共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Ya-Nan Xue Yu Yan Zi-Zi Chen Jia Chen Feng-Jie Tang Hui-Qing Xie Shi-Jie Tang Ke Cao Xiao Zhou Ai-Jun Wang Jian-Da Zhou 《Journal of cellular biochemistry》2019,120(11):19087-19097
Adipose-derived stem cells (ADSCs) have emerged as a cell source for regeneration medicine. ADSCs possess the capacity to differentiate into endothelial cells and serve an essential role in vascular development and function. LncRNA taurine upregulated gene 1 (TUG1) has recently been linked with angiogenesis in hepatoblastoma. However, the roles of TUG1 in endothelial differentiation of ADSCs remain unidentified. Human adipose-derived stem cells (hADSCs) were obtained and characterized by flow cytometry, Oil red O and Alizarin Red staining. HADSCs were maintained in the endothelial differentiation medium and the expressions of TUG1, miR-143, and FGF1 were examined by qRT-PCR. To assess endothelial differentiation, the expressions of CD31, von Willebrand factor (vWF), VE-cadherin were examined by Western blot analysis, qRT-PCR, and immunofluorescence. Tube formation in Matrigel was examined. The interactions between TUG1 and miR-143, miR-143 and FGF1 were validated by luciferase assays. During the endothelial differentiation process, TUG1 and FGF1 were upregulated, whereas miR-143 was downregulated. TUG1 overexpression downregulated miR-143, upregulated FGF1, CD31, vWF, and VE-cadherin, and enhanced capillary tube formation. Luciferase assays showed that TUG1 interacted with miR-143, and FGF1 was a direct target of miR-143. Furthermore, the enhancement of endothelial differentiation induced by TUG1 overexpression was abolished by miR-143 overexpression. Our findings implicated that lncRNA TUG1 promoted endothelial differentiation of ADSCs by regulating the miR-143/FGF1 axis. 相似文献
3.
4.
5.
Wang Tang Hongyi Zhang Donghua Liu Feng Jiao 《Journal of cellular and molecular medicine》2022,26(1):202
This study explored the role played by combined ICA and bone mesenchymal stem cells (BMSCs) in repairing rabbit knee cartilage defects. Firstly, rabbit BMSCs were isolated and used to construct an in vitro cellular model of oxygen‐glucose deprivation/reoxygenation (OGD/R). Subsequently, ICA processing, Alcian blue staining, immunofluorescence and Western blot studies were performed to evaluate the ability of BMSCs to display signs of chondrogenic differentiation. Furthermore, a rabbit knee cartilage injury model was established in vivo. International Cartilage Repair Society (ICRS) macroscopic evaluations, H&E, Alcian blue and EdU staining, as well as immunohistochemistry, were analysed cartilage repair and pathological condition of the knee cartilage tissue. Our in vitro results showed that ICA promoted the chondrogenic differentiation of BMSCs, as well as aggrecan (AGR), bone morphogenetic protein 2 (BMP2) and COL2A1 protein expression in BMSCs. In vivo experiments showed that rabbits in the BMSCs or ICA treatment group had higher ICRS scores and displayed a better restoration of cartilage‐like tissue and chondrocyte expression on the surface of their cartilage defects. In conclusion, ICA or BMSCs alone could repair rabbit knee cartilage damage, and combined treatment with ICA and BMSCs showed a better ability to repair rabbit knee cartilage damage. 相似文献
6.
Rui Zhang Zequn Niu Jie Liu Xiaoyan Dang Hui Feng Jiangli Sun Longfei Pan Zhuo Peng 《Journal of cellular and molecular medicine》2022,26(13):3648
Myocardial injury is a frequently occurring complication of sepsis. This study aims to investigate the molecular mechanism of long noncoding RNA (lncRNA) small nucleolar RNA host gene 1 (SNHG1)‐mediated DNA methyltransferase 1/B‐cell lymphoma‐2 (DNMT1/Bcl‐2) axis in sepsis‐induced myocardial injury. Mice and HL‐1 cells were treated with lipopolysaccharide (LPS) to establish animal and cellular models simulating sepsis and inflammation. LncRNA SNHG1 was screened out as a differentially expressed lncRNA in sepsis samples through microarray profiling, and the upregulated expression of lncRNA SNHG1 was confirmed in myocardial tissues of LPS‐induced septic mice and HL‐1 cells. Further experiments suggested that silencing of lncRNA SNHG1 reduced the inflammation and apoptotic rate of LPS‐induced HL‐1 cells. LncRNA SNHG1 inhibited Bcl‐2 expression by recruiting DNMT1 to Bcl‐2 promoter region to cause methylation. Inhibition of Bcl‐2 promoter methylation reduced the inflammation and apoptotic rate of LPS‐induced HL‐1 cells. In vivo experiments substantiated that lncRNA SNHG1 silencing alleviated sepsis‐induced myocardial injury in mice. Taken together, lncRNA SNHG1 promotes LPS‐induced myocardial injury in septic mice by downregulating Bcl‐2 through DNMT1‐mediated Bcl‐2 methylation. 相似文献
7.
