首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Targeting macroautophagy/autophagy is a novel strategy in cancer immunotherapy. In the present study, we showed that the natural product rocaglamide (RocA) enhanced natural killer (NK) cell-mediated lysis of non-small cell lung cancer (NSCLC) cells in vitro and tumor regression in vivo. Moreover, this effect was not related to the NK cell recognition of target cells or expressions of death receptors. Instead, RocA inhibited autophagy and restored the level of NK cell-derived GZMB (granzyme B) in NSCLC cells, therefore increasing their susceptibility to NK cell-mediated killing. In addition, we further identified that the target of RocA was ULK1 (unc-51 like autophagy activating kinase 1) that is required for autophagy initiation. Using firefly luciferase containing the 5´ untranslated region of ULK1, we found that RocA inhibited the protein translation of ULK1 in a sequence-specific manner. Taken together, RocA could block autophagic immune resistance to NK cell-mediated killing, and our data suggested that RocA was a promising therapeutic candidate in NK cell-based cancer immunotherapy.  相似文献   

2.
Solid tumors are able to establish and sustain an immune suppressive microenvironment, which prevents the infiltration of cytotoxic effector immune cells into the tumor bed. We showed that genetic targeting of the macroautophagy/autophagy gene Becn1/Beclin1 in B16-F10 tumors inhibits their growth by inducing a massive infiltration of functional natural killer (NK) cells into the tumor bed. Such infiltration is primarily due to the ability of BECN1-defective tumor cells to overexpress and release CCL5 cytokine in the tumor microenvironment by a mechanism involving the activation of the MAPK8/JNK-JUN/c-Jun signaling pathway. Clinically, we reported a strong positive correlation between the expression of NK cell marker and CCL5 in human melanoma tumors and more importantly, a significant increased survival is found in melanoma patients expressing a high level of CCL5. Overall, these findings highlight the impact of targeting autophagy in breaking the immunosuppressive tumor microenvironment barrier, thus allowing the trafficking of cytotoxic NK cells into the tumor bed. This study underscore the importance of autophagy inhibition in tumors as a novel therapeutic strategy to fully exploit NK cells antitumor properties in clinical settings.  相似文献   

3.
Immune escape is an important mechanism in tumorigenesis. The aim of this study was to investigate roles of SKIL in tumorigenesis and immune escape of non-small-cell lung cancer (NSCLC). SKIL expression levels in NSCLC cell line, clinical sample, and adjacent normal tissue were measured by quantitative PCR, western blot, or immunohistochemistry. Lentivirus was used to overexpress/silence SKIL or TAZ expression. Malignant phenotypes of NSCLC cells were evaluated by colony formation, transwell, and MTT assays, and in xenograft mice model. Syngeneic mice model and flow cytometry were used to evaluate T cell infiltration. Quantitative PCR and western blot were applied to evaluate relevant mRNA and protein levels, respectively. Co-immunoprecipitation was applied to unveil the interaction between SKIL and TAZ. SKIL expression was higher in NSCLC tissue compared to adjacent normal tissue. Silencing of SKIL inhibited malignant phenotypes of NSCLC cells and promoted T cell infiltration. SKIL-knockdown inhibited autophagy and activated the STING pathway in NSCLC cells through down-regulation of TAZ. Silencing of TAZ cancelled the effects of SKIL overexpression on malignant phenotypes and autophagy of NSCLC cells. Inhibition of autophagy reversed the effects of SKIL/TAZ overexpression on the STING pathway. In conclusion, SKIL promoted tumorigenesis and immune escape of NSCLC cells through upregulation of TAZ/autophagy axis and inhibition on downstream STING pathway.Subject terms: Immunology, Cancer  相似文献   

