首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although miR‐148a‐3p has been reported to function as a tumour suppressor in various cancers, the molecular mechanism of miR‐148a‐3p in regulating epithelial‐to‐mesenchymal transition (EMT) and stemness properties of pancreatic cancer (PC) cells remains to be elucidated. In the present study, we demonstrated that miR‐148a‐3p expression was remarkably down‐regulated in PC tissues and cell lines. Moreover, low expression of miR‐148a‐3p was associated with poorer overall survival (OS) in patients with PC. In vitro, gain‐of‐function and loss‐of‐function experiments showed that miR‐148a‐3p suppressed EMT and stemness properties as well as the proliferation, migration and invasion of PC cells. A dual‐luciferase reporter assay demonstrated that Wnt1 was a direct target of miR‐148a‐3p, and its expression was inversely associated with miR‐148a‐3p in PC tissues. Furthermore, miR‐148a‐3p suppressed the Wnt/β‐catenin pathway via down‐regulation of Wnt1. The effects of ectopic miR‐148a‐3p were rescued by Wnt1 overexpression. These biological functions of miR‐148a‐3p in PC were also confirmed in a nude mouse xenograft model. Taken together, these findings suggest that miR‐148a‐3p suppresses PC cell proliferation, invasion, EMT and stemness properties via inhibiting Wnt1‐mediated Wnt/β‐catenin pathway and could be a potential prognostic biomarker as well as a therapeutic target in PC.  相似文献   

2.
Studies have shown that SQLE is highly expressed in a variety of tumours and promotes tumour progression. However, the role of SQLE in pancreatic cancer (PC) has not been reported. Here, we aim to study the role and molecular mechanism of SQLE in PC. Immunohistochemistry and functional experiments showed that SQLE was highly expressed in PC tissues and promoted the proliferation and invasion of PC cells. Terbinafine, an inhibitor of SQLE, inhibited this effect. In order to further study the upstream mechanism that regulates SQLE, we used bioinformatics technology to lock miR‐133b and lncRNA‐TTN‐AS. In situ hybridization was used to detect the expression of miR‐133b and lncRNA‐TTN‐AS1 in PC tissues. The luciferase reporter gene experiment was used to confirm the binding of miR‐133b and lncRNA‐TTN‐AS1. The results showed that miR‐133b was down‐regulated in PC tissues and negatively correlated with the expression of SQLE. LncRNA‐TTN‐AS1 was upregulated in pancreatic cancer tissues and positively correlated with the expression of SQLE. Luciferase gene reporter gene analysis confirmed lncRNA‐TTN‐AS1 directly binded to miR‐133b. Therefore, we propose that targeting the lncRNA‐TTN‐AS1/miR‐133b/SQLE axis is expected to provide new ideas for the clinical treatment of PC patients.  相似文献   

3.
Androgen receptor (AR) can suppress hepatocellular carcinoma (HCC) invasion and metastasis at an advanced stage. Vasculogenic mimicry (VM), a new vascularization pattern by which tumour tissues nourish themselves, is correlated with tumour progression and metastasis. Here, we investigated the effect of AR on the formation of VM and its mechanism in HCC. The results suggested that AR could down‐regulate circular RNA (circRNA) 7, up‐regulate micro RNA (miRNA) 7‐5p, and suppress the formation of VM in HCC Small hairpin circR7 (ShcircR7) could reverse the impact on VM and expression of VE‐cadherin and Notch4 increased by small interfering AR (shAR) in HCC, while inhibition of miR‐7‐5p blocked the formation of VM and expression of VE‐cadherin and Notch4 decreased by AR overexpression (oeAR) in HCC. Mechanism dissection demonstrated that AR could directly target the circR7 host gene promoter to suppress circR7, and miR‐7‐5p might directly target the VE‐cadherin and Notch4 3′UTR to suppress their expression in HCC. In addition, knockdown of Notch4 and/or VE‐cadherin revealed that shVE‐cadherin or shNotch4 alone could partially reverse the formation of HCC VM, while shVE‐cadherin and shNotch4 together could completely suppress the formation of HCC VM. Those results indicate that AR could suppress the formation of HCC VM by down‐regulating circRNA7/miRNA7‐5p/VE‐Cadherin/Notch4 signals in HCC, which will help in the design of novel therapies against HCC.  相似文献   

