首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Silencing of HMW glutenins in transgenic wheat expressing extra HMW subunits   总被引:23,自引:0,他引:23  
Wheat HMW glutenin subunit genes 1Ax1 and 1Dx5 were introduced, and either expressed or overexpressed, into a commercial wheat cultivar that already expresses five subunits. Six independent transgenic events were obtained and characterized by SDS-PAGE and Southern analysis. The 1Dx5 gene was overexpressed in two events without changes in the other endosperm proteins. Overexpression of 1Dx5 increased the contribution of HMW glutenin subunits to total protein up to 22%. Two events express the 1Ax1 subunit transgene with associated silencing of the 1Ax2* endogenous subunit. In the SDS-PAGE one of them shows a new HMW glutenin band of an apparent Mr lower than that of the 1Dx5 subunit. Southern analysis of the four events confirmed transformation and suggest that the transgenes are present in a low copy number. Silencing of all the HMW glutenin subunits was observed in two different events of transgenic wheat expressing the 1Ax1 subunit transgene and overexpressing the Dx5 gene. Transgenes and expression patterns were stably transmitted to the progenies in all the events except one where in some of the segregating T2 seeds the silencing of all HMW glutenin subunits was reverted associated with a drastic lost of transgenes from a high to a low copy number. The revertant T2 seeds expressed the five endogenous subunits plus the 1Ax1 transgene. Received: 16 June 1999 / Accepted: 29 July 1999  相似文献   

2.
The high molecular weight glutenin subunits (HMW-GS) of wheat are major determinants of the viscoelastic properties of gluten and dough. The bread making quality of field grown transgenic lines of bread wheat expressing the HMW-GS 1Ax1 or 1Dx5 genes were evaluated over a two year period. Subunit 1Ax1 represented about 29% and 48% of the total HMW-GS in lines 1-2 and 2-2, respectively, while subunit 1Dx5 represented 65.4% and 62% of the total HMW-GS in transgenic lines 6-2 and 9, respectively. The expression of subunits 1Ax1 or 1Dx5 in transgenic wheat led to corresponding decreases in the proportions of endogenous HMW-GS. HMW-GS 1Ax1 and 1Dx5 had contrasting effects on dough quality determined by the Alveograph and sedimentation test. Subunit 1Ax1 increased the tenacity (P), extensibility (L), deformation work (W), and sedimentation value, with the increase being related to the level of expression. In contrast, subunit 1Dx5 led to a smaller increment in the tenacity (P), but to drastic decrease in both extensibility (L), deformation work (W), and the sedimentation value. Expression of subunit 1Ax1 in transgenic wheat resulted in lines with improved rheological properties whereas the lines expressing subunit 1Dx5 resulted in unsuitable breadmaking-related characteristics.  相似文献   

3.
Durum wheat (Triticum turgidum L. var. durum) is traditionally used for the production of numerous types of pasta, and significant amounts are also used for bread-making, particularly in southern Italy. The research reported here centres on the glutenin subunits 1Dx5 and 1Dy10 encoded by chromosome 1D, and whose presence in hexaploid wheats is positively correlated with higher dough strength. In order to study the effects of stable expression of the 1Dx5 and 1Dy10 glutenin subunits in different durum wheat genotypes, four cultivars commonly grown in the Mediterranean area (‘Svevo’, ‘Creso’, ‘Varano’ and ‘Latino’) were co-transformed, via particle bombardment of cultured immature embryos, with the two wheat genes Glu-D1-1d and Glu-D1-2b encoding the glutenin subunits, and a third plasmid containing the bar gene as a selectable marker. Protein gel analyses of T1 generation seed extracts showed expression of one or both glutenin genes in four different transformed durum wheat plants. One of these transgenic lines, DC2-65, showed co-suppression of all HMW-GS, including the endogenous ones. Transgene stability in the transgenic lines has been studied over four generations (T1–T4). Fluorescence in situ hybridization (FISH) analysis of metaphase chromosomes from T4 plants showed that the integration of transgenes occurred in both telomeric and centromeric regions. The three plasmids were found inserted at a single locus in two lines and in two loci on the same chromosome arm in one line. The fourth line had two transgenic loci on different chromosomes: one with both glutenin plasmids and a different one containing only the construct with the gene encoding the 1Dy10 glutenin subunit. Segregation of these two loci in subsequent generations allowed establishment of two sublines, one containing both 1Dx5 and 1Dy10 and the other containing only 1Dy10. Small-scale quality tests showed that accumulation of Dx5, Dy10 or both in transgenic durum wheat seeds resulted in doughs with stronger mixing characteristics. A. Gadaleta and A. E. Blechl have contributed equally to this work.  相似文献   