4.
(NK) cells are at the first line of defence against tumours, but their anti-tumour mechanisms are not fully understood. We aimed to investigate the mechanism by which NK cells can mediate immunotherapy against head and neck squamous cell carcinoma (HNSCC). We collected fifty-two pairs of HNSCC tissues and corresponding adjacent normal tissues; analysis by RT-qPCR showed underexpression of CXCL14 in HNSCC tissues. Primary NK cells were then isolated from the peripheral blood of HNSCC patients and healthy donors. CXCL14 was found to be consistently under-expressed in the primary NK cells from the HNSCC patients. However, CXCL14 expression was increased in IL2-activated primary NK cells and NK-92 cells. We next evaluated NK cell migration, IFN-γ and TNF-α expression, cytotoxicity and infiltration in response to CXCL14 overexpression or knockdown using gain- and loss-of-function approach. The results exhibited that CXCL14 overexpression promoted NK cell migration, cytotoxicity and infiltration. Subsequent in vivo experiments revealed that CXCL14 suppressed the growth of HNSCC cells via activation of NK cells. ChIP was applied to study the enrichment of H3K27ac, p300, H3K4me1 and CDX2 in the enhancer region of CXCL14, which showed that CDX2/p300 activated the enhancer of CXCL14 to up-regulate its expression. Rescue experiments demonstrated that CDX2 stimulated NK cell migration, cytotoxicity and infiltration through up-regulating CXCL14. In vivo data further revealed that CDX2 suppressed tumorigenicity of HNSCC cells through enhancement of CXCL14. To conclude, CDX2 promotes CXCL14 expression by activating its enhancer, which promotes NK cell–mediated immunotherapy against HNSCC.  相似文献   

5.
CD8+ T cell-mediated cancer clearance is often suppressed by the interaction between inhibitory molecules like PD-1 and PD-L1, an interaction acts like brakes to prevent T cell overreaction under normal conditions but is exploited by tumor cells to escape the immune surveillance. Immune checkpoint inhibitors have revolutionized cancer therapeutics by removing such brakes. Unfortunately, only a minority of cancer patients respond to immunotherapies presumably due to inadequate immunity. Antitumor immunity depends on the activation of the cGAS-STING pathway, as STING-deficient mice fail to stimulate tumor-infiltrating dendritic cells (DCs) to activate CD8+ T cells. STING agonists also enhance natural killer (NK) cells to mediate the clearance of CD8+ T cell-resistant tumors. Therefore STING agonists have been intensively sought after. We previously discovered that manganese (Mn) is indispensable for the host defense against cytosolic dsDNA by activating cGAS-STING. Here we report that Mn is also essential in innate immune sensing of tumors and enhances adaptive immune responses against tumors. Mn-insufficient mice had significantly enhanced tumor growth and metastasis, with greatly reduced tumor-infiltrating CD8+ T cells. Mechanically, Mn2+ promoted DC and macrophage maturation and tumor-specific antigen presentation, augmented CD8+ T cell differentiation, activation and NK cell activation, and increased memory CD8+ T cells. Combining Mn2+ with immune checkpoint inhibition synergistically boosted antitumor efficacies and reduced the anti-PD-1 antibody dosage required in mice. Importantly, a completed phase 1 clinical trial with the combined regimen of Mn2+ and anti-PD-1 antibody showed promising efficacy, exhibiting type I IFN induction, manageable safety and revived responses to immunotherapy in most patients with advanced metastatic solid tumors. We propose that this combination strategy warrants further clinical translation.Subject terms: Pattern recognition receptors, Immunosurveillance  相似文献   

6.
Natural killer (NK) cells have been demonstrated could play an important role in the treatment of a number of tumors in mice. In the present study, chemokine CCL27, which be considered only selectively chemoattracts cutaneous lymphocyte antigen positive memory T cells and Langerhans cells, firstly demonstrated that it could induce the accumulation of NK cells into tumor by the intratumoral injection of CCL27-encoding fiber-mutant vector, AdRGD-CCL27. Experiments using spleen cell fractionation and RT-PCR showed CCL27 receptor, mCCR10, was strongly expressed in NK cells, suggesting the accumulation of NK cells in tumor was attributed to chemoattractant activity of CCL27 itself. Moreover, the combination of AdRGD-CCL27 and AdRGD-IL-12 induced the synergistic anti-tumor activity via NK-dependent manner and induced more NK cells infiltration into tumor nodule than that induced by AdRGD-CCL27 alone or AdRGD-IL-12 alone.  相似文献   

7.
The role of CXCL9 and CXCL10 in the ocular immune response to herpes simplex virus type 1 (HSV-1) infection was investigated using mice deficient in either CXCL9 or CXCL10. CXCL10 but not CXCL9 deficient mice showed an increase in sensitivity to ocular virus infection as measured by an elevation in virus titer recovered in the tear film and corneal tissue. The increase in virus was associated with an increase in the expression of the chemokine CCL2 but no significant change in the infiltration of CD4(+) T cells or NK cells into the corneal stroma. In contrast, a significant reduction in CD4(+) T cell infiltration into the cornea was found in CXCL9 deficient mice following HSV-1 infection consistent with the absence of CXCL9 expression and reduction in expression of other chemokines including CCL3, CCL5, CXCL1, and CXCL10. Collectively, the results suggest a non-redundant role for CXCL9 and CXCL10 in response to ocular HSV-1 infection in terms of controlling virus replication and recruitment of CD4(+) T cells into the cornea.  相似文献   

