriatum differ: the former relay in the lateral thalamic region, the latter in n. rotundus, although some overlapping of their projections in the hyperstriatum and striatum is possible.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Leningrad. Translated from Neirofiziologiya, Vol. 9, No. 5, pp. 486–494, September–October, 1977.  相似文献   

18.
纹状体边缘区(MrD)是我们先后在大鼠、猫和猴脑内新发现的一个区域。它是位于纹状体尾内侧、环绕着苍白球头外侧的一层梭形细胞。MrD的细胞构筑、免疫组化特性和纤维联系形式不同于纹状体其它区。MrD的离心投射终止在苍白球尾侧,接近Meynert基底核(NBM)附近。损毁双侧MrD后,动物的学习记忆功能减弱。NBM已知与动物智能有关。本研究用纤维溃变和束路追踪电镜法结合行为实验方法,旨在了解MrD与NBM之间有无突触联系,以及此种联系与动物学习记忆的关系。用纤维溃变和束路追踪电镜法研究表明,由MrD发出的纤维终末与NBM的胆碱能神经元胞体间存在着突触联系。损伤MrD造成MrD和NBM形成突触联系的终末溃变后,动物的学习记忆能力降低。研究结果表明边缘区与Meynert基底核间存在着突触联系,而这种联系很可能是MrD的学习记忆功能的结构基础之一。  相似文献   

19.
Dogs were trained to perform the forelimb tonic flexion in order to lift a cup with meat from a bottom of the foodwell and hold it during eating with the head bent down to the cup. It is known that conditioning of the instrumental reaction is based on reorganization of the innate head-forelimb coordination into the opposite one. In untrained dogs, the forelimb flexion is accompanied by the anticipatory lifting of the head bent down to the foodwell. The following lowering of the head leads to an extension of the flexed forelimb. Tonic forelimb flexion is possible if the head is in the up position. Simultaneous holding of the flexed forelimb and lowered head providing food reinforcement is achieved only by learning. It was shown earlier that the lesion of the motor cortex contralateral to the "working" forelimb led to a prolonged disturbance of the elaborated coordination and reappearance of the innate coordination. In the present work we studied the influence of local lesions of the projection areas in the motor cortex, such as a "working" forelimb area, bilateral representation of the neck, and the medial part of the motor cortex, on the learned instrumental feeding reaction. It was found that only the lesion of the forelimb but not neck projection led to a disturbance of the learned head-forelimb movement coordination.  相似文献   

20.
The existence of multiple motor cortical areas that differ in some of their properties is well known in primates, but is less clear in the rat. The present study addressed this question from the point of view of connectional properties by comparing the afferent and efferent projections of the caudal forelimb area (CFA), considered to be the equivalent of the forelimb area of the primary motor cortex (MI), and a second forelimb motor representation, the rostral forelimb area (RFA). As a result of various tracing experiments (including double labeling), it was observed that CFA and RFA had reciprocal corticocortical connections characterized by preferential, asymmetrical, laminar distribution, indicating that RFA may occupy a different hierarchical level than CFA, according to criteria previously discussed in the visual cortex of primates. Furthermore, it was found that RFA, but not CFA, exhibited dense reciprocal connections with the insular cortex. With respect to their efferent projection to the basal ganglia, it was observed that CFA projected very densely to the lateral portion of the ipsilateral caudate putamen, whereas the contralateral projection was sparse and more restricted. The ipsilateral projection originating from RFA was slightly less dense than that from CFA, but it covered a larger portion of the caudate putamen (in the medial direction); the contralateral projection from RFA to the caudate putamen was of the same density and extent as the ipsilateral projection. The reciprocal thalamocortical and corticothalamic connections of RFA and CFA differed from each other in the sense that CFA was mainly interconnected with the ventrolateral thalamic nucleus, while RFA was mainly connected with the ventromedial thalamic nucleus. Altogether, these connectional differences, compared with the pattern of organization of the motor cortical areas in primates, suggest that RFA in the rat may well be an equivalent of the premotor or supplementary motor area. In contrast to the corticocortical, corticostriatal, and thalamocortical connections, RFA and CFA showed similar efferent projections to the subthalamic nucleus, substantia nigra, red nucleus, tectum, pontine nuclei, inferior olive, and spinal cord.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号