首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of abdominal vagotomy (AVGT) on ovarian function were studied in cyclic hamsters. AVGT significantly decreased the number of ova shed (AVGT: 10.5 +/- 1.5 ova/hamster, sham: 15.8 +/- 0.7 ova/hamster; P less than 0.05) and serum progesterone levels (AVGT: 2.1 +/- 0.3 ng/ml, sham: 3.9 +/- 0.7 ng/ml; P less than 0.05) on the morning of estrus. However, progesterone concentrations in the corpora lutea and non-luteal ovary on estrus in the AVGT and sham groups were similar. The serum estradiol levels in both groups on proestrus increased from 0900 h (AVGT: 75 +/- 10 pg/ml, sham: 72 +/- 6 pg/ml) to 1500 h (AVGT: 204 +/- 27 pg/ml, sham: 196 +/- 35 pg/ml) but there was no significant difference between the two groups. Partial degranulation of ovarian mast cells was not increased in the AVGT group. Also, vasoactive intestinal peptide (VIP) content in the ovary was not increased by AVGT at 0900 h on proestrus (AVGT: 60.1 +/- 16.8 pg/ovary, sham: 37.2 +/- 14.3 pg/ovary). These results indicated that AVGT interferes with normal ovulation and results in an increase in the number of atretic follicles, but that these effects by AVGT seemed not to be mediated through ovarian mast cells and VIP.  相似文献   

2.
Cell-type-specific localization and gonadotropin regulation of transforming growth factor-beta 1 (TGF-beta 1) and transforming growth factor-beta 2 (TGF-beta 2) in the hamster ovary were evaluated immunohistochemically under three conditions: (1) during the estrous cycle (Day 1 = estrus; Day 4 = proestrus); (2) after the blockade of periovulatory gonadotropin surges by phenobarbital, and (3) after FSH and/or LH treatment of long-term hypophysectomized hamsters. Ovarian TGF-beta 1 activity was primarily localized in theca and interstitial cells. The activity increased moderately but significantly after the preovulatory LH surge and reached a peak at 0900 h, Day 2 h; oocytes showed considerable activity. TGF-beta 1 immunoreactivity subsequently fell to low levels in theca-interstitial cells through 0900 h, Day 4. Significant TGF-beta 2 immunoreactivity appeared after the surge, mainly in the granulosa cells of both preantral and antral follicles; a few interstitial cells surrounding preantral follicles showed discrete staining. TGF-beta 2 immunoreactivity in granulosa cells and in interstitial cells next to preantral follicles reached a peak at 0900 h, Day 1, and persisted up to 0900 h, Day 2; oocytes showed no staining. Phenobarbital treatment blocked the appearance of TGF-beta 1 and TGF-beta 2 immunoreactivities at 1600 h, Day 4; however, a rebound in immunoreactivities was observed with the onset of the surge after a 1-day delay. Replacement of LH to long-term hypophysectomized hamsters resulted in a marked increase in TGF-beta 1 immunoreactivity in the interstitial cells, but FSH, although it induced follicular development, did not influence ovarian TGF-beta 1 activity. Treatment with FSH, however, induced a massive increase in TGF-beta 2 immunoreactivity in the granulosa cells of newly developed antral and preantral follicles but not in the interstitial cells; LH, on the other hand, had no significant effect on TGF-beta 2 activity. Treatment with FSH and LH combined resulted in a dramatic increase in TGF-beta 2 immunoreactivity in granulosa and interstitial cells and in TGF-beta 1 in theca and interstitial cells comparable to their peak activity in intact animals. Western analyses substantiated the presence of TGF-beta 1 and TGF-beta 2 in the hamster ovary and the specificity of immunolocalization. These studies, therefore, provide critical evidence that TGF-beta 1 and TGF-beta 2 in the hamster ovary are expressed in specific cell types and that their expression is differentially regulated by LH and FSH, respectively.  相似文献   

