首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Colletotrichum gloeosporioides is a hemibiotrophic ascomycete fungus that causes anthracnose on numerous plants worldwide and forms a specialized infection structure known as an appressorium in response to various plant surface signals. However, the associated mechanism of host surface signal recognition remains unclear. In the present study, three putative sensors, namely the mucin Msb2, the membrane sensor protein Sho1, and the G‐protein‐coupled receptor Pth11, were identified and characterized. The results showed that CgMsb2 plays a major role in the recognition of various host surface signals; deletion of CgMsb2 resulted in significant defects in appressorium formation, appressorium penetration, cellophane membrane penetration, and pathogenicity. CgSho1 plays a minor role and together with CgMsb2 cooperatively regulates host signal recognition, cellophane membrane penetration, and pathogenicity; deletion of CgSho1 resulted in an expansion defect of infection hyphae. Deletion of CgPth11 in wildtype, ΔCgMsb2, and ΔCgSho1 strains only resulted in a slight defect in appressorium formation at the early stage, and CgPth11 was dispensable for penetration and pathogenicity. However, exogenous cAMP failed to restore the defect of appressorium formation in ΔCgPth11 at the early stage. CgMsb2 contributed to the phosphorylation of the mitogen‐activated protein kinase CgMk1, which is essential for infection‐associated functions, while CgSho1 was unable to activate CgMk1 alone but rather cooperated with CgMsb2 to activate CgMk1. These data suggest that CgMsb2 contributes to the activation of CgMk1 and has overlapping functions with CgSho1 in plant surface sensing, appressorium formation, and pathogenicity.  相似文献   

2.
Sclerotinia sclerotiorum infects host plant tissues by inducing necrosis to source nutrients needed for its establishment. Tissue necrosis results from an enhanced generation of reactive oxygen species (ROS) at the site of infection and apoptosis. Pathogens have evolved ROS scavenging mechanisms to withstand host‐induced oxidative damage. However, the genes associated with ROS scavenging pathways are yet to be fully investigated in S. sclerotiorum. We selected the S. sclerotiorum Thioredoxin1 gene (SsTrx1) for our investigations as its expression is significantly induced during S. sclerotiorum infection. RNA interference‐induced silencing of SsTrx1 in S. sclerotiorum affected the hyphal growth rate, mycelial morphology, and sclerotial development under in vitro conditions. These outcomes confirmed the involvement of SsTrx1 in promoting pathogenicity and oxidative stress tolerance of S. sclerotiorum. We next constructed an SsTrx1‐based host‐induced gene silencing (HIGS) vector and mobilized it into Arabidopsis thaliana (HIGS‐A) and Nicotiana benthamiana (HIGS‐N). The disease resistance analysis revealed significantly reduced pathogenicity and disease progression in the transformed genotypes as compared to the nontransformed and empty vector controls. The relative gene expression of SsTrx1 increased under oxidative stress. Taken together, our results show that normal expression of SsTrx1 is crucial for pathogenicity and oxidative stress tolerance of S. sclerotiorum.  相似文献   

3.
《Fungal biology》2022,126(1):20-34
Previous research has demonstrated that sclerotia production is suppressed by exogenous cyclic AMP (cAMP) in Sclerotinia sclerotiorum and enhanced upon deletion of the adenylate cyclase gene. This study focuses on further functionally characterizing the cAMP-dependent protein kinase A (PKA) signaling pathway in S. sclerotiorum. Here, we demonstrate functions for two components of cAMP signaling: the catalytic, SsPKA, and the regulatory, SsPKAR, subunits of cAMP-dependent PKA. Growth and virulence were greatly reduced by disruption of either Sspka2 or SspkaR in addition to deficiencies in appressorium development. Surprisingly, disruption of both Sspka2 (dSspka2) and SspkaR (dSspkaR) display an up-regulation of autophagy without nutrient starvation suggesting that properly regulated PKA activity is required for control of autophagy. SsPKAR is demonstrated to be required for carbohydrate metabolism and mobilization, which are required for appressorium development and sclerotium initiation. A closer examination of dSspkaR during Nicotiana benthamiana infection revealed that an oxalic acid (OA)-independent necrosis protein(s) or metabolite(s) may be involved in the lesion development in dSspkaR-N. benthamiana interaction. In summary, these data demonstrate that the cAMP-dependent PKA signaling is essential for multiple forms of S. sclerotiorum development as well as virulence which rely on optimal regulation of autophagy.  相似文献   