4.
Breast cancer (BC) is the most prevalent cancer in women and the second leading cause for cancer‐related death in women. LncRNA CCAT2 is involved in BC cell drug sensitivity. Drug resistance of BC cells after chemotherapy is the main obstacle to therapeutic effects. This study explored whether BC cell drug sensitivity to 5‐Fu was related to lncRNA CCAT2‐regulated mTOR pathway. Normal breast tissues and BC tissues before/after neoadjuvant chemotherapy were collected, and CCAT2 expression was detected by RT‐qPCR. Correlation between CCATA2 expression and neoadjuvant chemotherapy efficacy was analysed using the Kendall''s tau‐b correlation analysis. Normal breast epithelial cells and BC cell lines were cultured. BC cell lines were treated with 5‐Fu, and CCAT2 mRNA level in cells was detected. The 5‐Fu‐resistant MCF‐7/5‐Fu and MDA‐MB‐231/5‐Fu cells were treated with CCAT2 overexpression/knockdown or CCI‐779 (the mTOR pathway inhibitor). The mTOR pathway levels were detected. Expression of apoptosis‐related factors was identified. A subcutaneous xenograft model was carried out. High CCAT2 expression was detected in BC tissues and BC drug‐resistant cells after neoadjuvant chemotherapy, and a negative link was revealed between CCAT2 expression and efficacy of neoadjuvant chemotherapy. p‐mTOR/mTOR in 5‐Fu‐resistant BC cells with inhibited CCAT2 was decreased, while CCAT2 overexpression activated the mTOR pathway. IC50 value, proliferation, cells in S phase increased and apoptosis reduced after CCAT2 overexpression. After si‐CCAT2 or CCI‐779 treatment, the growth rate of transplanted tumours was inhibited, while promoted after CCAT2 overexpression. CCAT2 may reduce BC cell chemosensitivity to 5‐Fu by activating the mTOR pathway.  相似文献   

5.
6.
7.
BackgroundEndothelial‐to‐mesenchymal transition (EndMT) is a common pathophysiology in valvular calcification (VC) among non‐chronic kidney disease (CKD) patients. However, few studies were investigated in CKD‐induced VC. Parathyroid hormone (PTH) was considered to be an important component of EndMT in CKD‐induced cardiovascular diseases. Therefore, determining whether PTH could induce valvular EndMT and elucidating corresponding mechanism involved further study.MethodsPerforming a 5/6 nephrectomy with a high phosphorus diet was done to construct VC models in rats with CKD. miRNA sequencing was used to ascertain changes in microRNA in human umbilical vein endothelial cells (HUVECs) intervened by PTH. VC was observed by Von Kossa staining and scanning electron microscope.ResultsPTH induced valvular EndMT in VC. Global microRNA expression profiling of HUVECs was examined in PTH versus the control in vitro, in which miR‐29a‐5p was most notably decreased and was resumed by PTHrP(7‐34) (PTH‐receptor1 inhibitor). Overexpression of miR‐29a‐5p could inhibit PTH‐induced EndMT in vitro and valvular EndMT in vivo. The dual‐luciferase assay verified that γ‐secretase‐activating protein (GASP) served as the target of miR‐29a‐5p. miR‐29a‐5p‐mimics, si‐GSAP and DAPT (γ‐secretase inhibitor) inhibited PTH‐induced γ‐secretase activation, thus blocking Notch1 pathway activation to inhibit EndMT in vitro. Moreover, Notch1 pathway activation was observed in VC. Blocking Notch1 pathway activation via AAV‐miR‐29a and DAPT inhibited valvular EndMT. In addition, blocking Notch1 pathway activation was also shown to alleviate VC.ConclusionPTH activates valvular EndMT via miR‐29a‐5p/GSAP/Notch1 pathway, which can contribute to VC in CKD rats.  相似文献   