3.
The present experiment aimed to compare the efficiency of supplementation (+17.5 MJ Net Energy/d starting 47 +/- 4 days after calving) with concentrate (CS, maize grain, n = 10) or with forage (FS, maize silage, n = 10) in estrus-synchronized (Norgestomet implant 10 days inserted 60 +/- 4 days postpartum + PMSG at implant removal) beef cows previously restricted (47 MJ Net Energy/d, 785 g CP/d, 70% of requirements). The type of diet had no significant effect on basal LH concentrations (CS: 0.18 +/- 0.12 vs FS: 0.11+/- 0.02 ng/mL), LH pulse frequency (CS : 0.7 +/- 0.3 vs FS: 0.8 +/- 0.2 pulse/10 h), LH pulse amplitude (CS: 0.55 +/- 0.50 vs FS : 0.62 +/- 0.50 ng/mL) or estradiol (E2) concentrations (CS: 3.3 +/- 0.8 vs FS: 4.6+ /- 0.8 pg/mL) 13 days after the beginning of energy supplementation. No differences between CS and FS cows were observed for the number of small, medium and large follicles nor on the size of the largest follicle from 11 days before implant insertion to implant removal (IR). After IR, an LH surge was observed in 2 of the CS and 4 of the FS cows. The type of energy supplementation had no significant effect on LH (CS: 0.16 +/- 0.06 ng/mL vs FS 0.48 +/- 0.06 ng/mL; P > 0.05) or on estradiol concentrations (CS : 7.8 +/- 0.2 vs FS : 8.9 +/- 0.2 pg/mL, P > 0.10) measured hourly from 29 to 49 h after IR. Cows that ovulated after IR tended to have higher E2 concentrations than cows that did not ovulate (9.4 +/- 0.2 vs 6.3 +/- 0.2 pg/mL, P = 0.08). Similar ovulation and pregnancy rates were observed in CS and FS cows (CS: 6/10 vs FS: 7/10 and CS: 6/10 vs FS: 5/10 respectively, P > 0.05). To conclude, energy supplementation with forage was as effective as energy supplementation with concentrate to influence follicular growth, ovulation and pregnancy percentage after estrus synchronization treatment in diet-restricted beef cows.  相似文献   

4.
Mast cells in the ovary of cyclic hamsters were observed exclusively in the hilum and in the vicinity of blood vessels that enter and exit the ovary. Ovaries were collected on proestrus from hamsters at 0900 h preluteinizing hormone (LH) surge, 1500 h (peak LH surge), and 2100 h (post-LH surge) and processed for routine histologic staining with toluidine blue. A significant increase in the percentage of extensively degranulating mast cells was observed coincident with the gonadotropin surge (0900 h: 5.39 +/- 0.97%; 1500 h: 20.39 +/- 2.76%). At the peak of the LH surge the ovarian histamine concentration was also significantly higher than those before and after the surge (1500 h: 5.13 +/- 0.94 ng/mg ovary; 0900 h and 2100 h: 2.84 +/- 0.35 and 3.02 +/- 0.48 ng/mg, respectively). The results indicate that a major source of ovarian histamine may be mast cells residing in the ovarian hilum and surrounding the ovarian blood vessels that enter and exit the ovary. In addition, the gonadotropin surge on the day of proestrus may be a trigger for release of mast cell histamine.  相似文献   

5.
In recent studies, we have shown that the smallest preantral follicles in the cyclic hamster increase DNA synthesis in the periovulatory period in response to surge levels of FSH. The current investigation was designed to determine whether the same phenomenon occurs in the cyclic mouse. Intact mouse follicles were isolated with watchmaker forceps (stages 4-6) or by enzymatic digestion (stages 1-4) at 0900 h and 1500 h on each day of the 5-day estrous cycle. The isolated follicles were classified into 6 stages: stages 1 and 2: follicles with 1 and 2 layers of granulosa cells; stage 3: follicles with 3 or more layers of granulosa cells and formation of theca; stages 4-6: incipient, small, and preovulatory antral follicles. The follicles at each stage were incubated for 3 h with [3H]thymidine. DNA content in stages 1-4 of follicles remained unchanged during the estrous cycle; for stages 5 and 6, DNA content was higher on the afternoon of proestrus than on other days of the cycle. Incorporation of [3H]thymidine for stages 1-3 (preantral follicles) started to increase at 1500 h of proestrus and peaked at 0900 h on estrus, whereas for stages 4-6, DNA synthesis peaked on proestrus (1500 h) and then fell by the morning of estrus. Thus, the rate of DNA replication in preantral and antral mouse follicles were different. Similarities and differences in folliculogenesis between mouse and hamster are discussed. These results suggest that DNA synthesis and the growth of all stages of follicles in the cyclic mouse may be associated with changing levels of periovulatory gonadotropins.  相似文献   