4.
Anthracnose caused by Colletotrichum gloeosporioides leads to serious economic loss to rubber tree yield and other tropical crops. The appressorium, a specialized dome‐shaped infection structure, plays a crucial role in the pathogenesis of C. gloeosporioides. However, the mechanism of how actin cytoskeleton dynamics regulate appressorium formation and penetration remains poorly defined in C. gloeosporioides. In this study, an actin cross‐linking protein fimbrin homologue (CgFim1) was identified in C. gloeosporioides, and the knockout of CgFim1 led to impairment in vegetative growth, conidiation, and pathogenicity. We then investigated the roles of CgFim1 in the dynamic organization of the actin cytoskeleton. We observed that actin patches and cables localized at the apical and subapical regions of the hyphal tip, and showed a disc‐to‐ring dynamic around the pore during appressorium development. CgFim1 showed a similar distribution pattern to the actin cytoskeleton. Moreover, knockout of CgFim1 affected the polarity of the actin cytoskeleton in the hyphal tip and disrupted the actin dynamics and ring structure formation in the appressorium, which prevented polar growth and appressorium development. The CgFim1 mutant also interfered with the septin structure formation. This caused defects in pore wall overlay formation, pore contraction, and the extension of the penetration peg. These results reveal the mechanism by which CgFim1 regulates the growth and pathogenicity of C. gloeosporioides by organizing the actin cytoskeleton.  相似文献   

5.
6.
7.
8.
The development and pathogenicity of the fungus Magnaporthe oryzae, the causal agent of destructive rice blast disease, require it to perceive external environmental signals. Opy2, an overproduction-induced pheromone-resistant protein 2, is a crucial protein for sensing external signals in Saccharomyces cerevisiae. However, the biological functions of the homologue of Opy2 in M. oryzae are unclear. In this study, we identified that MoOPY2 is involved in fungal development, pathogenicity, and autophagy in M. oryzae. Deletion of MoOPY2 resulted in pleiotropic defects in hyphal growth, conidiation, germ tube extension, appressorium formation, appressorium turgor generation, and invasive growth, therefore leading to attenuated pathogenicity. Furthermore, MoOpy2 participates in the Osm1 MAPK pathway and the Mps1 MAPK pathway by interacting with the adaptor protein Mst50. The interaction sites of Mst50 and MoOpy2 colocalized with the autophagic marker protein MoAtg8 in the preautophagosomal structure sites (PAS). Notably, the ΔMoopy2 mutant caused cumulative MoAtg8 lipidation and rapid GFP-MoAtg8 degradation in response to nitrogen starvation, showing that MoOpy2 is involved in the negative regulation of autophagy activity. Taken together, our study revealed that MoOpy2 of M. oryzae plays an essential role in the orchestration of fungal development, appressorium penetration, autophagy and pathogenesis.  相似文献   

9.
Dou X  Wang Q  Qi Z  Song W  Wang W  Guo M  Zhang H  Zhang Z  Wang P  Zheng X 《PloS one》2011,6(1):e16439
Soluble NSF attachment protein receptor (SNARE) proteins play a central role in membrane fusion and vesicle transport of eukaryotic organisms including fungi. We previously identified MoSce22 as a homolog of Saccharomyces cerevisiae SNARE protein Sec22 to be involved in growth, stress resistance, and pathogenicity of Magnaporthe oryzae. Here, we provide evidences that MoVam7, an ortholog of S. cerevisiae SNARE protein Vam7, exerts conserved functions in vacuolar morphogenesis and functions in pathogenicity of M. oryzae. Staining with neutral red and FM4-64 revealed the presence of abnormal fragmented vacuoles and an absence of the Spitzenkörper body in the ΔMovam7 mutant. The ΔMovam7 mutant also exhibited reduced vegetative growth, poor conidiation, and failure to produce the infection structure appressorium. Additionally, treatments with cell wall perturbing agents indicated weakened cell walls and altered distributions of the cell wall component chitin. Furthermore, the ΔMovam7 mutant showed a reduced accumulation of reactive oxygen species (ROS) in the hyphal apex and failed to cause diseases on the rice plant. In summary, our studies indicate that MoVam7, like MoSec22, is a component of the SNARE complex whose functions in vacuole assembly also underlies the growth, conidiation, appressorium formation, and pathogenicity of M. oryzae. Further studies of MoVam7, MoSec22, and additional members of the SNARE complex are likely to reveal critical mechanisms in vacuole formation and membrane trafficking that is linked to fungal pathogenicity.  相似文献   

10.
11.
Anthracnose, caused by the ascomycete fungus Colletotrichum scovillei, is a destructive disease in pepper. The fungus germinates and develops an infection structure called an appressorium on the plant surface. Several signaling cascades, including cAMP-mediated signaling and mitogen-activated protein kinase (MAPK) cascades, are involved in fungal development and pathogenicity in plant pathogenic fungi, but this has not been well studied in the fruit-infecting fungus C. scovillei. Ste50 is an adaptor protein interacting with multiple upstream components to activate the MAPK cascades. Here, we characterized the CsSTE50 gene of C. scovillei, a homolog of Magnaporthe oryzae MST50 that functions in MAPK cascades, by gene knockout. The knockout mutant ΔCsste50 had pleiotropic phenotypes in development and pathogenicity. Compared with the wild-type, the mutants grew faster and produced more conidia on regular agar but were more sensitive to osmotic stress. On artificial and plant surfaces, the conidia of the mutant showed significantly reduced germination and failed to form appressoria. The mutant was completely non-pathogenic on pepper fruits with or without wounds, indicating that pre-penetration and invasive growth were both defective in the mutant. Our results show that the adaptor protein CsSTE50 plays a role in vegetative growth, conidiation, germination, appressorium formation, and pathogenicity in C. scovillei.  相似文献   