8.
Prostate cancer is the second most frequent malignancy in men worldwide, and its incidence is increasing. Therefore, it is urgently required to clarify the underlying mechanisms of prostate cancer. Although the long non‐coding RNA LINC00115 was identified as an oncogene in several cancers, the expression and function of LINC00115 in prostate cancer have not been explored. Our results showed that LINC00115 was significantly up‐regulated in prostate cancer tissues, which was significantly associated with a poor prognosis for prostate cancer patients. Functional studies showed that knockdown LINC00115 inhibited cell proliferation and invasion. In addition, LINC00115 served as a competing endogenous RNA (ceRNA) through sponging miR‐212‐5p to release Frizzled Family Receptor 5 (FZD5) expression. The expression of miR‐212‐5p was noticeably low in tumour tissues, and FZD5 expression level was down‐regulated with the knockdown of LINC00115. Knockdown LINC00115 inhibited the Wnt/β‑catenin signalling pathway by inhibiting the expression of FZD5. Rescue experiments further showed that LINC00115 inhibits prostate cancer cell proliferation and invasion via targeting miR‐212‐5p/ FZD5/ Wnt/β‐catenin axis. The present study provided clues that LINC00115 may be a promising novel therapeutic target for prostate cancer patients.  相似文献   

9.
Renal ischaemia‐reperfusion (RI/R) injury is one major pathological state of acute kidney injury (AKI) with a mortality rate ranking 50% to 80%. MiR‐144‐5p acts as a molecular trigger in various diseases. We presumed that miR‐144‐5p might be involved RI/R injury progression. We found that RI/R injury decreased miR‐144‐5p expression in rat models. MiR‐144‐5p downregulation promoted cell apoptosis rate and activated Wnt/β‐catenin signal in RI/R injury rats. By performing bioinformatic analysis, RIP, RNA pull‐down, luciferase reporter experiments, we found that circ‐AKT3 sponged to miR‐144‐5p and decreased its expression in RI/R injury rats. Moreover, we found that circ‐AKT3 promoted cell apoptosis rate and activated Wnt/β‐catenin signal, and miR‐144‐5p mimic reversed the promotive effect of circ‐AKT3 in rat models. We also found that circ‐AKT3 increased the oxidative stress level in rat models. In conclusion, our study suggests that the circAKT3 is involved RI/R injury progression through regulating miR‐144‐5p/Wnt/β‐catenin pathway and oxidative stress.  相似文献   

10.
Evodiamine has therapeutic potential against cancers. This study was designed to investigate whether combination therapy with gemcitabine and evodiamine enhanced antitumor efficacy in pancreatic cancer. In vitro application of the combination therapy triggered significantly higher frequency of pancreatic cancer cells apoptosis, inhibited the activities of PI3K, Akt, PKA, mTOR and PTEN, and decreased the activation of NF-κB and expression of NF-κB-regulated products. In vivo application of the combination therapy induced significant enhancement of tumor cell apoptosis, reductions in tumor volume, and inhibited activation of mTOR and PTEN. In conclusion, evodiamine can augment the therapeutic effect of gemcitabine in pancreatic cancer through direct or indirect negative regulation of the PI3K/Akt pathway.  相似文献   

