首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
2.
Protein A immobilized affinity cartridge for immunoglobulin purification   总被引:1,自引:0,他引:1  
Recombinant Protein A was immobilized on a cellulose and acrylic composite matrix through Schiff base formation. Various factors that could affect the binding of immunoglobulin by the Protein A molecules immobilized on the solid matrix were studied to achieve optimum affinity purification. The spacer arm length and ligand concentration of Protein A were verified as factors crucial to optimized IgG purification. Liquid-phase environmental conditions such as pH and salt concentration also play important roles in adsorption capacity by affecting the molecular interaction between IgG and the immobilized Protein A. The rate of interaction between Protein A and IgG is rather fast, with minimal differences observed at 10-fold increases in the cartridge loading rate. This paper describes a cellulose/acrylic composite matrix for immobilizing Protein A, at an optimized ligand concentration, installed on a spacer arm of adequate length, to purify immunoglobulins from animal plasma. The fast-flow property of the cartridge made from such a matrix and its simplicity in operation provide effective means for purifying immunoglobulins on a relatively large scale.  相似文献   

3.
The thermodynamics and kinetics of protein adsorption are studied using a molecular theoretical approach. The cases studied include competitive adsorption from mixtures and the effect of conformational changes upon adsorption. The kinetic theory is based on a generalized diffusion equation in which the driving force for motion is the gradient of chemical potentials of the proteins. The time-dependent chemical potentials, as well as the equilibrium behavior of the system, are obtained using a molecular mean-field theory. The theory provides, within the same theoretical formulation, the diffusion and the kinetic (activated) controlled regimes. By separation of ideal and nonideal contributions to the chemical potential, the equation of motion shows a purely diffusive part and the motion of the particles in the potential of mean force resulting from the intermolecular interactions. The theory enables the calculation of the time-dependent surface coverage of proteins, the dynamic surface tension, and the structure of the adsorbed layer in contact with the approaching proteins. For the case of competitive adsorption from a solution containing a mixture of large and small proteins, a variety of different adsorption patterns are observed depending upon the bulk composition, the strength of the interaction between the particles, and the surface and size of the proteins. It is found that the experimentally observed Vroman sequence is predicted in the case that the bulk solution is at a composition with an excess of the small protein, and that the interaction between the large protein and the surface is much larger than that of the smaller protein. The effect of surface conformational changes of the adsorbed proteins in the time-dependent adsorption is studied in detail. The theory predicts regimes of constant density and dynamic surface tension that are long lived but are only intermediates before the final approach to equilibrium. The implications of the findings to the interpretation of experimental observations is discussed.  相似文献   

4.
金黄色葡萄球菌蛋白A(Staphylococcal protein A,SpA)和链球菌蛋白G(Streptococcal protein G,SpG)是细菌产生的特异结合宿主抗体的细菌免疫球蛋白结合蛋白(Immunoglobulin(Ig)-binding proteins,IBPs)的代表分子。SpA和SpG均包含由多个序列高度同源的结合结构域重复组成的抗体结合区,各单结构域都具有完全的结合IgG的功能。为研究这些单结构域随机组合能否产生具有新结合特性的组合分子,将SpA的A、B、C、D、E以及SpG的B2、B3共7个单结合结构域随机组合构建成噬菌体展示文库后,应用人IgG1、2、3、4为诱饵分子对该文库进行4轮筛选,获得了SpA天然分子中不存在的单结构域排列组合分子D-C。在筛选过程中,阴性对照噬菌体的逐渐减少、展示两个结构域以上的噬菌体比例不断增多,尤其是D-C组合的选择性富集和其随机连接肽的严格筛选都显示了筛选的有效性和D-C组合的重要性。噬菌体ELISA进一步证实D-C与人IgG四亚类的结合能力远强于天然SpA分子。该研究应用分子进化技术首次获得了一种与人IgG四亚类具有结合优势的新型组合分子D-C,不仅可为IgG纯化、制备、检测等方面的应用提供新的候选分子,还为细菌IBP结构功能的进一步研究提供新的手段。  相似文献   