8.
Effects of macrophages and CXCR2 on adipogenic differentiation of bone marrow mesenchymal stem cells
Dingding Cao Feifei Ma Shengrong Ouyang Zhuo Liu Yuanyuan Li Jianxin Wu 《Journal of cellular physiology》2019,234(6):9475-9485
Macrophages and many chemokines are closely associated with the adipogenic differentiation of bone marrow mesenchymal stem cells (MSCs), but their roles in adipogenesis and the underlying mechanisms are not fully understood. Here, we first investigated the influence of macrophages on the differentiation of MSCs in vitro. We found that RAW246.7 macrophages cocultured with MSCs strongly blocked the differentiation progress and inhibited the expression of C-X-C motif chemokine ligand 1 (CXCL1) during adipogenesis. Coculture with MSCs mainly induced macrophages toward M2 polarization. In addition, the expression of CXCL1 and its receptor, C-X-C chemokine receptor type 2, CXCR2 are high during adipogenic differentiation of MSCs and not in mature adipocytes. Although CXCL1 had no effect on adipogenesis, treatment with a specific CXCR2 inhibitor, SB225002, hampered the adipogenic differentiation of MSCs. Blocking CXCR2 decreased p38 and Elk1 phosphorylation but increased the extracellular signal–regulated kinase (ERK) phosphorylation at the initial stage of adipogenesis, which suppressed the phosphorylation of p38/ERK-Elk1 at the late stage. Inhibition of ERK had similar effects on adipogenesis and Elk1 phosphorylation. Our data suggest that MSCs interact with macrophages during adipogenic differentiation. CXCR2 regulates the adipogenic differentiation of MSCs by altering the activation of the p38/ERK-Elk1 signaling pathway. 相似文献
9.
Hui-Ping Zhang Yan-Hua Wang Sheng-Chao Ma Hui Zhang An-Ning Yang Xiao-Ling Yang Ming-Hao Zhang Jian-Min Sun Yin-Ju Hao Yi-Deng Jiang 《Experimental cell research》2018,362(1):217-226
Endothelial progenitor cells (EPCs) contribute to neovasculogenesis and reendothelialization of damaged blood vessels to maintain the endothelium. Dysfunction of EPCs is implicated in the pathogenesis of vascular injury induced by homocysteine (Hcy). We aimed to investigate the role of Cyclin A in Hcy-induced EPCs dysfunction and explore its molecular mechanism. In this study, by treatment of EPCs with Hcy, we found that the expression of Cyclin A mRNA and protein were significantly downregulated in a dose-dependent manner. Knockdown of Cyclin A prominently reduced proliferation of EPCs, while over-expression of Cyclin A significantly promoted the cell proliferation, suggesting that Hcy inhibits EPCs proliferation through downregulation of Cyclin A expression. In addition, epigenetic study also demonstrated that Hcy induces DNA hypomethylation of the Cyclin A promoter in EPCs through downregulated expression of DNMT1. Moreover, we found that Hcy treatment of EPCs leads to increased SAM, SAH and MeCP2, while the ratio of SAM/SAH and MBD expression decrease. In summary, our results indicate that Hcy inhibits Cyclin A expression through hypomethylation of Cyclin A and thereby suppress EPCs proliferation. These findings demonstrate a novel mechanism of DNA methylation mediated by DNMT1 in prevention of Hcy associated cardiovascular disease. 相似文献
10.