8.
Over the past decade, immunotherapy delivered novel treatments for many cancer types. However, lung cancer still leads cancer mortality, and non-small-cell lung carcinoma patients with mutant EGFR cannot benefit from checkpoint inhibitors due to toxicity, relying only on palliative chemotherapy and the third-generation tyrosine kinase inhibitor (TKI) osimertinib. This new drug extends lifespan by 9-months vs. second-generation TKIs, but unfortunately, cancers relapse due to resistance mechanisms and the lack of antitumor immune responses. Here we explored the combination of osimertinib with anti-HER3 monoclonal antibodies and observed that the immune system contributed to eliminate tumor cells in mice and co-culture experiments using bone marrow-derived macrophages and human PBMCs. Osimertinib led to apoptosis of tumors but simultaneously, it triggered inositol-requiring-enzyme (IRE1α)-dependent HER3 upregulation, increased macrophage infiltration, and activated cGAS in cancer cells to produce cGAMP (detected by a lentivirally transduced STING activity biosensor), transactivating STING in macrophages. We sought to target osimertinib-induced HER3 upregulation with monoclonal antibodies, which engaged Fc receptor-dependent tumor elimination by macrophages, and STING agonists enhanced macrophage-mediated tumor elimination further. Thus, by engaging a tumor non-autonomous mechanism involving cGAS-STING and innate immunity, the combination of osimertinib and anti-HER3 antibodies could improve the limited therapeutic and stratification options for advanced stage lung cancer patients with mutant EGFR.Subject terms: Non-small-cell lung cancer, Prognostic markers, Experimental models of disease, Preclinical research, Growth factor signalling  相似文献   

9.
NK cells and cancer   总被引:5,自引:0,他引:5  
In this review, we overview the main features and functions of NK cells, focusing on their role in cell-mediated immune response to tumor cells. In parallel, we discuss the information available in the field of NK cell receptors and offer a wide general overview of functional aspects of cell targeting and killing, focusing on the recent acknowledgments on the efficacy of NK cells after cytokine and mAb administration in cancer therapy. Since efficacy of NK cell-based immunotherapy has been proven in KIR-mismatch regimens or in TRAIL-dependent apoptosis, the ability to manipulate the balance of activating and inhibitory receptors on NK cells and of their cognate ligands, as well as the sensitivity of tumor cells to apoptosis, opens new perspectives for NK cell-based immunotherapy.  相似文献   

10.
Natural killer(NK) cells, which recognize and kill target cells independent of antigen specificity and major histocompatibility complex(MHC) matching, play pivotal roles in immune defence against tumors. However, tumor cells often acquire the ability to escape NK cell-mediated immune surveillance. Thus, understanding mechanisms underlying regulation of NK cell phenotype and function within the tumor environment is instrumental for designing new approaches to improve the current cell-based immunotherapy. In this review, we elaborate the main biological features and molecular mechanisms of NK cells that pertain to regulation of NK cell-mediated anti-tumor activity. We further overview current clinical approaches regarding NK cell-based cancer therapy, including cytokine infusion, adoptive transfer of autologous or allogeneic NK cells, applications of chimeric antigen receptor(CAR)-expressing NK cells and adoptive transfer of memory-like NK cells. With these promising clinical outcomes and fuller understanding the basic questions raised in this review, we foresee that NK cell-based approaches may hold great potential for future cancer immunotherapy.  相似文献   

