首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Engineering a high-affinity methyl-CpG-binding protein   总被引:1,自引:0,他引:1  
Core members of the MBD protein family (MeCP2, MBD1, MBD2 and MBD4) share a methyl-CpG-binding domain that has a specific affinity for methylated CpG sites in double-stranded DNA. By multimerizing the MDB domain of Mbd1, we engineered a poly-MBD protein that displays methyl-CpG-specific binding in vitro with a dissociation constant that is >50-fold higher than that of a monomeric MBD. Poly-MBD proteins also localize to methylated foci in cells and can deliver a functional domain to reporter constructs in vivo. We propose that poly-MBD proteins are sensitive reagents for the detection of DNA methylation levels in isolated native DNA and for cytological detection of chromosomal CpG methylation.  相似文献   

2.
MBD1 is a vertebrate methyl-CpG binding domain protein (MBD) that can bring about repression of methylated promoter DNA sequences. Like other MBD proteins, MBD1 localizes to nuclear foci that in mice are rich in methyl-CpG. In methyl-CpG-deficient mouse cells, however, Mbd1 remains localized to heterochromatic foci whereas other MBD proteins become dispersed in the nucleus. We find that Mbd1a, a major mouse isoform, contains a CXXC domain (CXXC-3) that binds specifically to nonmethylated CpG, suggesting an explanation for methylation-independent localization. Transfection studies demonstrate that the CXXC-3 domain indeed targets nonmethylated CpG sites in vivo. Repression of nonmethylated reporter genes depends on the CXXC-3 domain, whereas repression of methylated reporters requires the MBD. Our findings indicate that MBD1 can interpret the CpG dinucleotide as a repressive signal in vivo regardless of its methylation status.  相似文献   

3.
4.
How a single cell gives rise to progeny with differing fates remains poorly understood. We examined cells lacking methyl CpG binding domain protein-2 (MBD2), a molecule that has been proposed to link DNA methylation to silent chromatin. Helper T cells from Mbd2(-/-) mice exhibit disordered differentiation. IL-4, the signature of a restricted set of progeny, is expressed ectopically in Mbd2(-/-) parent and daughter cells. Loss of MBD2-mediated silencing renders the normally essential activator, Gata-3, dispensable for IL-4 induction. Gata-3 and MBD2 act in competition, wherein each factor independently, and quantitatively, regulates the binary choice of whether heritable IL-4 expression is established. Gata-3 functions, in part, to displace MBD2 from methylated DNA. These results suggest that activating and silencing signals integrate to provide spatially and temporally restricted patterns of gene activity.  相似文献   

5.
6.
7.
8.
9.
10.
《Genomics》2020,112(3):2223-2232
Methyl-CpG binding domain proteins (MBD) can specifically bind to methylated CpG sites and play important roles in epigenetic gene regulation. Here, we identified and functionally characterized the MBD protein in Tribolium castaneum. T. castaneum genome encodes only one MBD protein: TcMBD2/3. RNA interference targeting this gene at different developmental stages caused lethal phenotypes including metamorphosis deficiency in larvae and pupae, gastrointestinal system problems and fecundity deficiency in adult. Moreover, Tcmbd2/3 knockdown adult showed progressive reduced locomoter activity, a typical neurodegeneration phenotype. This is a common feature of DNA methylation in mammals and has not been found in other insects. However, band shift assays demonstrated that TcMBD2/3 could not bind to methylated DNA, indicating the essential roles of TcMBD2/3 is independent of DNA methylation. Our study provides Tcmbd2/3 plays important roles in T. castaneum and gives new insights into the potential mechanism of action of MBD proteins in insect.  相似文献   

11.
12.
None of the polymorphic variants of the IL2RA gene found associated with Type 1 Diabetes (T1D) was shown to have a functional effect. To test if the epigenetic variation could play a role at this locus, we studied the methylation of 6 CpGs located within the proximal promoter of IL2RA gene in 252 T1D patients compared with 286 age-matched controls. We found that DNA methylation at CpGs −373 and −456 was slightly but significantly higher in patients than in controls (40.4±4.6 vs 38.3±5.4, p = 1.4E4; 91.4±2.8 vs 89.5±5.3, p = 1.8E-6), while other CpG showed a strictly comparable methylation. Among 106 single nucleotide polymorphisms (SNPs) located in the neighboring 180kb region, we found that 28 SNPs were associated with DNA methylation at CpG −373. Sixteen of these SNPs were known to be associated with T1D. Our findings suggest that the effect of IL2RA risk alleles on T1D may be partially mediated through epigenetic changes.  相似文献   

13.
14.
15.
16.
17.
Abstract

CpG methylation determines a variety of biological functions of DNA. The methylation signal is interpreted by proteins containing a methyl-CpG binding domain (MBDs). Based on the NMR structure of MBD1 complexed with methylated DNA we analysed the recognition mode by means of molecular dynamics simulations.