6.
To examine endocrine and biochemical differences between dominant and subordinate follicles and how the dominant follicle affects the hypothalamic-pituitary-ovarian axis in Holstein cows, the ovary bearing the dominant follicle was unilaterally removed on Day 5 (n = 8), 8 (n = 8), or 12 (n = 8) of synchronized estrous cycles. Follicular development was followed daily by ultrasonography from the day of detected estrus (Day 0) until 5 days after ovariectomy. Aromatase activity and steroid concentrations in first-wave dominant and subordinate follicles were measured. Intact dominant and subordinate follicles were cultured in 4 ml Minimum Essential Medium supplemented with 100 microCi 3H-leucine to evaluate de novo protein synthesis. Five days after unilateral ovariectomy, cows were resynchronized and the experiment was repeated. Follicular growth was characterized by the development of single large dominant follicles, which was associated with suppression of other follicles. Concentrations of estradiol-17 beta (E2) in follicular fluid and aromatase activity of follicular walls were higher in dominant follicles (438.9 +/- 45.5 ng/ml; 875.4 +/- 68.2 pg E2/follicle) compared to subordinate follicles (40.6 +/- 69.4 ng/ml; 99.4 +/- 104.2 pg E2/follicle). Aromatase activity in first-wave dominant follicles was higher at Days 5 (1147.1 +/- 118.1 pg E2/follicle) and 8 (1028.2 +/- 118.1 pg E2/follicle) compared to Day 12 (450.7 +/- 118.1 pg E2/follicle). Concentrations of E2 and androstenedione in first-wave dominant follicles were higher at Day 5 (983.2 +/- 78.2 and 89.5 +/- 15.7 ng/ml) compared to Days 8 (225.1 +/- 78.6 and 5.9 +/- 14.8 ng/ml) and 12 (108.5 +/- 78.6 and 13.0 +/- 14.8 ng/ml). Concentrations of progesterone in subordinate follicles increased linearly between Days 5 and 12 of the estrous cycle. Plasma concentrations of FSH increased from 17.9 +/- 1.4 to 32.5 +/- 1.4 ng/ml between 0 and 32 h following unilateral removal of the ovary with the first-wave dominant follicle. Increases in plasma FSH were associated with increased numbers of class 1 (3-4 mm) follicles in cows that were ovariectomized at Day 5 or 8 of the cycle. Unilateral ovariectomy had no effects on plasma concentrations of LH when a CL was present on the remaining ovary. First-wave dominant follicles incorporated more 3H-leucine into macromolecules and secreted high (90,000-120,000) and low (20,000-23,000) molecular weight proteins that were not as evident for subordinate follicles at Days 8 and 12.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
The objective of the study was to determine the timing of ovulation in relation to onset of estrus and the preovulatory LH peak in yaks. For this purpose, a sensitive LH enzymeimmunoassay previously established in buffaloes was successfully validated for measuring the hormone in yak plasma. Plasma LH and progesterone were estimated from blood samples collected from eight non-lactating cycling yaks at 2 h intervals after estrus onset until 6 h after ovulation (ovulation was confirmed by palpation of ovaries per rectum). The mean+/-S.E.M. preovulatory plasma LH peak was 10.11+/-0.35 ng/ml with the values ranging from 8.75 to 11.51 ng/ml in individual yaks. The mean+/-S.E.M. duration of the LH surge was 7.25+/-0.55 h with a range of 6-10 h. Onset of LH surge (mean+/-S.E.M.) occurred 3.0+/-0.65 h after the onset of estrus. Mean plasma progesterone stayed low (<0.25 ng/ml) during the entire duration of sampling. Ovulation occurred 30.5+/-0.82 h (range, 28-34 h) after the onset of estrus and 20.25+/-1.03 h after the end of LH surge. The occurrence of the LH peaks within a narrow time frame of 4-8h post estrus onset in yaks could have contributed to the animals ovulating within a narrow time interval.  相似文献   