4.
目的:高分子量麦谷蛋白亚基(HMW-GS)1Ax1、1Dx5是对小麦面包烘烤品质有重要影响的优质亚基。将转基因小麦株系与普通小麦栽培品种常规杂交并快速筛选后代,以选育含有外源优质亚基的主栽小麦品系。方法:将分别含有1Ax1、1Dx5亚基的转基因小麦株系B102-1-2、B73-6-1与3种普通小麦主栽品种鄂恩1号、鄂麦12号、日喀则8号常规杂交,用不连续SDS-PAGE方法鉴定12组杂交组合(正反交)F1代311颗籽粒的HMW-GS。结果:不连续SDS-PAGE分析大量子代带型,能够快速鉴定筛选出具有优质亚基的株系,转基因获得的外源优质HMW-GS基因在大部分F1子代中能够共显性遗传。结论:常规杂交育种能使外源基因有效地整合进主栽小麦的基因组中,进一步分析后代遗传的稳定性和遗传规律就可以培育出优质的新品种;不连续SDS-PAGE快速筛选优质亚基的株系具有可操作性和实用性。  相似文献   

5.
The high-molecular-weight (HMW) subunits of wheat glutenin are the major determinants of the gluten visco-elasticity that allows wheat doughs to be used to make bread, pasta and other food products. In order to increase the proportions of the HMW subunits, and hence improve breadmaking performance, particle bombardment was used to transform tritordeum, a fertile amphiploid between wild barley and pasta wheat, with genes encoding two HMW glutenin subunits (1Ax1 and 1Dx5). Of the 13 independent transgenic lines recovered (a transformation frequency of 1.4%) six express the novel HMW subunits at levels similar to, or higher than, those of the endogenous subunits encoded on chromosome 1B. Small-scale mixograph analysis of T2 seeds from a line expressing the transgene for 1Dx5 indicated that the addition of novel HMW subunits can result in significant improvements in dough strength and stability, thus demonstrating that transformation can be used to modify the functional properties of tritordeum for improved breadmaking. Received: 15 January 1999 / Accepted: 5 February 1999  相似文献   

6.
Seed storage proteins in wheat endosperm, particularly high-molecular-weight glutenin subunits (HMW-GS), are primary determinants of dough properties, and affect both end-use quality and grain utilization of wheat (Triticum aestivum L). In order to investigate the interactive effects between the transgenically overexpressed 1Ax1 subunit with different HMW-GS on dough quality traits, we developed a set of 8 introgression lines (ILs) overexpressing the transgenic HMW-glutenin subunit 1Ax1 by introgression of this transgene from transgenic line B102-1-2/1 into an elite Chinese wheat variety Chuanmai107 (C107), using conventional crossing and backcrossing breeding technique. The donor C107 strain lacks 1Ax1 but contains the HMW-GS pairs 1Dx2+1Dy12 and 1Bx7+1By9. The resultant ILs showed robust and stable expression of 1Ax1 even after five generations of self-pollination, and crossing/backcrossing three times. In addition, overexpression of 1Ax1 was compensated by the endogenous gluten proteins. All ILs exhibited superior agronomic performance when compared to the transgenic parent line, B102-1-2/1. Mixograph results demonstrated that overexpressed 1Ax1 significantly improved dough strength, resistance to extension and over-mixing tolerance, in the targeted wheat cultivar C107. Further, comparisons among the ILs showed the interactive effects of endogenous subunits on dough properties when 1Ax1 was overexpressed: subunit pair 17+18 contributed to increased over-mixing tolerance of the dough; expression of the Glu-D1 allele maintained an appropriate balance between x-type and y-type subunits and thereby improved dough quality. It is consistent with ILs C4 (HMW-GS are 1, 17+18, 2+12) had the highest gluten index and Zeleny sedimentation value. This study demonstrates that wheat quality could be improved by using transgenic wheat overexpressing HMW-GS and the feasibility of using such transgenic lines in wheat quality breeding programs.  相似文献   

7.
8.
Expression and inheritance of the wheat Glu-1DX5 gene in transgenic maize   总被引:5,自引:0,他引:5  
We have produced transgenic maize plants containing a wheat Glu-1Dx5 gene encoding the high-molecular-weight glutenin subunit 1Dx5. Analysis by SDS-PAGE showed that a protein similar in size to the wheat 1Dx5 subunit accumulates in the endosperm of transgenic maize from four independent transformation events. This protein reacts with a monoclonal antibody specific to the wheat 1Dx5 subunit and was not detected in nontransgenic controls or in pollen, anthers, leaves or embryos of plants grown from seeds expressing this protein in endosperm. Genomic Southern-blot analysis is consistent with results from SDS-PAGE and indicates that the transgene integration sites are complex and are different in the four events studied. Using the presence of this protein as a phenotypic marker, we studied the inheritance of this gene through three sexual generations. Reciprocal crosses with nontransgenic plants and self-pollinations were performed, and the resulting kernels were analyzed for the presence of the 1Dx5 subunit. These data, together with PCR analysis for the transgene, suggest that the transgene is inefficiently transmitted through pollen in all four events.  相似文献   

