首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Na,K—ATP酶的结构和功能   总被引:9,自引:0,他引:9  
  相似文献   

2.
3.
ε亚基是叶绿体ATP合酶最小的一个亚基,有阻塞ATP合酶的质子通道和抑制其水解ATP活力的两种功能。用定点突变和缺失等分子生物学方法对ε亚基的结构功能进行了研究,结果表明:ε亚基42位上的苏氨酸(Thr42)对维持其结构和功能都很重要。与大肠杆菌ATP合酶相比,叶绿体ATP合酶ε亚基C端和N端的氨基酸残基缺失对其结构功能的影响更为敏感。  相似文献   

4.
5.
Wilson病(WD)是一种以铜代谢障碍为特征的常染色体隐性遗传病,其致病基因定位于13q14.3,该基因编码产物为转运铜离子和P型-ATP酶(ATP7B)。本文对Wilson病基因编码产物P型-ATP7B酶的分子结构特点,铜结合区的功能,ATP7B蛋白的多种形式等的研究进行综述。  相似文献   

6.
肝豆状核变性(WD)基因已被克隆,序列分析表明,其基因产物(ATP7B)编码的是一种衾中1411个氨基酸的铜转运P型ATP酶。ATP7B具有这些酶所独有的功能结构区:金属离子结合位点、阳离子转导区、SEHP序更及跨膜区等,WD基因高频突变位点多与这些结构有密切关系。对ATP7B的深入研究将为探讨WD的发病机制及诊断和治疗提供帮助。  相似文献   

7.
本实验初步观察了运动过程中大鼠体内锌的变化情况以及运动对大鼠心肌线粒体能量转换功能的影响。结果提示:一次力竭运动可使大鼠体内锌代谢发生改变,变化的原因可能与摄入不足、运动机体需要增加等有关。一定强度的运动训练不足以使心肌线粒体功能发生明显改变,但一次力竭性运动可以导致心肌线粒体膜的流动性发生明显变化,H+转运ATP酶活性明显降低。  相似文献   

8.
9.
在KCl介质中牛脑V-型质子转运ATP酶复合体活力温度的Arrhenius图在33℃附近呈现明显的折点,同样做其N-[1-芘]马来酰亚胺(N-[1-P]M)的荧光-温度的Arrhenius图,发现其折点温度也为33℃,当加入100μmol/LNEM(N-ethylmaleimide),ATP酶复合体活力部分被抑制后的Arrhenius图折点下降为27℃,加入0.75-0.85mol/L尿素则活力的Arrhenius图的折点变为30℃。加入6%(V/V)的乙醇后,活力的Arrhenius图的折点上升为38℃。加入NEM,尿素和乙醇的内源荧光和N-[1-P]M标记的荧光测定,表明它们确实引起了牛脑V-型质子转运复合体构象的改变,这表明引起构象变化配基的加入,可改变牛脑V-型质子转运ATP酶复合体的Arrhenius图折点温度,也说明牛脑V-型质子转运ATP酶复合体Arrhenius图折点与酶复合体的构象直接相关。  相似文献   

10.
为了探讨鱼类在碱水环境中的渗透调节机制, 将尼罗罗非鱼从淡水直接转入2 g·L–1 和4 g·L–1NaHCO3 碱水中进行急性胁迫试验, 分别检测胁迫后0、3、6、12、24、48、72、96 和192 h 时血清渗透压、血清Na+、K+、Cl和HCO3浓度以及鳃、肾和肠中离子转运酶碳酸酐酶(CAⅡ、CAⅣ)、碳酸氢钠协同转运载体(SLC4A4)、Cl/HCO3离子交换体(SLC26A6)活力变化。结果显示: 不同碱度胁迫下, 尼罗罗非鱼血清渗透压、离子浓度以及鳃、肾、肠中离子转运酶活力均与碱胁迫浓度呈正相关。随时间推移, 血清渗透压、离子浓度呈现先上升、后下降的变化趋势, 24 h 达到峰值; 鳃、肾和肠中CAⅡ、CAⅣ、SLC4A4、SLC26A6 活力均呈现先短时间降低、后升高、再降低并趋于稳定的趋势。研究表明, 尼罗罗非鱼具有一定的碱环境适应能力, CAⅡ、CAⅣ、SLC4A4、SLC26A6 参与碱胁迫下离子转运、渗透压平衡调节。  相似文献   