8.
The impact of male presence or absence on the timing of the preovulatory LH surge and estrus was studied in 3 experimental groups (n = 6/group) of Eld's deer hinds pretreated with intravaginal progesterone-releasing devices (CIDR-type G) as follows: Group 1 = indirect male contact barn; Group 2 = direct male contact barn; and Group 3 = male isolation barn. For all hinds, the duration of the preovulatory LH surge averaged 2.5+/-0.5 h, whereas mean peak preovulatory and basal LH concentrations were 2.9+/-0.2 ng mL(-1) and 0.27+/-0.03 ng mL(-1), respectively. Nine of 12 male-exposed hinds exhibited a preovulatory LH surge within 24 to 32 h postCIDR device withdrawal, whereas 0 of 6 male-isolated hinds exhibited a preovulatory LH surge during the same time period. Onset of behavioral estrus (45.2+/-2.3, 52.7+/-5.7 and 66.3+/-1.8 h, respectively) was significantly advanced (P<0.05) after CIDR device withdrawal in male exposed hinds (Groups 1 and 2) compared with male isolated hinds (Group 3). These data suggest that stag exposure is important for modulating the timing of the preovulatory LH surge and behavioral estrus after synchronization of estrus with exogenous progestagens.  相似文献   

9.
Prepubertal female rats were injected s.c. with 5.0 IU eCG, and ovaries were collected 24 and 48 h post-eCG, on Day 25, as well as from an untreated group also on Day 25. Large antral follicles were manually dissected, and the ovarian remnants were incubated with collagenase overnight to liberate preantral follicles from adhering stromal cells. The viability of the follicles was established by normal histology and lack of pyknotic granulosa cells (GCs) and by their ability to secrete steroids. After a 1-h baseline incubation, either 10 ng LH or 100 ng FSH was added for an additional hour, and the media-before and after gonadotropin administration-were used to measure progesterone, androstenedione, and estradiol by RIA. A distinct hierarchy existed in steroid synthesis, with the maximal production by the largest (700 microm) antral follicles. The major steroid that had accumulated after addition of LH at 48 h post-eCG was androstenedione (1099 pg/follicle per hour), followed by equal amounts of progesterone (155 pg/follicle per hour) and estradiol (191 pg/follicle per hour). There was a precipitous drop in steroid production by 550-microm and 400-microm antral follicles, especially in estradiol for the latter-sized follicles (0.08 pg/follicle per hour). Preantral follicles also produced progesterone and androstenedione after addition of LH. For example, follicles 222 microm in diameter with 4-5 layers of GCs and well-developed theca responded to LH at 48 h post-eCG by accumulating androstenedione (37 pg/follicle per hour) and progesterone (6 pg/follicle per hour) but negligible estradiol. The smallest follicles secreting steroids, 110-148 microm in diameter, had 2-4 layers of GCs. However, primary follicles (1 layer of GCs and no theca) did not synthesize appreciable amounts of any steroid. Although small preantral follicles were consistently stimulated by LH, FSH was ineffective. This result differs from findings in the hamster showing that intact preantral follicles with 1-4 layers of GCs and no theca respond to FSH by secreting progesterone in vitro (Roy and Greenwald, Biol Reprod 1987; 31:39-46). The technique developed to collect intact rat follicles should be useful for numerous investigations.  相似文献   