9.
Analysis of dough functionality of flours from transgenic wheat   总被引:6,自引:0,他引:6  
The rheological properties of flours from five different lines of transgenic wheat that either express or over-express subunits 1Ax1 and 1Dx5 were analyzed by mixograph assays and SDS sedimentation tests. In one case, the over-expression of subunit 1Dx5 resulted in a ca. 2-fold increase in mixing time, associated with a significant improvement in dough strength, and a lower resistance breakdown, suggesting an important increase in dough stability. However, the flour failed to develop properly without mixing with control flour because the rate of mixing was insufficient to develop the dough, i.e., the flour was overstrong. In two wheat transgenic lines, the expression of 1Ax1 and 1Dx5 transgenes, associated with silencing of all the endogenous high-molecular-weight glutenin subunits, resulted in flours with lower mixing time, peak resistance and sedimentation volumes, suggesting a lower gluten strength.  相似文献   

10.
Wheat end-use quality mainly derives from two interrelated characteristics: the compositions of gluten proteins and grain hardness. The composition of gluten proteins determines dough rheological properties and thus confers the unique viscoelastic property on dough. One group of gluten proteins, high molecular weight glutenin subunits (HMW-GS), plays an important role in dough functional properties. On the other hand, grain hardness, which influences the milling process of flour, is controlled by Puroindoline a (Pina) and Puroindoline b (Pinb) genes. However, little is known about the combined effects of HMW-GS and PINs on dough functional properties. In this study, we crossed a Pina-expressing transgenic line with a 1Ax1-expressing line of durum wheat and screened out lines coexpressing 1Ax1 and Pina or lines expressing either 1Ax1 or Pina. Dough mixing analysis of these lines demonstrated that expression of 1Ax1 improved both dough strength and over-mixing tolerance, while expression of PINA detrimentally affected the dough resistance to extension. In lines coexpressing 1Ax1 and Pina, faster hydration of flour during mixing was observed possibly due to the lower water absorption and damaged starch caused by PINA expression. In addition, expression of 1Ax1 appeared to compensate the detrimental effect of PINA on dough resistance to extension. Consequently, coexpression of 1Ax1 and PINA in durum wheat had combined effects on dough mixing behaviors with a better dough strength and resistance to extension than those from lines expressing either 1Ax1 or Pina. The results in our study suggest that simultaneous modulation of dough strength and grain hardness in durum wheat could significantly improve its breadmaking quality and may not even impair its pastamaking potential. Therefore, coexpression of 1Ax1 and PINA in durum wheat has useful implications for breeding durum wheat with dual functionality (for pasta and bread) and may improve the economic values of durum wheat.  相似文献   

11.
New DNA markers for high molecular weight glutenin subunits in wheat   总被引:2,自引:0,他引:2  
End-use quality is one of the priorities of modern wheat (Triticum aestivum L.) breeding. Even though quality is a complex trait, high molecular weight (HMW) glutenins play a major role in determining the bread making quality of wheat. DNA markers developed from the sequences of HMW glutenin genes were reported in several previous studies to facilitate marker-assisted selection (MAS). However, most of the previously available markers are dominant and amplify large DNA fragments, and thus are not ideal for high throughput genotyping using modern equipment. The objective of this study was to develop and validate co-dominant markers suitable for high throughput MAS for HMW glutenin subunits encoded at the Glu-A1 and Glu-D1 loci. Indels were identified by sequence alignment of allelic HMW glutenin genes, and were targeted to develop locus-specific co-dominant markers. Marker UMN19 was developed by targeting an 18-bp deletion in the coding sequence of subunit Ax2* of Glu-A1. A single DNA fragment was amplified by marker UMN19, and was placed onto chromosome 1AL. Sixteen wheat cultivars with known HMW glutenin subunits were used to validate marker UMN19. The cultivars with subunit Ax2* amplified the 362-bp fragment as expected, and a 344-bp fragment was observed for cultivars with subunit Ax1 or the Ax-null allele. Two co-dominant markers, UMN25 and UMN26, were developed for Glu-D1 by targeting the fragment size polymorphic sites between subunits Dx2 and Dx5, and between Dy10 and Dy12, respectively. The 16 wheat cultivars with known HMW glutenin subunit composition were genotyped with markers UMN25 and UMN26, and the genotypes perfectly matched their subunit types. Using an Applied Biosystems 3130xl Genetic Analyzer, four F2 populations segregating for the Glu-A1 or Glu-D1 locus were successfully genotyped with primers UMN19, UMN25 and UMN26 labeled with fluorescent dyes.  相似文献   