Xiao Ouyang Yunzhi Ding Li Yu Feng Xin Xiaowei Yang 《Journal of musculoskeletal & neuronal interactions》2022,22(3):401
Objective:To explore the regulation of LncRNA TUG /miRNA-204/SIRT1 pathway on osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), so as to provide a new theoretical basis for the clinical treatment of osteoporosis.Methods:Detect changes of LncRNA and miRNA expression predicted in post-differentiation BMSCs with Western blot and qPCR tests. Verify the regulatory relationship between LncRNA and miRNA, miRNA and SIRT1 through the luciferase reporter assay. Transfect recombinant plasmids with LncRNA and their shRNA or transfected miRNA mimics and inhibitors.Results:According to the bioinformatic prediction, LncRNA TUG/miR-204 affected the regulation of SIRT1 on osteogenic differentiation of BMSCs, which were consistent with the results of luciferase reporter assay, namely, there are direct regulation targets between LncRNA TUG and miR-204, miR-204 and SIRT1. Overexpression and knockdown experiments revealed that LncRNA TUG overexpression/knockdown down/up-regulated miR-204 expression, which otherwise increased/decreased SIRT1 levels, and was positively correlated with osteogenic differentiation of BMSCs. Conversely, miR-204 was negatively correlated with LncRNA TUG and SIRT1, and negatively regulated osteogenic differentiation.Conclusion:This study found the direct regulatory relationship of LncRNA TUG/miR-204/SIRT1 during the osteogenic differentiation of BMSCs, and revealed that SIRT1 positively regulates the osteogenic differentiation of BMSCs, which provides a theoretical basis and potential therapeutic targets for a series of osteogenic differentiation-related diseases including osteoporosis. 相似文献
11.
Xianjing Song Chuang Yang Jing Chang Xin Xue 《Journal of cellular and molecular medicine》2020,24(22):13248
Considering the significance of lncRNA/miRNA axis in explaining atherosclerosis (AS) progression, this investigation was intended to clarify whether lncRNAs XIST/SNHG5 would regulate AS aetiology by sponging miR‐155, an AS‐promoting molecule. We altogether recruited 367 patients who were examined by coronary angiography, and meanwhile, human coronary artery endothelial cells (HCAECs) were purchased to establish cells models via ox‐LDL treatment. The study results indicated that lowly expressed XIST/SNHG5 and highly expressed miR‐155 were frequently detectable among AS patients who showed severe stenosis and possessed high triglyceride (TG), low‐density lipoprotein cholesterol (LDL‐C) and high‐sensitivity C‐reactive protein (hs‐CRP) levels. Besides, HCAECs treated by ox‐LDL released large amounts of inflammatory cytokines, and their apoptosis rate was also raised. Moreover, expressions of XIST and SNHG5 declined markedly within ox‐LDL‐treated HCAECs, whereas miR‐155 expression significantly ascended. Transfection of pcDNA‐XIST and pcDNA‐SNHG5 both reduced the expression of TNF‐α, IL‐6, IL‐8 and IL‐1β within HCAECs and also dampened the apoptotic tendency of HCAECs. Co‐treatment of pcDNA‐XIST and pcDNA‐SNHG5 produced a larger effect on HCAEC activity than pcDNA‐XIST or pcDNA‐SNHG5 alone. Furthermore, miR‐155, modified by XIST and SNHG5, was capable of reversing the impacts of XIST and SNHG5 on HCAEC activity. Eventually, CARHSP1 was activated by XIST and SNHG5, and its overexpression dwindled impacts of miR‐155 mimic on proliferation and inflammation response of HCAECs. In conclusion, targeting XIST and SNHG5 might be an ideal alternative in delaying AS progression, allowing for their repression of downstream miR‐155. 相似文献
12.