5.
Ellipsometric studies have proved that monoclonal immunoglobulin G(IgG) against gamma-interferon (gamma-INF) and immunoglobulin fraction (Ig-fraction) of rabbit blood serum against human serum albumin (HSA) are adsorbed according to the Langmuir model on the surfaces of mirror plates of covalently modified gamma-INF or HSA, respectively. The maximum surface concentrations (Tmax) and equilibrium adsorption constants (K) for IgG and Ig-fraction are equal to 2.57 pmol/cm2 and 2 x 10(7) M-1, 3.3 mg/m2 and 0.1 cm3/micrograms, respectively. The additional treatment of gamma-INF modified surfaces with Tween-20 leads to an increase of K IgG ut to 2.7 x 10(-7) M-1 while Tmax decreases up to 1.12 pmol/cm2 which is conditioned by the blocking of protein non-specific binding sites. The role of specific and non-specific interactions of IgG and Ig-fraction with covalently immobilized antigens was studied at antibody-antigen mixture adsorption. The necessity to apply this method to quantitative determination of gamma-IHF and HSA in solutions was proved.  相似文献   

6.
Although molecular recognitions between membrane receptors and their soluble ligands have been analyzed using their soluble proteins in bulk solutions, molecular recognitions of membrane receptors should be studied on lipid membranes considering their orientation and dynamics on membrane surfaces. We employed Staphylococcal Protein A (SpA) oligo B domains with long trialkyl-tags from E. coli (LppBx, x = 1, 2, and 5) and immobilized LppBx on lipid layers using hydrophobic interactions from the trialkyl-tag, while maintaining the orientation of B domain-chains on a 27 MHz quartz-crystal microbalance (QCM; AT-cut shear mode). The binding of IgG Fc regions to LppBx on lipid layers was detected by frequency decreases (mass increases) on the QCM. The maximum amount bound (Delta m(max)), association constants (K(a)), association and dissociation rate constants (k(1) and k(-1), respectively) were obtained. Binding kinetics of IgG to LppB2 and LppB5 were quite similar, showing a simple 1:1 binding of the IgG Fc region to the B domain, when the surface coverage of LppB2 and LppB5 on the lipid surface is low (1.4%). When LppB5 was immobilized at the high surface coverage of 3.5%, the complex bindings of IgG such as one IgG bound to one or two LppB5 on the membrane could be observed. IgG-LppB1 binding was largely restricted because of steric hindrance on lipid surfaces. This gives a suggestion why Protein A has five IgG binding domains.  相似文献   

7.
8.
Binding of pathogen-bound immunoglobulin G (IgG) to cell surface Fc gamma receptors (FcgammaRs) triggers a wide variety of effector functions. The binding kinetics and affinities of IgG-FcgammaR interactions are hence important parameters for understanding FcgammaR-mediated immune functions. We have measured the kinetic rates and equilibrium dissociation constants of IgG binding to a soluble FcgammaRIIIa fused with Ig Fc (sCD16a) using the surface plasmon resonance technique. sCD16a interacted with monomeric human IgG and its subtypes IgG1 and IgG3 as well as rabbit IgG with on-rates of 6.5 x 10(3), 8.2 x 10(3), 1.1 x 10(4) and 1.8 x 10(4) m(-1) s(-1), off-rates of 4.7 x 10(-3), 5.7 x 10(-3), 5.9 x 10(-3), and 1.9 x 10(-2) s(-1), and equilibrium dissociation constants of 0.72, 0.71, 0.56, and 1.1 mum, respectively. The kinetics and affinities measured by surface plasmon resonance agreed with those obtained from real time flow cytometry and competition inhibition binding experiments using cell surface CD16a. These data add to our understanding of IgG-FcgammaR interactions.  相似文献   

9.
Protein G, an IgG-binding molecule, was prepared from the cell walls of a group G streptococcal strain, G-148. The protein could be extracted from the cells by papain digestion and purified by the sequential use of ion-exchange chromatography on DEAE-Sephadex, affinity chromatography on Sepharose-coupled human IgG, and gel chromatography on Sephadex G-200. Two protein bands with similar molecular weight, 34,000 and 36,000, were obtained when analyzing the pure protein G on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The yield using this purification scheme was 27% of the protein G solubilized from the cells or 70 micrograms/ml packed bacteria. The Stokes radius and frictional ratio of protein G were determined to 3.53 nm and 1.64, respectively, suggesting an elongated fibrous molecule. The protein did not contain any intrachain disulfide bonds. The amino acid composition of protein G was determined and was found to be different from that of protein A, the well known staphylococcal IgG-binding protein. The equilibrium constants of the reactions between protein G and human, rabbit, mouse, and goat polyclonal IgG, determined by Scatchard plots, ranged between 1 X 10(10) and 7 X 10(10), for rat polyclonal IgG 1.4 X 10(9), and human monoclonal IgG1, IgG2, IgG3, and IgG4 between 2 X 10(9) and 6 X 10(9). These affinity constants were always greater than the corresponding values for protein A. The binding between protein G and various polyclonal and monoclonal IgG was pH dependent between 2.8 and 10, strongest at pH 4 and 5, and weakest at pH 10.  相似文献   