11.
A disintegrin and metalloproteinase 8 (ADAM8) protein is a multi‐domain transmembrane glycoprotein which involves in extracellular matrix remodelling, cell adhesion, invasion and migration. ADAM8 and epithelial‐mesenchymal transition (EMT) play an important role in tumour invasion has been well established. However, the interaction between ADAM8 and EMT has remained unclear. The data of colon cancer patients obtained from TCGA (The Cancer Genome Atlas) and GTEx (Genotype‐Tissue Expression Project) were analysed by the bioinformatics research method. The expression of ADAM8 in colon cancer cells was up‐regulated and down‐regulated by transfecting with the expression plasmid and small interfering RNA, respectively. Transwell invasion assay, immunohistochemistry, immunocytochemistry, Western blotting and qRT‐PCR were utilized to study the effect of ADAM8 on colon cancer cell''s EMT and its related mechanisms. Analysis of TCGA and GTEx data revealed that ADAM8 was linked to poor overall survival in colon cancer patients. Besides, ADAM8 was correlated with multiple EMT biomarkers (E‐cadherin, N‐cadherin, Vimentin, Snail2 and ZEB2). In vitro, we also proved that the up‐regulation of ADAM8 could promote EMT effect and enhance the invasive ability of colon cancer cells. On the contrary, the down‐regulation of ADAM8 in colon cancer cells attenuated these effects above. Further studies suggested that ADAM8 modulated EMT on colon cancer cells through TGF‐β/Smad2/3 signalling pathway. Our research suggested that ADAM8 could be a potential biomarker for the prognosis of colon cancer and induced EMT to promote the invasion of colon cancer cells via activating TGF‐β/Smad2/3 signalling pathway.  相似文献   

12.
MicroRNAs (miRNAs) are emerging biomarkers in biological processes and the role of miR‐495‐3p has been identified in melanoma, while the detailed molecular mechanisms remain to be further explored. We aim to explore the effect of histone deacetylase 3 (HDAC3) and miR‐495‐3p on epithelial‐mesenchymal transition (EMT) and oncogenicity of melanoma cells by regulating tumour necrosis factor receptor‐associated factor 5 (TRAF5). Levels of HDAC3, miR‐495‐3p and TRAF5 in melanoma tissues and pigmented nevus tissues were determined, and the predictive roles of HDAC3 and miR‐495‐3p in prognosis of melanoma patients were measured. The melanoma cells were screened and transfected with relative oligonucleotides and plasmids, and the expression of HDAC3, miR‐495‐3p and TRAF5, and phenotypes of melanoma cells were gauged by a series of assays. The relations between HDAC3 and miR‐495‐3p, and between miR‐495‐3p and TRAF5 were confirmed. HDAC3 and TRAF5 were increased while miR‐495‐3p was decreased in melanoma cells and tissues, and the low expression of miR‐495‐3p as well as high expression of HDAC3 indicated a poor prognosis of melanoma patients. Inhibited HDAC3 elevated miR‐495‐3p to suppress EMT and oncogenicity of melanoma cells by reducing TRAF5. HDAC3 particularly bound to miR‐495‐3p and TRAF5 was the target gene of miR‐495‐3p. Our results revealed that down‐regulated HDAC3 elevates miR‐495‐3p to suppress malignant phenotypes of melanoma cells by inhibiting TRAF5, thereby repressing EMT progression of melanoma cells. This study may provide novel targets for melanoma treatment.  相似文献   

13.
Acetylshikonin (ASK) is a natural naphthoquinone derivative of traditional Chinese medicine Lithospermum erythrorhyzon. It has been reported that ASK has bactericidal, anti‐inflammatory and antitumour effects. However, whether ASK induces apoptosis and autophagy in acute myeloid leukaemia (AML) cells and the underlying mechanism are still unclear. Here, we explored the roles of apoptosis and autophagy in ASK‐induced cell death and the potential molecular mechanisms in human AML HL‐60 cells. The results demonstrated that ASK remarkably inhibited the cell proliferation, viability and induced apoptosis in HL‐60 cells through the mitochondrial pathway, and ASK promoted cell cycle arrest in the S‐phase. In addition, the increased formation of autophagosomes, the turnover from light chain 3B (LC3B) I to LC3B II and decrease of P62 suggested the induction of autophagy by ASK. Furthermore, ASK significantly decreased PI3K, phospho‐Akt and p‐p70S6K expression, while enhanced phospho‐AMP‐activated protein kinase (AMPK) and phospho‐liver kinase B1(LKB1) expression. The suppression of ASK‐induced the conversion from LC3B I to LC3B II caused by the application of inhibitors of AMPK (compound C) demonstrated that ASK‐induced autophagy depends on the LKB1/AMPK pathway. These data suggested that the autophagy induced by ASK were dependent on the activation of LKB1/AMPK signalling and suppression of PI3K/Akt/mTOR pathways. The cleavage of the apoptosis‐related markers caspase‐3 and caspase‐9 and the activity of caspase‐3 induced by ASK were markedly reduced by inhibitor of AMPK (compound C), an autophagy inhibitor 3‐methyladenine (3‐MA) and another autophagy inhibitor chloroquine (CQ). Taken together, our data reveal that ASK‐induced HL‐60 cell apoptosis is dependent on the activation of autophagy via the LKB1/AMPK and PI3K/Akt‐regulated mTOR signalling pathways.  相似文献   