10.
The capability of estradiol (E2) or E2 and progesterone (P4) in inducing luteinizing hormone (LH) surge in acutely ovariectomized (Ovx) rats was studied. In group I, rats were Ovx on estrus and were implanted with E2 capsules and atrial cannulae immediately after operation for blood samplings. In group II, rats were also Ovx on estrus but were implanted with E2 capsules and sampling cannulae the next day (the expected diestrus day 1, D1). In group III, rats were Ovx on D1, and were implanted E2 with capsules and atrial cannulae immediately after operation. All surgical operations were done around 1000h in the morning. On the expected diestrus day 2(D2) at 0930h, one half of the rats in each group received an oil vehicle or 2mg of P4 subcutaneously. Blood samples were taken from the indwelled cannulae at 1300, 1500, and 1700hrs in the afternoon. Results showed that P4 treatment amplified LH release in all three groups of rats primed with E2, and that the oil vehicle did not assist in LH release in E2 primed rats of group I and group II, but it did in 8 out of 10 rats in group III in the late afternoon of D2. Results suggested that the estradiol alone was capable in inducing LH surge on the expected D2 afternoon, and that under estradiol-primed conditions, P4 can trigger neural initiators to advance LH surge, but that the internal hormonal milieu at the time of ovariectomy may affect the influence of ovarian steroids in inducing LH release.  相似文献   

11.
Hamster ovarian follicles at Stages 1 to 10 (Stages 1-4: follicles with 1-4 layers of granulosa cells (GC); Stages 5-7: 5-10 layers GC plus theca; Stages 8-10: antral follicles) were isolated on the morning of proestrus or estrus and incubated for 2 h in the absence or presence of follicle-stimulating hormone (FSH), luteinizing hormone (LH), prolactin (Prl), progesterone (P4), 17 alpha-hydroxyprogesterone (17OHP), or androstenedione (A). Steroid accumulations in the media were measured by radioimmunoassay (RIA). On proestrus, without any hormonal stimulus, consistent accumulation of P4 through estradiol-17 beta (E2) occurred in low amounts only from Stage 6 and on; both FSH (5-25 ng) and LH (1-25 ng) significantly stimulated steroidogenesis by Stage 6-10 follicles, and the effects of FSH, except for Stage 10, were largely attributable to LH contamination. However, 25 ng FSH significantly stimulated A production by Stages 1-4, whereas 1-25 ng LH was ineffective. On estrus, follicles at all stages, especially 1-6, showed significant and dose-dependent increases in P4 production in response to FSH; both FSH and LH significantly stimulated P4 and 17OHP accumulation from Stage 5 onwards; however, there was no increase in A and E2 compared to controls. Even the smallest estrous follicles showed a shift to predominance of P4 accumulation. On proestrus, Prl had a negative influence on LH-induced accumulation of P4 and 17OHP by Stages 7-9 and 6-8, respectively, without affecting A or E2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
OBJECTIVE: In this study, we examined changes in serum leptin levels during the estrus cycle and the role of estrogen in these changes. METHODS: We measured serum leptin levels during normal estrus cycles in intact rats and estradiol-17beta (E2)-induced artificial estrus cycles in ovariectomized rats. RESULTS: Serum leptin levels increased 1.6-fold from 4.2 +/- 0.2 ng/ml during diestrus stage 2 to 6.7 +/- 0.9 ng/ml during proestrus stage during the 4-day estrus cycle. During the E2-induced estrus cycle, serum leptin levels increased 2.3-fold from 2.3 +/- 0.1 ng/ml at estrus to 5.4 +/- 1.2 ng/ml at proestrus. E2 also increased serum leptin concentrations and leptin mRNA expression in adipose tissue of immature rats. DISCUSSION: These findings suggest that increased serum leptin induced by estrogen during proestrus may trigger the preovulatory release of luteinizing hormone. Furthermore, our findings indicate that estrogen has a positive effect on leptin production in adipose tissue.  相似文献   