As the protein is monomeric and recognizes a symmetrically methylated CpG step, the recognition mode is an asymmetric one. We find that the two methyl groups do not contribute equally to the binding energy. One methyl group is associated with the major part of the binding energy and the other one nearly does not contribute at all. The contribution of the two cytosine methyl groups to binding energy is calculated to be ?3.6 kcal/mol. This implies a contribution of greater than two orders of magnitude to the binding constant. The conserved amino acid Asp32 is known to be essential for DNA binding by MBD1, but so far no direct contact with DNA has been observed. We detected a direct DNA base contact to Asp32. This could be the main reason for the importance of this amino acid. MBD contacts DNA exclusively in the major groove, the minor groove is reserved for histone contacts. We found a deformation of the minor groove shape due to complexation by MBD1, which indicates an information transfer between the major and the minor groove.  相似文献   

18.
The MBD2-NuRD (Nucleosome Remodeling and Deacetylase) complex is an epigenetic reader of DNA methylation that regulates genes involved in normal development and neoplastic diseases. To delineate the architecture and functional interactions of the MBD2-NuRD complex, we previously solved the structures of MBD2 bound to methylated DNA and a coiled-coil interaction between MBD2 and p66α that recruits the CHD4 nucleosome remodeling protein to the complex. The work presented here identifies novel structural and functional features of a previously uncharacterized domain of MBD2 (MBD2IDR). Biophysical analyses show that the MBD2IDR is an intrinsically disordered region (IDR). However, despite this inherent disorder, MBD2IDR increases the overall binding affinity of MBD2 for methylated DNA. MBD2IDR also recruits the histone deacetylase core components (RbAp48, HDAC2 and MTA2) of NuRD through a critical contact region requiring two contiguous amino acid residues, Arg286 and Leu287. Mutating these residues abrogates interaction of MBD2 with the histone deacetylase core and impairs the ability of MBD2 to repress the methylated tumor suppressor gene PRSS8 in MDA-MB-435 breast cancer cells. These findings expand our knowledge of the multi-dimensional interactions of the MBD2-NuRD complex that govern its function.  相似文献   

19.
Recent multi-dimensional approaches to the study of complex disease have revealed powerful insights into how genetic and epigenetic factors may underlie their aetiopathogenesis. We examined genotype-epigenotype interactions in the context of Type 2 Diabetes (T2D), focussing on known regions of genomic susceptibility. We assayed DNA methylation in 60 females, stratified according to disease susceptibility haplotype using previously identified association loci. CpG methylation was assessed using methylated DNA immunoprecipitation on a targeted array (MeDIP-chip) and absolute methylation values were estimated using a Bayesian algorithm (BATMAN). Absolute methylation levels were quantified across LD blocks, and we identified increased DNA methylation on the FTO obesity susceptibility haplotype, tagged by the rs8050136 risk allele A (p = 9.40×10−4, permutation p = 1.0×10−3). Further analysis across the 46 kb LD block using sliding windows localised the most significant difference to be within a 7.7 kb region (p = 1.13×10−7). Sequence level analysis, followed by pyrosequencing validation, revealed that the methylation difference was driven by the co-ordinated phase of CpG-creating SNPs across the risk haplotype. This 7.7 kb region of haplotype-specific methylation (HSM), encapsulates a Highly Conserved Non-Coding Element (HCNE) that has previously been validated as a long-range enhancer, supported by the histone H3K4me1 enhancer signature. This study demonstrates that integration of Genome-Wide Association (GWA) SNP and epigenomic DNA methylation data can identify potential novel genotype-epigenotype interactions within disease-associated loci, thus providing a novel route to aid unravelling common complex diseases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号