10.
Protein G, a bacterial cell wall protein with affinity for immunoglobulin G (IgG), has been isolated from a human group G streptococcal strain (G148). Bacterial surface proteins were solubilized by enzymatic digestion with papain. Protein G was isolated by sequential use of ion-exchange chromatography on DEAE-cellulose, gel filtration on Sephadex G-100, and affinity chromatography on Sepharose 4B-coupled IgG. The presence of protein G in various pools and fractions during the isolation was followed by their ability to inhibit the binding of radio-labeled IgG to G148 bacteria. A highly purified protein G was obtained. On polyacrylamide gel electrophoresis in sodium dodecyl sulfate, the apparent m.w. was 30,000, and on agarose gel electrophoresis the purified protein gave rise to a single band in the alpha 1-region. Protein G was found to bind all human IgG subclasses and also rabbit, mouse, and goat IgG. On the IgG molecule, the Fc part appears mainly responsible for the interaction with protein G, although a low degree interaction was also recorded for Fab fragments. IgM, IgA, and IgD, however, showed no binding to protein G. This novel IgG-binding reagent promises to be of theoretical and practical interest in immunologic research.  相似文献   

11.
The binding of penetratin, a peptide that has been found useful for cellular delivery of large hydrophilic molecules, to negatively charged vesicles was investigated. The surface charge density of the vesicles was varied by mixing zwitterionic dioleoylphosphatidylcholine (DOPC) and negatively charged dioleoylphosphatidylglycerol (DOPG) at various molar ratios. The extent of membrane association was quantified from tryptophan emission spectra recorded during titration of peptide solution with liposomes. A singular value decomposition of the spectral data demonstrated unambiguously that two species, assigned as peptide free in solution and membrane-bound peptide, respectively, account for the spectral data of the titration series. Binding isotherms were then constructed by least-squares projection of the titration spectra on reference spectra of free and membrane-bound peptide. A model based on the Gouy-Chapman theory in combination with a two-state surface partition equilibrium, separating the electrostatic and the hydrophobic contributions to the binding free energy, was found to be in excellent agreement with the experimental data. Using this model, a surface partition constant of approximately 80 M(-)(1) was obtained for the nonelectrostatic contribution to the binding of penetratin irrespective of the fraction of negatively charged lipids in the membrane, indicating that the hydrophobic interactions are independent of the surface charge density. In accordance with this, circular dichroism measurements showed that the secondary structure of membrane-associated penetratin is independent of the DOPC/DOPG ratio. Experiments using vesicles with entrapped carboxyfluorescein showed that penetratin does not form membrane pores. Studies of the cationic peptide penetratin are complicated by extensive adsorption to surfaces of quartz and plastics. By modification of the quartz cell walls with the cationic polymer poly(ethylenimine), the peptide adsorption was reduced to a tolerable level. The data analysis method used for construction of the binding isotherms eliminated errors emanating from the remaining peptide adsorption, which otherwise would prevent a proper quantification of the binding.  相似文献   

12.
Iminodiacetic acid (IDA) and tris(2‐aminoethyl)amine (TREN) chelating ligands were immobilized on poly(ethylene vinyl alcohol) (PEVA) hollow‐fiber membranes after activation with epichlorohydrin or butanediol diglycidyl ether (bisoxirane). The affinity membranes complexed with Cu(II) were evaluated for adsorption of human immunoglobulin G (IgG). The effects of matrix activation and buffer system on adsorption of IgG were studied. Isotherms of batch IgG adsorption onto finely cut membranes showed that neither of the chelates, IDA‐Cu(II) or TREN‐Cu(II), had a Langmuirean behavior with negative cooperativity for IgG binding. A comparison of equilibrium and dynamic maximum capacities showed that the dynamic capacity for a mini‐cartridge in a cross‐flow filtration mode (52.5 and 298.4 mg g?1 dry weight for PEVA‐TREN‐Cu(II) and PEVA‐IDA‐Cu(II), respectively) was somewhat higher than the equilibrium capacity (9.2 and 73.3 mg g?1 dry weight for PEVA‐TREN‐Cu(II) and PEVA‐IDA‐Cu(II), respectively). When mini‐cartridges were used, the dynamic adsorption capacity of IDA‐Cu(II) was the same for both mini‐cartridge and agarose gel. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
Protein folding, binding, catalytic activity and molecular recognition all involve molecular movements, with varying extents. The molecular movements are brought upon via flexible regions. Stemming from sequence, a fine tuning of electrostatic and hydrophobic properties of the protein fold determine flexible and rigid regions. Studies show flexible regions usually lack electrostatic interactions, such as salt-bridges and hydrogen-bonds, while the rigid regions often have larger number of such electrostatic interactions. Protein flexible regions are not simply an outcome of looser packing or instability, rather they are evolutionally selected. In this review article we highlight the significance of protein flexibilities in folding, binding and function, and their structural and thermodynamic determinants. Our electrostatic calculations and molecular dynamic simulations on an antibody-antigen complex further illustrate the importance of protein flexibilities in binding and function.  相似文献   