11.
Lung cancer is the leading cause of cancer-related death worldwide, and non–small cell lung cancer (NSCLC) accounts for 85% of lung cancer diagnoses. As an ancient therapy, moxibustion has been used to treat cancer-related symptoms in clinical practice. However, its antitumour effect on NSCLC remains largely unexplored. In the present study, a Lewis lung cancer (LLC) xenograft tumour model was established, and grain-sized moxibustion (gMoxi) was performed at the acupoint of Zusanli (ST36). Flow cytometry and RNA sequencing (RNA-Seq) were used to access the immune cell phenotype, cytotoxicity and gene expression. PK136, propranolol and epinephrine were used for natural killer (NK) cell depletion, β-adrenoceptor blockade and activation, respectively. Results showed that gMoxi significantly inhibited LLC tumour growth. Moreover, gMoxi significantly increased the proportion, infiltration and activation of NK cells, whereas it did not affect CD4+ and CD8+ T cells. NK cell depletion reversed gMoxi-mediated tumour regression. LLC tumour RNA-Seq indicated that these effects might be related to the inhibition of adrenergic signalling. Surely, β-blocker propranolol clearly inhibited LLC tumour growth and promoted NK cells, and gMoxi no longer increased tumour regression and promoted NK cells after propranolol treatment. Epinephrine could inhibit NK cell activity, and gMoxi significantly inhibited tumour growth and promoted NK cells after epinephrine treatment. These results demonstrated that gMoxi could promote NK cell antitumour immunity by inhibiting adrenergic signalling, suggesting that gMoxi could be used as a promising therapeutic regimen for the treatment of NSCLC, and it had a great potential in NK cell–based cancer immunotherapy.  相似文献   

12.
The antitumor efficacy of EBV-induced molecule 1 ligand CC chemokine (ELC/CCL19) was evaluated in a murine lung cancer model. The ability of ELC/CCL19 to chemoattract both dendritic cells and T lymphocytes formed the rationale for this study. Compared with diluent-treated tumor-bearing mice, intratumoral injection of recombinant ELC/CCL19 led to significant systemic reduction in tumor volumes (p < 0.01). ELC/CCL19-treated mice exhibited an increased influx of CD4 and CD8 T cell subsets as well as dendritic cells at the tumor sites. These cell infiltrates were accompanied by increases in IFN-gamma, MIG/CXCL9, IP-10/CXCL10, GM-CSF, and IL-12 but a concomitant decrease in the immunosuppressive molecules PGE(2) and TGFbeta. Transfer of T lymphocytes from ELC/CCL19 treated tumor-bearing mice conferred the antitumor therapeutic efficacy of ELC/CCL19 to naive mice. ELC/CCL19 treated tumor-bearing mice showed enhanced frequency of tumor specific T lymphocytes secreting IFN-gamma. In vivo depletion of IFN-gamma, MIG/CXCL9, or IP-10/CXCL10 significantly reduced the antitumor efficacy of ELC/CCL19. These findings provide a strong rationale for further evaluation of ELC/CCL19 in tumor immunity and its use in cancer immunotherapy.  相似文献   

13.

Background

Nature killer (NK) cells play an important role in anti-tumor immunotherapy. But it indicated that tumor cells impacted possibly on NK cell normal functions through some molecules mechanisms in tumor microenvironment.

Materials and methods

Our study analyzed the change about NK cells surface markers (NK cells receptors) through immunofluorescence, flow cytometry and real-time PCR, the killed function from mouse spleen NK cell and human high/low lung cancer cell line by co-culture. Furthermore we certificated the above result on the lung cancer model of SCID mouse.

Results

We showed that the infiltration of NK cells in tumor periphery was related with lung cancer patients'' prognosis. And the number of NK cell infiltrating in lung cancer tissue is closely related to the pathological types, size of the primary cancer, smoking history and prognosis of the patients with lung cancer. The expression of NK cells inhibitor receptors increased remarkably in tumor micro-environment, in opposite, the expression of NK cells activated receptors decrease magnificently.

Conclusions

The survival time of lung cancer patient was positively related to NK cell infiltration degree in lung cancer. Thus, the down-regulation of NKG2D, Ly49I and the up-regulation of NKG2A may indicate immune tolerance mechanism and facilitate metastasis in tumor environment. Our research will offer more theory for clinical strategy about tumor immunotherapy.  相似文献   

14.
Type I interferons are effector cytokines essential for the regulation of the innate immunity. A key effector of the type I interferon response that is dysregulated in autoimmunity and cancer is the cGAS-STING signalling axis. Recent work suggests that calcium and associated signalling proteins can regulate both cGAS-STING and autoimmunity. How calcium regulates STING activation is complex and involves both stimulatory and inhibitory mechanisms. One of these is calmodulin-mediated signalling that is necessary for STING activation. The alterations in calcium flux that occur during STING activation can also regulate autophagy, which in turn plays a role in innate immunity through the clearance of intracellular pathogens. Also connected to calcium signalling pathways is the cGAS inhibitor TREX1, a cytoplasmic exonuclease linked to several autoimmune diseases including systemic lupus erythematosus (SLE). In this review, we summarize these and other findings that indicate a regulatory role for calcium signalling in innate and autoimmunity through the cGAS-STING pathway.  相似文献   

15.