YiQiang Li JingChun Li QingHe Zhou Yuanzhong Liu WeiDong Chen HongWen Xu 《Journal of cellular biochemistry》2019,120(3):2886-2896
Neurofibromatosis type I (NF1), which is caused by mutations in the NF1 gene, is a common autosomal dominant genetic disease leading to skeletal abnormalities. Both NF1 gene and mammalian target of rapamycin complex 1 (mTORC1) signaling are associated with the osteogenic differentiation of bone marrow stem cells (BMSCs). In this study, we hypothesized that mTORC1 signaling is involved in NF1-modulated osteoblast differentiation of BMSCs. Human BMSCs were cultured in an osteogenic induction medium. The expression of NF1 was either inhibited or overexpressed by transfecting NF1 with a specific small interfering RNA (siRNA) or pcDNA3.0 plasmid, respectively. In addition, an mTORC1 signaling inhibitor and agonist were used to investigate the effects of mTORC1 on NF1-modulated osteogenic differentiation of BMSCs. The results indicated that inhibiting the expression of NF1 with siRNA significantly decreased the mRNA levels of NF1, whereas overexpressing the expression of NF1 with pcDNA3.0 plasmid significantly increased the mRNA levels of NF1 at days 3, 7, 14 and 21 after culture. We observed reduced osteogenic differentiation and cell proliferation in the NF1-siRNA group and enhanced osteogenic differentiation and cell proliferation of BMSCs in the NF1-pcDNA3.0 group. The activity of mTORC1 signaling (p-mTORC1, p-S6K1, and p-4EBP1) was significantly upregulated in the NF1-siRNA group and significantly inhibited in the NF1-pcDNA3.0 group, 7 and 14 days after culture. The effects of NF1-siRNA and NF1- pcDNA3.0 on osteogenic differentiation of BMSCs and cell proliferation were reversed by mTORC1 inhibitor and agonist, respectively. In conclusion, NF1 modulates osteogenic differentiation and cell proliferation of human BMSCs and mTORC1 signaling is essential for this process. 相似文献
13.
14.
Periodontal disease (PD), a degenerative bacterially induced disease of periodontium, can lead to bone resorption and teeth loss. Development of PD includes a strong inflammatory reaction, which involves multiple immune cells and their secreting factors including interleukin-17 (IL-17), which is not only an important modulator of immune and hematopoietic responses but also affects bone metabolism. In the present study we aimed to determine whether IL-17 affects the regenerative potential of periodontal ligament mesenchymal stem cells (PDLSCs) by investigating its ability to modulate osteogenic differentiation of these cells in vitro along with associated signaling pathways. Our results revealed that IL-17 inhibited both the proliferation and migration of PDLSCs and decreased their osteogenic differentiation by activating ERK1,2 and JNK mitogen-activated protein kinases. Obtained data suggested that IL-17 might contribute to alveolar bone loss in PD. 相似文献
15.
Zhen Li Yan Li Ya Li Kewei Ren Xin Li Xinwei Han Jiaxiang Wang 《Journal of biochemical and molecular toxicology》2017,31(9)
Long non‐coding RNA (lncRNA) H19 in tumors played important roles in various biological processes. However, the biological role and molecular mechanism of H19 in breast cancer are unclear. Here, we found that H19 was aberrantly upregulated in human breast tumor tissues and cells. A negative correlation between H19 and miR‐152 and positive correlation between H19 and DNMT1 mRNA were observed. Downregulation of H19 and DNMT1 significantly retarded breast cancer cell proliferation and invasion. H19 act as an endogenous sponge by directly binding to miR‐152. miR‐152 directly targeted DNMT1 and was regulated by H19. Besides, H19 overexpression dramatically relieved the inhibition of miR‐152 on DNMT1 expression. miR‐152 inhibition and DNMT1 overexpression obviously reversed the inhibitory effects of H19 downregulation on cell proliferation and invasion. In conclusion, H19 promoted proliferation and invasion of breast cancer through the miR‐152/DNMT1 axis, providing a novel mechanism about the occurrence and development of breast cancer. 相似文献
16.
Pei Tian Jin-Xing Wei Jing Li Jun-Kai Ren Jin-Jian Yang 《Cell biology international》2021,45(7):1546-1560
Immune escape of renal cell carcinoma (RCC) impacts patient survival. However, the molecular mechanism of long noncoding RNA (lncRNA) small nucleolar RNA host gene 1 (SNHG1) in RCC immune escape remains unclear. Quantitative real-time PCR and western blotting results revealed that the expression of lncRNA SNHG1 and STAT3 were upregulated in RCC tissues and cells and that the expression of miR-129-3p was downregulated. Enzyme-linked immunosorbent assay results revealed the increased levels of immune-related factors (interferon-γ, tumour necrosis factor α, and interleukin-2) in RCC tissues. SNHG1 knockdown or miR-129-3p overexpression inhibited the proliferation and invasion of A498 and 786-O cells, while the proliferation and cytotoxicity of CD8+ T cells increased, which promoted the secretion of immune-related factors. STAT3 overexpression decreased the protective effect of miR-129-3p overexpression on RCC cell immune escape. In addition, miR-129-3p knockdown and STAT3 overexpression decreased the protective effect of lncRNA SNHG1 knockdown on RCC cell immune escape. In addition, PD-L1 expression was downregulated after lncRNA SNHG1 knockdown but upregulated after miR-129-3p knockdown and STAT3 overexpression. Dual-luciferase assays showed that lncRNA SNHG1 targets miR-129-3p, and miR-129-3p targets STAT3. RNA pull-down and RNA immunoprecipitation assays verified the regulatory relationship between SNHG1 and STAT3. In vivo, shSNHG1 prolonged the overall survival of RCC tumour model mice and inhibited RCC tumour growth and immune escape but increased CD8+ T cell infiltration in mice. Our findings provide an experimental basis for elucidating the molecular mechanisms of immune escape by RCC and reveal a novel target to treat this disease. 相似文献
17.