12.
Autophagy serves as a survival mechanism and plays important role in nutrient recycling under conditions of starvation, nutrient storage, ad differentiation of plant pathogenic fungi. However, autophagy-related genes have not been investigated in Colletotrichum scovillei, a causal agent of pepper fruit anthracnose disease. ATG8 is involved in autophagosome formation and is considered a marker of autophagy. Therefore, we generated an ATG8 deletion mutant, ΔCsatg8, via homologous recombination to determine the functional roles of CsATG8 in the development and virulence of C. scovillei. Compared with the wild-type, the deletion mutant ΔCsatg8 exhibited a severe reduction in conidiation. Conidia produced by ΔCsatg8 were defective in survival, conidial germination, and appressorium formation. Moreover, conidia of ΔCsatg8 showed reduced lipid amount and PTS1 selectivity. A virulence assay showed that anthracnose development on pepper fruits was reduced in ΔCsatg8. Taken together, our results suggest that CsATG8 plays various roles in conidium production and associated development, and virulence in C. scovillei.  相似文献   

13.
14.
15.
Acetylshikonin (ASK) is a natural naphthoquinone derivative of traditional Chinese medicine Lithospermum erythrorhyzon. It has been reported that ASK has bactericidal, anti‐inflammatory and antitumour effects. However, whether ASK induces apoptosis and autophagy in acute myeloid leukaemia (AML) cells and the underlying mechanism are still unclear. Here, we explored the roles of apoptosis and autophagy in ASK‐induced cell death and the potential molecular mechanisms in human AML HL‐60 cells. The results demonstrated that ASK remarkably inhibited the cell proliferation, viability and induced apoptosis in HL‐60 cells through the mitochondrial pathway, and ASK promoted cell cycle arrest in the S‐phase. In addition, the increased formation of autophagosomes, the turnover from light chain 3B (LC3B) I to LC3B II and decrease of P62 suggested the induction of autophagy by ASK. Furthermore, ASK significantly decreased PI3K, phospho‐Akt and p‐p70S6K expression, while enhanced phospho‐AMP‐activated protein kinase (AMPK) and phospho‐liver kinase B1(LKB1) expression. The suppression of ASK‐induced the conversion from LC3B I to LC3B II caused by the application of inhibitors of AMPK (compound C) demonstrated that ASK‐induced autophagy depends on the LKB1/AMPK pathway. These data suggested that the autophagy induced by ASK were dependent on the activation of LKB1/AMPK signalling and suppression of PI3K/Akt/mTOR pathways. The cleavage of the apoptosis‐related markers caspase‐3 and caspase‐9 and the activity of caspase‐3 induced by ASK were markedly reduced by inhibitor of AMPK (compound C), an autophagy inhibitor 3‐methyladenine (3‐MA) and another autophagy inhibitor chloroquine (CQ). Taken together, our data reveal that ASK‐induced HL‐60 cell apoptosis is dependent on the activation of autophagy via the LKB1/AMPK and PI3K/Akt‐regulated mTOR signalling pathways.  相似文献   

16.
To search for virulence effector genes of the rice blast fungus, Magnaporthe oryzae, we carried out a large-scale targeted disruption of genes for 78 putative secreted proteins that are expressed during the early stages of infection of M. oryzae. Disruption of the majority of genes did not affect growth, conidiation, or pathogenicity of M. oryzae. One exception was the gene MC69. The mc69 mutant showed a severe reduction in blast symptoms on rice and barley, indicating the importance of MC69 for pathogenicity of M. oryzae. The mc69 mutant did not exhibit changes in saprophytic growth and conidiation. Microscopic analysis of infection behavior in the mc69 mutant revealed that MC69 is dispensable for appressorium formation. However, mc69 mutant failed to develop invasive hyphae after appressorium formation in rice leaf sheath, indicating a critical role of MC69 in interaction with host plants. MC69 encodes a hypothetical 54 amino acids protein with a signal peptide. Live-cell imaging suggested that fluorescently labeled MC69 was not translocated into rice cytoplasm. Site-directed mutagenesis of two conserved cysteine residues (Cys36 and Cys46) in the mature MC69 impaired function of MC69 without affecting its secretion, suggesting the importance of the disulfide bond in MC69 pathogenicity function. Furthermore, deletion of the MC69 orthologous gene reduced pathogenicity of the cucumber anthracnose fungus Colletotrichum orbiculare on both cucumber and Nicotiana benthamiana leaves. We conclude that MC69 is a secreted pathogenicity protein commonly required for infection of two different plant pathogenic fungi, M. oryzae and C. orbiculare pathogenic on monocot and dicot plants, respectively.  相似文献   