14.
《ImmunoMethods》1993,2(1):9-15
Protein crystallography offers a powerful means of analyzing the molecular mechanisms that underlie the action of bacterial immunoglobulin-binding proteins. Successful approaches used to date involve the isolation of individual IgG-binding domains from the immunoglobulin-binding protein under study and the crystallization of these on their own or in complex with Fc or Fab fragments. Two structures of complexes that have been determined to high resolution by protein crystallography are compared. A single IgG-binding domain from protein A (from Staphylococcus) binds to a human Fc fragment through formation of two α-helices, which bind in the cleft between the CH2 and the CH3 domains. Recognition is mediated by side chains on protein A which interact with conserved side chains on the surface of the antibody, ensuring binding to IgG molecules from different subclasses and species. A similar analysis of the complex of a single IgG-binding domain from protein G (from Streptococcus) with an Fab fragment from mouse IgG1 reveals that the same problem in molecular recognition is tackled in a different way. Protein G binds via an antiparallel alignment of β-strands from the IgG-binding domain and the CH1 domain in Fab: this main chain-main chain interaction is supported by a number of specific hydrogen bonds between the side chains in both proteins. By recognition of a high proportion of main-chain atoms, protein G minimizes the effects of IgG sequence variability in a way that is distinct from that adopted by protein A.  相似文献   

15.
A copper monolayer was formed on a gold electrode surface via underpotential deposition (UPD) method to construct a Cu UPD|DTBP-Protein G immunosensor for the sensitive detection of 17β-estradiol. Copper UPD monolayer can minimize the non-specific adsorption of biological molecules on the immunosensor surface and enhance the binding efficiency between immunosensor surface and thiolated Protein G. The crosslinker DTBP (Dimethyl 3,3'-dithiobispropionimidate · 2HCl) has strong ability to immobilize Protein G molecules on the electrode surface and the immobilized Protein G provides an orientation-controlled binding of antibodies. A monolayer of propanethiol was firstly self-assembled on the gold electrode surface, and a copper monolayer was deposited via UPD on the propanethiol modified electrode. Propanethiol monolayer helps to stabilize the copper monolayer by pushing the formation and stripping potentials of the copper UPD monolayer outside the potential range in which copper monolayer can be damaged easily by oxygen in air. A droplet DTBP-Protein G was then applied on the modified electrode surface followed by the immobilization of estradiol antibody. Finally, a competitive immunoassay was conducted between estradiol-BSA (bovine serum albumin) conjugate and free estradiol for the limited binding sites of estradiol antibody. Square wave voltammetry (SWV) was employed to monitor the electrochemical reduction current of ferrocenemethanol and the SWV current decreased with the increase of estradiol-BSA conjugate concentration at the immunosensor surface. Calibration of immunosensors in waste water samples spiked with 17β-estradiol yielded a linear response up to ≈ 2200 pg mL(-1), a sensitivity of 3.20 μA/pg mL(-1) and a detection limit of 12 pg mL(-1). The favorable characteristics of the immunosensors such as high selectivity, sensitivity and low detection limit can be attributed to the Cu UPD|DTBP-Protein G scaffold.  相似文献   

16.
The development of immunoadsorbents that have high specificity for immunoglobulin and no immunogenicity is essential for immunoadsorption treatment of autoimmune diseases. In this study, we designed peptide immunoadsorbents by molecular grafting of the IgG–Fc binding epitopes of Protein A onto a de novo-designed helix-loop-helix peptide. Linear (linG7A5) and cyclic (cyG7A5) grafted peptides were synthesized to test their binding affinity and specificity. Peptide cyG7A5 demonstrated high specificity for human IgG–Fc, with a KD of 19 μM, and demonstrated no affinity to other plasma proteins, human serum albumin, or fibrinogen. To evaluate their immunoadsorbance efficiency, the grafted peptides and Protein A were conjugated to polyvinyl acetate resin and tested in a batch-wise process for adsorption removal of IgG from human plasma. The IgG capture capacities of the peptides correlated well with their binding affinities. Interestingly, cyG7A5 showed a higher binding specificity for IgG than did Protein A.  相似文献   