11.
12.
As in the case of many ligand-gated ion channels, the biochemical and electrophysiological properties of the ionotropic glutamate receptors have been studied extensively. Nevertheless, we still do not understand the molecular mechanisms that harness the free energy of agonist binding, first to drive channel opening, and then to allow the channel to close (desensitize) even though agonist remains bound. Recent crystallographic analyses of the ligand-binding domains of these receptors have identified conformational changes associated with agonist binding, yielding a working hypothesis of channel function. This opens the way to determining how the domains and subunits are assembled into an oligomeric channel, how the domains are connected, how the channel is formed, and where it is located relative to the ligand-binding domains, all of which govern the processes of channel activation and desensitization.  相似文献   

13.
The impacts of unnatural every day cycles (circadian) for 60 days on the histological structure of kidneys and ATPase activities in MF1 mice were studied. The exposure times were 16 h dark, 16 h light, 24 h dark, and 24 h light, and control exposure times were 12 h dark followed by 12 h light. Our results showed an increase in the total ATPase activity of mice in all groups. Additionally, the activity of the enzyme Na+/K+-ATPase was increased after 24 h darkness, 24 h light, and 16 h light exposures compared to control. The enzyme Mg+2-ATPase activities of the groups were higher when exposed to 16 h light, 24 h light, 24 h darkness and 16 h darkness. The activities of total ATPase, Na+/K+-ATPase and Mg+2-ATPase in kidneys were increased in all groups after 24 h light, 24 h darkness, 16 h darkness and 16 h light exposures. Interestingly, the activity of V-type ATPase was reduced after 16 h darkness, 24 h darkness and 16 h light. Taking everything into account, changes in the day by day cycle prompt neurotic changes, enzymatic and histological changes in the kidneys of mice. More studies should be directed to explore the impacts of light and darkness that can prompt these progressions.  相似文献   

14.
The P-type ATPases are integral membrane proteins that generate essential transmembrane ion gradients in virtually all living cells. The structures of two of these have recently been elucidated at a resolution of 8 A. When considered together with the large body of biochemical information that has accrued for these transporters and for enzymes in general, this new structural information is providing tantalizing insights regarding the molecular mechanism of active ion transport catalyzed by these proteins.  相似文献   

15.
4-Hydroxy-2,3-trans-nonenal (HNE), a major lipid peroxidation product, has been shown to react with specific amino acid residues of proteins and alter their function. In vitro exposure of erythrocyte ghosts and neutrophil membranes to HNE results in the inhibition of ion transport ATPases. Neutrophil membrane Ca2+-ATPase is strongly inhibited by micromolar concentrations of HNE, while HNE is considerably less effective against neutrophil Mg2+-ATPase and the erythrocyte ghost enzymes.  相似文献   

16.
Viral ion channels: structure and function   总被引:9,自引:0,他引:9  
Viral ion channels are short auxiliary membrane proteins with a length of ca. 100 amino acids. They are found in enveloped viruses from influenza A, influenza B and influenza C (Orthomyxoviridae), and the human immunodeficiency virus type 1 (HIV-1, Retroviridae). The channels are called M2 (influenza A), NB (influenza B), CM2 (influenza C) and Vpu (HIV-1). Recently, in Paramecium bursaria chlorella virus (PBCV-1, Phycodnaviridae), a K+ selective ion channel has been discovered. The viral channels form homo oligomers to allow an ion flux and represent miniaturised systems. Proton conductivity of M2 is established; NB, Vpu and the potassium channel from PBC-1 conduct ions; for CM2 ion conductivity is still under proof. This review summarises the current knowledge of these short viral membrane proteins. Their discovery is outlined and experimental evidence for their structure and function is discussed. Studies using computational methods are presented as well as investigations of drug-protein interactions.  相似文献   