13.
A few days after the first follicular wave emerges as 4-mm follicles, follicular deviation occurs wherein 1 follicle of the wave continues to grow (dominant follicle) while the others regress. The objectives of this study were to characterize follicle growth and associated changes in systemic concentrations of gonadotropins and estradiol at 8-h intervals encompassing the time of follicle deviation. Blood samples from heifers (n = 11) were collected and the ovaries scanned by ultrasound every 8 h from 48 h before to 112 h after the maximal value for the preovulatory LH surge. The follicular wave emerged at 5.8 +/- 5.5 h (mean +/- SEM) after the LH surge, and at this time the future dominant follicle (4.2 +/- 0.8 mm) was larger (P < 0.001) than the future largest subordinate follicle (3.6 +/- 0.1 mm). There was no difference in growth rates between the 2 follicles from emergence to the beginning of the deviation (0.5 mm/8 h for each follicle), indicating that, on average, the future dominant follicle maintained a size advantage over the future subordinate follicle. Deviation occurred when the 2 largest follicles were 8.3 +/- 0.2 and 7.8 +/- 0.2 mm in diameter, at 61.0 +/- 3.7 h after wave emergence. Diameter deviation was manifested between 2 adjacent examinations at 8-h intervals. Mean concentrations of FSH decreased, while mean concentrations of LH increased 24 and 32 h before deviation, respectively, and remained constant (no significant differences) for several 8-h intervals encompassing deviation. In addition to the increase and decrease in circulating estradiol concentrations associated with the preovulatory LH surge, an increase (P < 0.05) occurred between the beginning of deviation and 32 h after deviation. The results supported the hypotheses that deviation occurs rapidly (within 8 h), that elevated systemic LH concentrations are present during deviation, and that deviation is not preceded by an increase in systemic estradiol.  相似文献   

14.
Levels of luteinizing hormone (LH), estradiol-17 beta and progesterone were determined by specific radioimmunoassays in sera obtained from Beagle bitches during proestrus, estrus and diestrus. Concentrations of LH (expressed as NIH-LH-SI equivalents) were 2.8 plus or minus 0.1 ng/ml in proestrus, 35.5 plus or minus 10.0 ng/ml during early estrus and 2.2 plus or minus 0.1 ng/ml in early diestrus. Peak levels of estradiol-17beta (68.9 plus or minus 11.0 ng/ml) were detected 24 hr prior to the LH peak, declined rapidly and reached basal levels (17.8 plus or minus 6.3 ng/ml) by five days following the LH peak. Levels of progesterone were 1.7 plus or minus 0.3 ng/ml during proestrus, 3.5 plus or minus 0.3 ng/ml during early estrus and 23.3 plus or minus 2.8 ng/ml on day 5 after the LH peak . Progesterone levels remained elevated through day 28 of diestrus and pregnancy. A significant decrease (p smaller than 0.05) in levels of prosgesterone occurred between day 28 of pregnancy and one day prior to shelping (3.3 plus or minus 1.2 ng/ml, with a further decrease on the day of whelping (1.1 plus or minus 0.2 ng/ml). Levels of estradiol-17beta and LH did not change significantly (p smaller than 0.0k) during diestrus or pregnancy.  相似文献   

