共查询到5条相似文献,搜索用时 0 毫秒
1.
Michelle Zalles Nataliya Smith Debra Saunders Megan Lerner KarMing Fung James Battiste Rheal A. Towner 《Journal of cellular and molecular medicine》2022,26(2):570
Glioblastoma (GBM) is the most common primary malignant brain tumour in adults. Despite a multimodal treatment response, survival for GBM patients remains between 12 and 15 months. Anti‐ELTD1 antibody therapy is effective in decreasing tumour volumes and increasing animal survival in an orthotopic GBM xenograft. OKN‐007 is a promising chemotherapeutic agent that is effective in various GBM animal models and is currently in two clinical trials. In this study, we sought to compare anti‐ELTD1 and OKN‐007 therapies, as single agents and combined, against bevacizumab, a commonly used therapeutic agent against GBM, in a human G55 xenograft mouse model. MRI was used to monitor tumour growth, and immunohistochemistry (IHC) was used to assess tumour markers for angiogenesis, cell migration and proliferation in the various treatment groups. OKN and anti‐ELTD1 treatments significantly increased animal survival, reduced tumour volumes and normalized the vasculature. Additionally, anti‐ELTD1 was also shown to significantly affect other pro‐angiogenic factors such as Notch1 and VEGFR2. Unlike bevacizumab, anti‐ELTD1 and OKN treatments did not induce a pro‐migratory phenotype within the tumours. Anti‐ELTD1 treatment was shown to be as effective as OKN therapy. Both OKN and anti‐ELTD1 therapies show promise as potential single‐agent multi‐focal therapies for GBM patients. 相似文献
2.
Michalis Panteli James S.H. Vun Ippokratis Pountos Anthony J. Howard Elena Jones Peter V. Giannoudis 《Journal of cellular and molecular medicine》2022,26(3):601
Fracture non‐union represents a common complication, seen in 5%–10% of all acute fractures. Despite the enhancement in scientific understanding and treatment methods, rates of fracture non‐union remain largely unchanged over the years. This systematic review investigates the biological, molecular and genetic profiles of both (i) non‐union tissue and (ii) non–union‐related tissues, and the genetic predisposition to fracture non‐union. This is crucially important as it could facilitate earlier identification and targeted treatment of high‐risk patients, along with improving our understanding on pathophysiology of fracture non‐union. Since this is an update on our previous systematic review, we searched the literature indexed in PubMed Medline; Ovid Medline; Embase; Scopus; Google Scholar; and the Cochrane Library using Medical Subject Heading (MeSH) or Title/Abstract words (non‐union(s), non‐union(s), human, tissue, bone morphogenic protein(s) (BMPs) and MSCs) from August 2014 (date of our previous publication) to 2 October 2021 for non‐union tissue studies, whereas no date restrictions imposed on non–union‐related tissue studies. Inclusion criteria of this systematic review are human studies investigating the characteristics and properties of non‐union tissue and non–union‐related tissues, available in full‐text English language. Limitations of this systematic review are exclusion of animal studies, the heterogeneity in the definition of non‐union and timing of tissue harvest seen in the included studies, and the search term MSC which may result in the exclusion of studies using historical terms such as ‘osteoprogenitors’ and ‘skeletal stem cells’. A total of 24 studies (non‐union tissue: n = 10; non–union‐related tissues: n = 14) met the inclusion criteria. Soft tissue interposition, bony sclerosis of fracture ends and complete obliteration of medullary canal are commonest macroscopic appearances of non‐unions. Non‐union tissue colour and surrounding fluid are two important characteristics that could be used clinically to distinguish between septic and aseptic non‐unions. Atrophic non‐unions had a predominance of endochondral bone formation and lower cellular density, when compared against hypertrophic non‐unions. Vascular tissues were present in both atrophic and hypertrophic non‐unions, with no difference in vessel density between the two. Studies have found non‐union tissue to contain biologically active MSCs with potential for osteoblastic, chondrogenic and adipogenic differentiation. Proliferative capacity of non‐union tissue MSCs was comparable to that of bone marrow MSCs. Rates of cell senescence of non‐union tissue remain inconclusive and require further investigation. There was a lower BMP expression in non‐union site and absent in the extracellular matrix, with no difference observed between atrophic and hypertrophic non‐unions. The reduced BMP‐7 gene expression and elevated levels of its inhibitors (Chordin, Noggin and Gremlin) could potentially explain impaired bone healing observed in non‐union MSCs. Expression of Dkk‐1 in osteogenic medium was higher in non‐union MSCs. Numerous genetic polymorphisms associated with fracture non‐union have been identified, with some involving the BMP and MMP pathways. Further research is required on determining the sensitivity and specificity of molecular and genetic profiling of relevant tissues as a potential screening biomarker for fracture non‐unions. 相似文献
3.
Phylogenetic assignment of individual sequence reads to their respective taxa, referred to as 'taxonomic binning', constitutes a key step of metagenomic analysis. Existing binning methods have limitations either with respect to time or accuracy/specificity of binning. Given these limitations, development of a method that can bin vast amounts of metagenomic sequence data in a rapid, efficient and computationally inexpensive manner can profoundly influence metagenomic analysis in computational resource poor settings. We introduce TWARIT, a hybrid binning algorithm, that employs a combination of short-read alignment and composition-based signature sorting approaches to achieve rapid binning rates without compromising on binning accuracy and specificity. TWARIT is validated with simulated and real-world metagenomes and the results demonstrate significantly lower overall binning times compared to that of existing methods. Furthermore, the binning accuracy and specificity of TWARIT are observed to be comparable/superior to them. A web server implementing TWARIT algorithm is available at http://metagenomics.atc.tcs.com/Twarit/ 相似文献
4.
Aymer Andrés Vásquez-Ordó?ez Nicolas A. Hazzi David Escobar-Prieto Dario Paz-Jojoa Soroush Parsa 《ZooKeys》2015,(545):75-87
Whiteflies (Hemiptera, Aleyrodidae) are represented by more than 1,500 herbivorous species around the world. Some of them are notorious pests of cassava (Manihot
esculenta), a primary food crop in the tropics. Particularly destructive is a complex of Neotropical cassava whiteflies whose distribution remains restricted to their native range. Despite their importance, neither their distribution, nor that of their associated parasitoids, is well documented. This paper therefore reports observational and specimen-based occurrence records of Neotropical cassava whiteflies and their associated parasitoids and hyperparasitoids. The dataset consists of 1,311 distribution records documented by the International Center for Tropical Agriculture (CIAT) between 1975 and 2012. The specimens are held at CIAT’s Arthropod Reference Collection (CIATARC, Cali, Colombia). Eleven species of whiteflies, 14 species of parasitoids and one species of hyperparasitoids are reported. Approximately 66% of the whitefly records belong to Aleurotrachelus
socialis and 16% to Bemisia
tuberculata. The parasitoids with most records are Encarsia
hispida, Amitus
macgowni and Encarsia
bellottii for Aleurotrachelus
socialis; and Encarsia
sophia for Bemisia
tuberculata. The complete dataset is available in Darwin Core Archive format via the Global Biodiversity Information Facility (GBIF). 相似文献