17.
Biology, structure and mechanism of P-type ATPases   总被引:13,自引:0,他引:13  
  相似文献   

18.
Toward an understanding of structure and function of ion channels   总被引:4,自引:0,他引:4  
B K Krueger 《FASEB journal》1989,3(8):1906-1914
The second half of the 1980s is certain to be considered a turning point in the study of ion channels. Within the last few years, monumental advances in the application of molecular biology, single-channel recording, and direct molecular characterization have been brought to bear on the problem of relating the molecular structure of the ion channel proteins to their function in the cell membrane. Structure-function relationships can now be studied at a level of detail that was unimagined a decade ago. Recently, advances made with the techniques of molecular biology appear to have dominated the literature in this field; however, innovative strategies of structural characterization and electrical measurements of functioning channels in native and artificial membranes continue to break new ground. This paper is a selective review of current progress in understanding structure-function relationships in ion channels. The relative usefulness of determining amino acid sequences of channel proteins together with the resulting deductions about 3-dimensional structure and function will be evaluated with respect to the potential importance of studying the channel molecules more directly by biochemical, immunological, and electrophysiological methods. A full understanding of the details of channel structure and its relationship to function may be realized in the near future as a result of the interdisciplinary application of biophysical, biochemical, and molecular biological techniques.  相似文献   

19.
Voltage-gated ion channels are responsible for the electrical activity in a variety of cell types in modern-day animals. However, they represent the result of many millions of years of evolution of a family of ion channel proteins that are also found in prokaryotes and diverse eukaryotes, and probably exist in all life forms. This review traces the evolution of ion channels, with particular emphasis on the factors and evolutionary pathways that may have given rise to voltage-gated potassium (K+), calcium (Ca2+), and sodium (Na+) channels. The review also highlights the utility of comparing phylogenetically distinct versions of the same protein as a means to better understand the structure and function of proteins.  相似文献   

20.
Effects of membrane lipids on ion channel structure and function   总被引:9,自引:0,他引:9  
Biologic membranes are not simply inert physical barriers, but complex and dynamic environments that affect membrane protein structure and function. Residing within these environments, ion channels control the flux of ions across the membrane through conformational changes that allow transient ion flux through a central pore. These conformational changes may be modulated by changes in transmembrane electrochemical potential, the binding of small ligands or other proteins, or changes in the local lipid environment. Ion channels play fundamental roles in cellular function and, in higher eukaryotes, are the primary means of intercellular signaling, especially between excitable cells such as neurons. The focus of this review is to examine how the composition of the bilayer affects ion channel structure and function. This is an important consideration because the bilayer composition varies greatly in different cell types and in different organellar membranes. Even within a membrane, the lipid composition differs between the inner and outer leaflets, and the composition within a given leaflet is both heterogeneous and highly dynamic. Differential packing of lipids (and proteins) leads to the formation of microdomains, and lateral diffusion of these microdomains or "lipid rafts" serve as mobile platforms for the clustering and organization of bilayer constituents including ion channels. The structure and function of these channels are sensitive to specific chemical interactions with neighboring components of the membrane and also to the biophysical properties of their membrane microenvironment (e.g., fluidity, lateral pressure profile, and bilayer thickness). As specific examples, we have focused on the K+ ion channels and the ligand-gated nicotinicoid receptors, two classes of ion channels that have been well-characterized structurally and functionally. The responsiveness of these ion channels to changes in the lipid environment illustrate how ion channels, and more generally, any membrane protein, may be regulated via cellular control of membrane composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号