14.
Although gemcitabine is recognized as the standard drug for the treatment of advanced pancreatic cancer, the clinical outcome is not satisfactory. We recently reported that relatively high dose ultraviolet-C (UV-C; 200 J) inhibits cell growth by desensitization of epidermal growth factor receptor (EGFR) in human pancreatic cancer cells. In the present study, we investigated the combination effects of low dose UV-C (10 J) and gemcitabine on apoptosis and cell growth in these cells. UV-C enhanced gemcitabine-induced suppression of cell viability. In addition, the combination use clearly induced apoptosis, while neither UV-C nor gemcitabine alone did. Concurrently, combination use caused the decrease in the EGFR protein level and reduced EGF-induced activation of Akt pathway, subsequently resulting in accumulation of β-catenin. The order of the treatment with UV-C and gemcitabine did not affect their synergistic effects on apoptosis and cell growth. Interestingly, combination use synergistically induced phosphorylation of 5′ AMP-activated protein kinase (AMPK) alpha at Thr172 and acetyl-CoA carboxylase at Ser79 as a downstream molecular target of AMPK. AMPK activator, 5-aminoimidazole-4-carboxamide-1-β-riboside, induced apoptosis and suppressed cell growth in these cells, thus suggesting that combination effects of UV-C and gemcitabine is due to the activation of AMPK. Together, our findings could provide a new aspect of pancreatic cancer therapy.  相似文献   

15.
Ghrelin exhibits its biological effect through binding to the growth hormone secretagogue 1a receptor (GHS-R1a). Recently, it has been reported that ghrelin has an anti-apoptotic effect in several cell types. However, the molecule mechanisms underlying the anti-apoptotic effect of ghrelin remain poorly understood. In this study, we investigated the intracellular mechanisms responsible for anti-apoptotic effect of ghrelin on human umbilical vein endothelial cells (HUVEC). Treatment of HUVEC with ghrelin inhibited high glucose-induced cell apoptosis. Ghrelin stimulated the rapid phosphorylation of mammalian target of rapamycin (mTOR), P70S6K and S6. The GHS-R1a-specific antagonist [D-Lys3]-GHRP-6 abolished the anti-apoptotic effect and inhibited the activation of mTOR, P70S6K, S6 induced by ghrelin. Pretreatment of cells with specific inhibitor of mTOR blocked the anti-apoptotic effect of ghrelin. In addition, ghrelin protected HUVECs against high glucose induced apoptosis by increasing Bcl-2/Bax ratio. Taken together, our results demonstrate that ghrelin produces a protective effect on HUVECs through activating GHS-R1a and mTOR/P70S6K signaling pathway mediates the effect of ghrelin. These observations suggest that ghrelin may act as a survival factor in preventing HUVECs apoptosis caused by high glucose.  相似文献   