Background

Cellular therapy is a promising therapeutic strategy for malignant diseases. The efficacy of this therapy can be limited by poor infiltration of the tumor by immune effector cells. In particular, NK cell infiltration is often reduced relative to T cells. A novel class of fusion proteins was designed to enhance the recruitment of specific leukocyte subsets based on their expression of a given chemokine receptor. The proteins are composed of an N-terminal chemokine head, the mucin domain taken from the membrane-anchored chemokine CX3CL1, and a C-terminal glycosylphosphatidylinositol (GPI) membrane anchor replacing the normal transmembrane domain allowing integration of the proteins into cell membranes when injected into a solid tumor. The mucin domain in conjunction with the chemokine head acts to specifically recruit leukocytes expressing the corresponding chemokine receptor.

Methodology/Principal Findings

A fusion protein comprising a CXCL10 chemokine head (CXCL10-mucin-GPI) was used for proof of concept for this approach and expressed constitutively in Chinese Hamster Ovary cells. FPLC was used to purify proteins. The recombinant proteins efficiently integrated into cell membranes in a process dependent upon the GPI anchor and were able to activate the CXCR3 receptor on lymphocytes. Endothelial cells incubated with CXCL10-mucin-GPI efficiently recruited NK cells in vitro under conditions of physiologic flow, which was shown to be dependent on the presence of the mucin domain. Experiments conducted in vivo using established tumors in mice suggested a positive effect of CXCL10-mucin-GPI on the recruitment of NK cells.

Conclusions

The results suggest enhanced recruitment of NK cells by CXCL10-mucin-GPI. This class of fusion proteins represents a novel adjuvant in cellular immunotherapy. The underlying concept of a chemokine head fused to the mucin domain and a GPI anchor signal sequence may be expanded into a broader family of reagents that will allow targeted recruitment of cells in various settings.  相似文献   

16.
The antiviral treatment efficacy varies among chronic hepatitis B (CHB) patients and the underlying mechanism is unclear. An integrated bioinformatics analysis was performed to investigate the host factors that affect the therapeutic responsiveness in CHB patients. Four GEO data sets (GSE54747, GSE27555, GSE66698 and GSE66699) were downloaded from the Gene Expression Omnibus (GEO) database and analysed to identify differentially expressed genes(DEGs). Enrichment analyses of the DEGs were conducted using the DAVID database. Immune cell infiltration characteristics were analysed by CIBERSORT. Upstream miRNAs and lncRNAs of hub DEGs were identified by miRWalk 3.0 and miRNet in combination with the MNDR platform. As a result, seventy-seven overlapping DEGs and 15 hub genes were identified including CCL5, CXCL9, MYH2, CXCR4, CD74, CCL4, HLA-DRB1, ACTA1, CD69, CXCL10, HLA-DRB5, HLA-DQB1, CXCL13, STAT1 and CKM. The enrichment analyses revealed that the DEGs were mainly enriched in immune response and chemokine signalling pathways. Investigation of immune cell infiltration in liver samples suggested significantly different infiltration between responders and non-responders, mainly characterized by higher proportions of CD8+ T cells and activated NK cells in non-responders. The prediction of upstream miRNAs and lncRNAs led to the identification of a potential mRNA-miRNA-lncRNA regulatory network composed of 2 lncRNAs (H19 and GAS5) and 5 miRNAs (hsa-mir-106b-5p, hsa-mir-17-5p, hsa-mir-20a-5p, hsa-mir-6720-5p and hsa-mir-93-5p) targeting CCL5 mRNA. In conclusion, our study suggested that host genetic factors could affect therapeutic responsiveness in CHB patients. The antiviral process might be associated with the chemokine-mediated immune response and immune cell infiltration in the liver microenvironment.  相似文献   