17.
《Autophagy》2013,9(4):538-549
Autophagy is a highly conserved process that maintains intracellular homeostasis by degrading proteins or organelles in all eukaryotes. The effect of autophagy on fungal biology and infection of insect pathogens is unknown. Here, we report the function of MrATG8, an ortholog of yeast ATG8, in the entomopathogenic fungus Metarhizium robertsii. MrATG8 can complement an ATG8-defective yeast strain and deletion of MrATG8 impaired autophagy, conidiation and fungal infection biology in M. robertsii. Compared with the wild-type and gene-rescued mutant, Mratg8Δ is not inductive to form the infection-structure appressorium and is impaired in defense response against insect immunity. In addition, accumulation of lipid droplets (LDs) is significantly reduced in the conidia of Mratg8Δ and the pathogenicity of the mutant is drastically impaired. We also found that the cellular level of a LD-specific perilipin-like protein is significantly lowered by deletion of MrATG8 and that the carboxyl terminus beyond the predicted protease cleavage site is dispensable for MrAtg8 function. To corroborate the role of autophagy in fungal physiology, the homologous genes of yeast ATG1, ATG4 and ATG15, designated as MrATG1, MrATG4 and MrATG15, were also deleted in M. robertsii. In contrast to Mratg8Δ, these mutants could form appressoria, however, the LD accumulation and virulence were also considerably impaired in the mutant strains. Our data showed that autophagy is required in M. robertsii for fungal differentiation, lipid biogenesis and insect infection. The results advance our understanding of autophagic process in fungi and provide evidence to connect autophagy with lipid metabolism.  相似文献   

18.
Endocytosis plays key roles during infection of plant-pathogenic fungi, but its regulatory mechanisms are still largely unknown. Here, we identified a putative endocytosis-related gene, PAL1, which was highly expressed in appressorium of Magnaporthe oryzae, and was found to be important for appressorium formation and maturation. Deletion of PAL1 significantly reduced the virulence of M. oryzae due to defects in appressorial penetration and invasive growth in host cells. The Pal1 protein interacted and colocalized with the endocytosis protein Sla1, suggesting it is involved in endocytosis. The Δpal1 mutant was significantly reduced in appressorium formation, which was recovered by adding exogenous cAMP and 3-isobutyl-1-methylxanthine (IBMX). Moreover, the phosphorylation level of Pmk1 in Δpal1 was also reduced, suggesting Pal1 functions upstream of both the cAMP and Pmk1 signalling pathways. As a consequence, the utilization of glycogen and lipid, appressorial autophagy, actin ring formation, localization of septin proteins, as well as turgor accumulation were all affected in the Δpal1 mutant. Taken together, Pal1 regulates cAMP and the Pmk1 signalling pathway for appressorium formation and maturation to facilitate infection of M. oryzae.  相似文献   

19.
20.
He M  Kershaw MJ  Soanes DM  Xia Y  Talbot NJ 《PloS one》2012,7(3):e33270

Background

The rice blast fungus Magnaporthe oryzae elaborates a specialized infection structure called an appressorium to breach the rice leaf surface and gain access to plant tissue. Appressorium development is controlled by cell cycle progression, and a single round of nuclear division occurs prior to appressorium formation. Mitosis is always followed by programmed cell death of the spore from which the appressorium develops. Nuclear degeneration in the spore is known to be essential for plant infection, but the precise mechanism by which it occurs is not known.

Methodology/Principal Findings

In yeast, nuclear breakdown requires a specific form of autophagy, known as piecemeal microautophagy of the nucleus (PMN), and we therefore investigated whether this process occurs in the rice blast fungus. Here, we report that M. oryzae possesses two conserved components of a putative PMN pathway, MoVac8 and MoTsc13, but that both are dispensable for nuclear breakdown during plant infection. MoVAC8 encodes a vacuolar membrane protein and MoTSC13 a peri-nuclear and peripheral ER protein.

Conclusions/Significance

We show that MoVAC8 is necessary for caffeine resistance, but dispensable for pathogenicity of M. oryzae, while MoTSC13 is involved in cell wall stress responses and is an important virulence determinant. By functional analysis of ΔMoatg1 and ΔMoatg4 mutants, we demonstrate that infection-associated nuclear degeneration in M. oryzae instead occurs by non-selective macroautophagy, which is necessary for rice blast disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号