16.
Although most gastrointestinal tumours are sensitive to 5‐fluorouracil (5FU), drug resistance is commonly occurred after 5FU therapy in gastric cancer (GC). Loganetin is the primary active compound in Cornus officinali. However, the synergetic effects of loganetin and 5FU on GC remain unknown. Here, we investigated the synergetic effects and the underlying mechanism of loganetin and 5FU on proliferation, stem‐like properties, migration, and invasion of GC both in vitro and in vivo. We found that loganetin alone inhibited the proliferation, stem‐like properties, migration and invasion of GC cells in vitro. Importantly, the loganetin remarkably enhanced the anti‐cancer effect of 5FU on GC cells and the Wnt/β‐catenin pathway might be involved in this process. Animal experiments further confirmed the synergistic effects of 5FU and loganetin on inhibiting cell growth and metastasis of GC. These results suggested that loganetin could synergistically increase the effect of 5FU against GC, which sheds light on effective combinational drug strategies for GC treatment.  相似文献   

17.
One major factor that contributes to the virulence of Pseudomonas aeruginosa is its ability to reside and replicate unchallenged inside airway epithelial cells. The mechanism by which P. aeruginosa escapes destruction by intracellular host defense mechanisms, such as autophagy, is not known. Here, we show that the type III secretion system effector protein ExoS facilitates P. aeruginosa survival in airway epithelial cells by inhibiting autophagy in host cells. Autophagy inhibition is independent of mTOR activity, as the latter is also inhibited by ExoS, albeit by a different mechanism. Deficiency of the critical autophagy gene Atg7 in airway epithelial cells, both in vitro and in mouse models, greatly enhances the survival of ExoS‐deficient P. aeruginosa but does not affect the survival of ExoS‐containing bacteria. The inhibitory effect of ExoS on autophagy and mTOR depends on the activity of its ADP‐ribosyltransferase domain. Inhibition of mTOR is caused by ExoS‐mediated ADP ribosylation of RAS, whereas autophagy inhibition is due to the suppression of autophagic Vps34 kinase activity.  相似文献   

18.
Programmed cell death 6 (PDCD6) was originally found as a pro-apoptotic protein, but its molecular mechanism is not well understood. In this study, we have attempted to investigate the effects of PDCD6 on the inhibition of angiogenesis-mediated cell growth as a novel anti-angiogenic protein. Purified recombinant human PDCD6 inhibited cell migration in a concentration-time-dependent manner. We also found that overexpressed PDCD6 suppressed vascular endothelial growth factor (VEGF)-induced proliferation, invasion, and capillary-like structure tube formation in vitro. PDCD6 suppressed phosphorylation of signaling regulators downstream from PI3K, including Akt, mammalian target of rapamycin (mTOR), glycogen synthase kinase-3β(GSK-3β), ribosomal protein S6 kinase (p70S6K), and also decreased cyclin D1 expression. We found binding PDCD6 to VEGFR-2, a key player in the PI3K/mTOR/P70S6K signaling pathway. Taken together, these data suggest that PDCD6 plays a significant role in modulating cellular angiogenesis.  相似文献   

19.
20.
Radiotherapy is a common method for the treatment of lung adenocarcinoma, but it often fails due to the relative non‐susceptibility of lung adenocarcinoma cells to radiation. We aimed to discuss the related mechanisms by which miR‐126‐5p might mediate radiosensitivity of lung adenocarcinoma cells. The binding affinity between miR‐126‐5p and EZH2 and between KLF2 and BIRC5 was identified using multiple assays. A549 and H1650 cells treated with X‐ray were transfected with miR‐126‐5p mimic/inhibitor, oe‐EZH2, or si‐KLF2 to detect cell biological functions and radiosensitivity. Finally, lung adenocarcinoma nude mouse models were established. miR‐126‐5p and KLF2 were poorly expressed, while EZH2 and BIRC5 were upregulated in lung adenocarcinoma tissues and cells. miR‐126‐5p targeted EZH2 to promote the KLF2 expression so as to inhibit BIRC5 activation. Both in vitro and in vivo experiments verified that elevated miR‐126‐5p inhibited cell migration and promoted apoptosis to enhance the sensitivity of lung adenocarcinoma cells to radiotherapy via the EZH2/KLF2/BIRC5 axis. Collectively, miR‐126‐5p downregulated EZH2 to facilitate the sensitivity of lung adenocarcinoma cells to radiotherapy via KLF2/BIRC5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号