15.
The high amounts of 5 alpha-androstane-3 alpha, 17 beta-diol (3 alpha-diol) present in immature female rats decline towards first ovulation, but on the day of first proestrus a peak is seen. This raises the possibility that during adulthood similar proestrous peaks may occur. Therefore, serum concentrations and ovarian content of 3 alpha-diol were estimated every two hours between 0900 and 2100 h in adult cyclic rats on the day of proestrus. In the same rats, serum concentrations of estradiol (E2), progesterone (P) and luteinizing hormone (LH) were measured, as were ovarian contents of E2 and P. A significant elevation in ovarian 3 alpha-diol was found between 0900 and 1700 h proestrus, whereas serum concentrations of 3 alpha-diol were elevated from 1300 to 2100 h. The high morning values of ovarian 3 alpha-diol correlated with those for ovarian E2 (p less than 0.005); the elevated serum concentrations of 3 alpha-diol during the afternoon correlated with serum P (p less than 0.005) and with serum LH concentrations (p less than 0.005). Serum and ovarian values were positively correlated for P and E2, but not for 3 alpha-diol. The rise in serum 3 alpha-diol could be prevented by blocking the LH surge with sodium pentobarbitone (Nembutal; 35 mg/kg b.w.) administered at 1300 h. In Nembutal-treated rats, the concentration of 3 alpha-diol at 1700 h (886 pg/ml) was significantly lower than in saline-treated control rats (1135 pg/ml; p less than 0.005).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Since administration of the antiprogesterone RU486 to cyclic female rats at metestrus and diestrus results in increased serum levels of LH, estradiol, and testosterone at proestrus, we investigated whether RU486 affects follicular steroidogenesis. Female rats with a 4-day estrous cycle, induced experimentally by a single injection of bromocriptine on the morning of estrus, were given RU486 (2 mg) twice daily (0900 and 1700 h) on metestrus and diestrus. At proestrus the preovulatory follicles were isolated and incubated for 4 h in the absence and presence of LH. In the absence of LH, accumulation of estradiol, testosterone, and progesterone in the medium was not different for RU486-treated rats and oil-treated controls. In contrast, LH-stimulated estradiol, testosterone, and progesterone secretions were significantly lower in RU486-treated rats compared with controls. Addition of pregnenolone to the incubation medium resulted in a significantly lower increase of progesterone in follicles from RU486-treated rats compared with those from oil-treated controls. This suggests that 3 beta-hydroxysteroid dehydrogenase (3 beta-HSD) activity is decreased by administration of RU486 in vivo. Aromatase and 17 alpha-hydroxylase/C17-20 lyase activities were not affected: addition of substrate (androstenedione and progesterone respectively) did not affect differently the amount of product formed (estradiol and testosterone) in RU486- and oil-treated rats. However, LH-stimulated pregnenolone secretion was lower in follicles from RU486-treated rats compared with follicles from oil-treated controls, suggesting that either cholesterol side-chain cleavage activity or LH responsiveness is decreased. At proestrus the preovulatory follicles from RU486- and oil-treated rats were not morphologically different.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Serum levels of LH, total estrogen and progesterone were measured daily by radioimmunoassay during proestrus, estrus and early diestrus in five beagle bitches. Occurrence of the LH peak relative to the onset of estrus was quite variable ranging from 3 days before to 7 days after the onset of estrus. Serum LH levels were elevated for 3 days with a peak value of 25 ± 2 ng/ml reached 2.4 days after the start of estrus. LH levels were ≤ 2 ng/ml when measured at other times during the estrous cycle. Estrogen titers ranged from 84 ± 39 pg/ml at 9 days before the LH peak to 175 ± 15 pg/ml coincident with the LH peak. A broad estrogen peak was evident beginning 5 days before and continuing for 5 days after the LH peak. An estrogen surge was seen in 4 of 5 dogs immediately preceding or coincident with the LH peak suggesting that LH release in the bitch is triggered by a sharp elevation in estrogen levels. Serum progesterone levels rose from ≤ 5 ng/ml before the LH peak to 46 ± 6 ng/ml 6 days afterwards.  相似文献   

18.
Injecting 2 or 4 mg of cycloheximide (cyclo) at the onset of the proestrous release of gonadotropins prolongs the estrogen (E2) surge, diminishes progesterone (P4) secretion, and prevents ovulation by 0900 h of the next morning (Saidapur and Greenwald, 1981). The present study was designed to determine the effects of 0, 2, 4, or 8 mg cyclo injected at 1400 h proestrus (Day 4) on ovarian protein synthesis and other parameters. Ovulation was delayed until 1400 h estrus by 2 mg cyclo or prevented by 8 mg, and the latter treatment resulted in the death of all animals by 48 h. After 4 mg cyclo, ovulation was delayed in some animals, but the most characteristic feature was the development of large cystic follicles that ultimately transformed into corpora hemorrhagica. All animals lived after the injection of 4 mg cyclo. Ovaries collected 2, 8, 16, or 24 h after treatment were incubated with [3H]leucine for 1 h to assess the effects of cyclo on protein synthesis. Injection of phenobarbital at 1300 h proestrus, which blocks follicle-stimulating hormone (FSH) and luteinizing hormone (LH) surges, reduced ovarian protein synthesis at 1600 h to 61% of the control value. The incorporation of [3H]leucine was reduced to 75%, 37%, and 35% of the 1600-h control value by 2, 4, and 8 mg cyclo, respectively, but without affecting surge levels of FSH and LH. However, by 0600 h estrus, protein synthesis was increased significantly in all the cyclo-treated groups, which provides insight into the half-life of the compound (approximately equal to 8 h for 2-4 mg cyclo). At 1600 and 2200 h proestrus cyclo resulted in serum FSH and LH levels similar to controls, but increased serum prolactin and prolonged E2 levels at Day 4 of 2200 h and decreased serum P4 at both times. The second surge in FSH, which is in progress by 0600 h estrus, was abolished by 4 or 8 mg cyclo but not by the 2-mg dose. This is the first time for any species that ovarian protein synthesis has been measured in the proestrous normal or cyclo-treated animal. We conclude for the hamster that 4 mg cyclo is the optimal dose for blocking ovarian protein synthesis and ovulation and inducing formation of cystic follicles.  相似文献   