Qian-Qian Ma Fang-Yu Liu Meng Shi Chang-Hua Sun Zhu Tan Xiao-Dan Chang Qiu-Ping Li Zhi-Chun Feng 《Journal of cellular physiology》2019,234(11):21027-21038
Retinopathy has become one of the major factors that lead to blindness worldwide. Although many clinical therapies are concerned about such disease, most of them focus on symptoms alleviation. In this study, we aim to investigate whether coculture retinal stem cells (RSCs) with bone marrow mesenchymal stem cells transfected with angiogenin-1 (Ang-1-BMSCs) affects the damaged retinal tissue of oxygen-induced retinopathy of prematurity (OIR-ROP) mice. After OIR-ROP mouse model establishment, Ang-1-BMSCs, RSCs, and OIR-ROP retinal tissues were cocultured in a a transwell chamber. RSCs proliferation and the expression of Ang-1, insulin-like growth factor-1 (IGF-1) in the supernatant of RSCs, as well as β-tubulin and protein kinase C (PKC) expression were evaluated. Finally, the repair of OIR-ROP mice retinal tissues was observed by injecting Ang-1-BMSCs + RSCs. In the OIR-ROP mouse model, RSCs cocultured with OIR-ROP retinal tissues could be induced to differentiate into cells expressing β-tubulin and PKC and promote the expression of Ang-1 and IGF-1. coculture of Ang-1-BMSCs further enhanced the proliferation and differentiation of RSCs by promoting the expression of Ang-1 and IGF-1. Coculture of RSCs + Ang-1-BMSCs induced differentiation of Ang-1-BMSCs through interaction among intercellular factors and restored the damaged retinal tissue of OIR-ROP mice. Collectively, our study provided evidence that coculture of Ang-1-BMSCs and RSCs could promote the proliferation and differentiation of RSCs and improve the treatment for the damaged retina tissue of OIR-ROP mice. 相似文献
18.
19.
Chunlei Miao Dengke Qin Peigang Cao Ping Lu Yutong Xia Mengjiao Li Miao Sun Wei Zhang Fanghong Yang Yingjie Zhang Shengjian Tang Tianyi Liu Fangjun Liu 《Journal of cellular biochemistry》2019,120(5):8754-8763
Bone morphogenetic protein (BMP)2/7 heterodimer shows greater efficacy in enhancing bone regeneration. However, the precise mechanism and the role of mitogen-activated protein kinase (MAPK) signaling network in BMP2/7-driven osteogenesis remain ambiguous. In this study, we evaluated the effects of BMP2/7 heterodimers on osteoblastic differentiation in rat bone marrow mesenchymal stem cells (BMSCs), with the aim to elaborate how MAPKs might be involved in this cellular process by treatment of rat BMSCs with BMP2/-7 with a special signal-pathway inhibitor. We found that BMP2/7 heterodimer induced a much stronger osteogenic response in rat BMSCs compared with either homodimer. Most interestingly, extracellular signal-regulated kinase (ERK) demonstrated a highly sustained phosphorylation and activation in the BMP2/7 heterodimer treatment groups, and inhibition of ERK cascades using U0126 special inhibitor that significantly reduced the activity of ALP and calcium mineralization to a substantial degree in rat BMSCs treated with BMP2/7 heterodimers. Collectively, we demonstrate that BMP2/7 heterodimer shows a potent ability to stimulate osteogenesis in rat BMSCs. The activated ERK signaling pathway involved in this process may contribute partially to an increased osteogenic potency of heterodimeric BMP2/7 growth factors. 相似文献