17.
Breast and kidney-expressed chemokine (BRAK) CXCL14 is a new CXC chemokine with unknown function and receptor selectivity. The majority of head and neck squamous cell carcinoma (HNSCC) and some cervical squamous cell carcinoma do not express CXCL14 mRNA, as opposed to constitutive expression by normal oral squamous epithelium. In this study, we demonstrate that the loss of CXCL14 in HNSCC cells and at HNSCC primary tumor sites was correlated with low or no attraction of dendritic cell (DC) in vitro, and decreased infiltration of HNSCC mass by DC at the tumor site in vivo. Next, we found that recombinant human CXCL14 and CXCL14-positive HNSCC cell lines induced DC attraction in vitro, whereas CXCL14-negative HNSCC cells did not chemoattract DC. Transduction of CXCL14-negative HNSCC cell lines with the human CXCL14 gene resulted in stimulation of DC attraction in vitro and increased tumor infiltration by DC in vivo in chimeric animal models. Furthermore, evaluating the biologic effect of CXCL14 on DC, we demonstrated that the addition of recombinant human CXCL14 to DC cultures resulted in up-regulation of the expression of DC maturation markers, as well as enhanced proliferation of allogeneic T cells in MLR. Activation of DC with recombinant human CXCL14 was accompanied by up-regulation of NF-kappaB activity. These data suggest that CXCL14 is a potent chemoattractant and activator of DC and might be involved in DC homing in vivo.  相似文献   

18.
《Autophagy》2013,9(7):969-971
Recent data strongly support the idea that the orchestrated interaction between cancer and other cells in the tumor microenvironment is a vital component in the neoplastic process. Thus, tumor cells take advantage of the signaling molecules of the immune system to proliferate, survive and invade other tissues. CCL2 (Chemokine (C-C motif) ligand 2, Monocyte chemoattractant protein-1 (MCP-1)) has been demonstrated to play a significant role in prostate cancer neoplasia and invasion, and is highly expressed in the tumor microenvironment. We recently reported that CCL2 elicits a strong survival advantage in prostate cancer PC3 cells through PI3K/Akt-dependent regulation of autophagy via the mammalian target of rapamycin (mTOR) pathway and importantly, survivin up-regulation is essential to this survival mechanism. Autophagy protects cells from nutrient depletion stress, but, paradoxically, excessive autophagy will result in cell death. How these life or death decisions are regulated remains unclear. Here we discuss the function of survivin in the control of autophagy and the interaction between CCL2, survivin and autophagy in the complex program of tumor progression.

Addendum to: Roca H, Varsos Z, Pienta KJ. CCL2 protects prostate cancer PC3 cells from autophagic death via PI3K/AKT-dependent survivin up-regulation. J Biol Chem 2008; In press.  相似文献   

19.
T cell targeting immunotherapy is now considered in acute myelogenous leukemia (AML), and local recruitment of antileukemic T cells to the AML microcompartment will then be essential. This process is probably influenced by both intravascular as well as extravascular levels of T cell chemotactic chemokines. We observed that native human AML cells usually showed constitutive secretion of the chemotactic chemokines CXCL10 and CCL5, whereas CCL17 was only released for a subset of patients and at relatively low levels. Coculture of AML cells with nonleukemic stromal cells (i.e., fibroblasts, osteoblasts) increased CXCL10 and CCL17 levels whereas CCL5 levels were not altered. However, a wide variation between patients in both CXCL10 and CCL5 levels persisted even in the presence of the stromal cells. Neutralization of CXCL10 and CCL5 inhibited T cell migration in the presence of native human AML cells. Furthermore, serum CCL17 and CXCL10 levels varied between AML patients and were determined by disease status (both chemokines) as well as patient age, chemotherapy and complicating infections (only CCL17). Thus, extravascular as well as intravascular levels of T cell chemotactic chemokines show a considerable variation between patients that may be important for T cell recruitment and the effects of antileukemic T cell reactivity in local AML compartments.  相似文献   

20.
A phase II study of NK cell therapy in treatment of patients with recurrent breast cancer has recently been reported. However, because of the complexities of tumor microenvironments, effective therapeutic effects have not been achieved in NK cell therapy. Radioiodine (I-131) therapy inhibits cancer growth by inducing the apoptosis and necrosis of cancer cells. Furthermore, it can modify cancer cell phenotypes and enhance the effect of immunotherapy against cancer cells. The present study showed that I-131 therapy can modulate microenvironment of breast cancer and improve the therapeutic effect by enhancing NK cell cytotoxicity to the tumor cells. The susceptibility of breast cancer cells to NK cell was increased by precedent I-131 treatment in vitro. Tumor burden in mice treated with I-131 plus NK cell was significantly lower than that in mice treated with NK cell or I-131 alone. The up-regulation of Fas, DR5 and MIC A/B on irradiated tumor cells could be the explanation for the enhancement of NK cell cytotoxicity to tumor cells. It can be applied to breast cancer patients with iodine avid metastatic lesions that are non-responsive to conventional treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号