17.
《MABS-AUSTIN》2013,5(3):362-372
Antibody-drug conjugates (ADCs) with biotin as a model cargo tethered to IgG1 mAbs via different linkers and conjugation methods were prepared and tested for thermostability and ability to bind target antigen and Fc receptor. Most conjugates demonstrated decreased thermostability relative to unconjugated antibody, based on DSC, with carbohydrate and amine coupled ADCs showing the least effect compared with thiol coupled conjugates. A strong correlation between biotin-load and loss of stability is observed with thiol conjugation to one IgG scaffold, but the stability of a second IgG scaffold is relatively insensitive to biotin load. The same correlation for amine coupling was less significant. Binding of antibody to antigen and Fc receptor was investigated using surface plasmon resonance. None of the conjugates exhibited altered antigen affinity. Fc receptor FcγIIb (CD32b) interactions were investigated using captured antibody conjugate. Protein G and Protein A, known inhibitors of Fc receptor (FcR) binding to IgG, were also used to extend the analysis of the impact of conjugation on Fc receptor binding. H10NPEG4 was the only conjugate to show significant negative impact to FcR binding, which is likely due to higher biotin-load compared with the other ADCs. The ADC aHISNLC and aHISTPEG8 demonstrated some loss in affinity for FcR, but to much lower extent. The general insensitivity of target binding and effector function of the IgG1 platform to conjugation highlight their utility. The observed changes in thermostability require consideration for the choice of conjugation chemistry, depending on the system being pursued and particular application of the conjugate.  相似文献   

18.
We present unzipping force analysis of protein association (UFAPA) as a novel and versatile method for detection of the position and dynamic nature of protein-DNA interactions. A single DNA double helix was unzipped in the presence of DNA-binding proteins using a feedback-enhanced optical trap. When the unzipping fork in a DNA reached a bound protein molecule we observed a dramatic increase in the tension in the DNA, followed by a sudden tension reduction. Analysis of the unzipping force throughout an unbinding "event" revealed information about the spatial location and dynamic nature of the protein-DNA complex. The capacity of UFAPA to spatially locate protein-DNA interactions is demonstrated by noncatalytic restriction mapping on a 4-kb DNA with three restriction enzymes (BsoBI, XhoI, and EcoRI). A restriction map for a given restriction enzyme was generated with an accuracy of approximately 25 bp. UFAPA also allows direct determination of the site-specific equilibrium association constant (K(A)) for a DNA-binding protein. This capability is demonstrated by measuring the cation concentration dependence of K(A) for EcoRI binding. The measured values are in good agreement with previous measurements of K(A) over an intermediate range of cation concentration. These results demonstrate the potential utility of UFAPA for future studies of site-specific protein-DNA interactions.  相似文献   

19.
The interaction of κ-carrageenan with three positively charged drug molecules with amphiphile character has been examined using surface tension measurements. The surface tension was measured by the pendant drop method which makes possible the determination at an apparent steady state which is important for polymeric systems. The results are compared with adsorption isotherms from dialysis equilibrium. The surface tension data, show that the presence of κ-carrageenan in the amphiphile solutions leads to an increased and pronounced lowering of the surface tension in a low concentration range of amphiphile. It is also shown that not only the hydrophobicity of the amphiphile but also the structure of the polyelectrolyte (charge density and helix-coil structure) largely determine the extent of interaction.  相似文献   

20.
《Biosensors》1986,2(2):89-100
Electrokinetic phenomena, such as streaming potential or streaming current, have so far been used for studies of unspecific adsorption of ionic compounds on various materials. This paper shows that streaming potential measurements can also be used for studies of biospecific interactions.Several different interactions were studied, e.g. lectin-carbohydrate, IgG-Protein A. Regardless of the type of interaction an increasing change in streaming potential was obtained with increasing concentration of the interacting molecule. The authors also observed a correlation between streaming potential and affinity constants for carbohydrate-induced desorption of Concanavalin A from partially hydrolyzed Sephadex G50. In conclusion, it is shown that streaming potential measurements can be used to study molecular interactions, and to determine concentrations and relative binding constants of interacting molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号