19.
Prolonged postpartum anoestrus in beef cows is due to failure of early dominant follicles to ovulate. It is hypothesized that this failure to ovulate is due to inadequate LH pulse frequency. The objective of this study was to determine whether administration of hourly LH pulses would cause the first dominant follicle to ovulate. In Expt 1, 16 cows received either saline (n = 8) or porcine LH (pLH; 50 micrograms h-1; n = 8) as hourly pulses for 3-5 days from the second day of dominance of the first dominant follicle (day 0). In Expt 2, 21 cows received either saline (n = 7), or 50 micrograms pLH (n = 7) or 100 micrograms pLH (n = 7) as hourly pulses for 3 days. Appropriate ovarian scanning and assays of blood samples were carried out. In Expt 1, the number of dominant follicles that underwent atresia was not affected by increasing the number of LH pulses, but the duration of dominance (days) of the first and second dominant follicles and maximum size (mm) of the second dominant follicle were increased (P < 0.05). Oestradiol concentrations were higher (P < 0.05) in cows given hourly pLH pulses (3.1 +/- 1.2 pg ml-1) compared with controls (1.2 +/- 0.2 pg ml-1). Four of eight treated cows had an anovulatory LH surge. The number of follicle waves to first ovulation was not different (P < 0.05) between control (4.6 +/- 0.9) and pLH treated cows (3.9 +/- 0.5). In Expt 2, four of seven cows given pulses of 100 micrograms pLH h-1 ovulated the first dominant follicle, and the interval from calving to first ovulation was decreased (P < 0.05). In the remaining three cows, the duration of dominance of the first dominant follicle was increased (P < 0.005), the maximum size of the first dominant follicle was greater (P < 0.05), and the interval (days) from the start of infusion to new wave emergence was greater (P < 0.05) compared with cows that failed to ovulate in either the 50 micrograms pLH h-1 or control treatments. In conclusion, hourly pulses of pLH from day 1 after dominance of the first dominant follicle in postpartum beef cows can either prolong dominance or induce it to ovulate. This finding supports the hypothesis that LH pulse frequency is a key determinant of the fate of the dominant follicle in the early postpartum period.  相似文献   

20.
The effects of ZK 191703 (ZK), a pure antiestrogen, on ovulation, follicle development and peripheral hormone levels were investigated in rats with 4-day estrus cycle and gonadotropin-primed immature rats in comparison to tamoxifen (TAM)-treatment. In adult rats, a single s.c. injection of ZK (5 mg/kg) or TAM (5 mg/kg) at an early stage of the estrus cycle (diestrus 9:00) inhibited ovulation, and was associated with suppression of the surge of preovulatory LH, FSH and progesterone. In rats treated with ZK or TAM at a late stage of the estrus cycle (proestrus 9:00), no inhibitory effects on ovulation, the gonadotropin and progesterone surge were detected. ZK treatment at diestrus 9:00, in contrast to TAM, increased the baseline LH level. When immature rats were treated with antiestrogens in the earlier stage of follicular development, 6 and 30 h but not 48 h or later after injection of gonadotropin (PMSG), ovulation was attenuated, associated with a lowered progesterone level. Unruptured preovulatory follicles were found in most of the ovaries from anovulatory animals treated with ZK or TAM. Antiestrogens, ZK and TAM administered at an early phase of the estrus cycle delay the follicular development functionally and inhibit ovulation in rats and suppression of the preovulatory progesterone surge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号