12.
在获得外源品质基因1Dx5和1Ax1超量表达的转基因小麦的基础上,利用小麦转基因品系‘B72-8-11b’和‘B102-1-2’为父本,主要以湖北省栽培品种‘鄂麦12’为母本,配置杂交组合。杂交后代中采用系谱选择法,结合HMW-GS鉴定,研究了转基因小麦外源品质基因在F1、F2、F3、F4代的传递,并筛选出外源1Dx5或1Ax1基因保持超表达的2个新型转基因株系;同时证明了将外源品质基因向栽培品种转育,是提高小麦优质亚基含量和提高HMW-GS总量的有效方法之一。  相似文献   

13.
利用基因枪将无选择标记的优质高分子量麦谷蛋白亚基基因1Dx5导入新疆耐盐小麦品种新冬26,为利用优质基因进行小麦品质改良奠定基础。构建无选择标记的线性1Dx5表达框。利用基因枪将其转入不含该亚基的小麦品种新冬26幼胚盾片中,经PCR二分法筛选,从转化的1 000块幼胚盾片中共获得3株转基因阳性植株,转化效率0.3%。利用SDS-PAGE分析目的基因在转基因后代籽粒中的表达。转基因植株后代种子分析表明,1Dx5在转基因后代部分种子中表达。本研究成功地将无选择标记的线性1Dx5片段导入普通小麦新冬26中,并在后代部分种子中得到了表达。为利用优质亚基基因改良小麦加工品质奠定基础。  相似文献   

14.
By crossing bread wheat cultlvar GC8901 with the 1D monosonlc line of Xiaoyan No. 6 and backcrosslng the offsprlng with the Xlaoyan No. 6 1D monosonlc llne for 5 years, high-molecular-welght glutenin subunlts 1Dx5+1Dy10 from GC8901 have been transferred Into wheat cultivar Xiaoyan No. 6. The BC5F1 offspring lines had been detected by using methods of cytology, marker, molecular marker and six elite single plants with high molecular-welght glutenin subunlts: lAx1, 1Bx14+1 By15, 1Dx5+1 Dy10 were Identified. Those lines have high-yleld potential with better agronomic characters and have been used In high quality wheat breeding processes as well.  相似文献   

15.
Molecular markers based on DNA sequence variations of the coding and/or promoter regions of the wheat (Triticum aestivum L.) HMW glutenin genes located at the Glu-1 loci were developed. Markers characteristic of alleles Glu-A1-1a (encoding Ax1 subunit) and Glu-A1-1c (encoding Ax2* subunit) at the Glu-A1 locus, alleles Glu-B1ak (encoding Bx7* subunit) and Glu-B1al for overexpressed Bx7 subunit at the Glu-B1 locus and alleles Glu-D1-1a (encoding Dx2 subunit) and Glu-D1-1d (encoding Dx5 subunit) at the Glu-D1 locus were tested using genomic DNA of haploid leaf tissue. A method for simultaneously extracting DNA from 96 haploid leaf tissue pieces is described. Two of the developed markers were dominant and two were co-dominant. A F1-derived population segregating for all HMW glutenin genes was used to test the validity of the markers and their usefulness in doubled haploid breeding programs. SDS-PAGE analysis of seed storage protein was performed on seeds from the doubled haploid lines. A total of 299 lines were tested with the DNA markers on the haploid tissue and validated by protein analysis of the corresponding DH seeds. PCR markers and SDS-PAGE analysis showed between 2 and 8.5% discrepancies depending on the marker. Applications of DNA markers for gene-assisted-selection of haploid tissue and use in breeding programs are discussed. Advantages and disadvantages of dominant and co-dominant markers are outlined.  相似文献   

16.
Analysis by SDS-PAGE of total protein fractions from single seeds of Aegilops cylindrica (genomes C and D) and Triticum timopheevi (genomes A and G) showed the presence of three bands corresponding to high molecular weight subunits of glutenin (HMW subunits) in the former and two major bands and a minor band corresponding to HMW subunits in the latter. Three Ae. cylindrica and two T. timopheevi HMW subunit gene sequences, each comprising the entire coding region, were amplified by polymerase chain reaction (PCR) and their complete nucleotide sequences determined. A combination of N-terminal amino acid sequencing of the proteins identified by SDS-PAGE and alignments of the derived amino acid sequences of the proteins encoded by the PCR products identified the Ae. cylindrica HMW subunits as 1Cx, 1Cy and 1Dy, and the T. timopheevi HMW subunits as 1Gx, 1Ax and 1Ay. It was not clear whether or not a 1Gy HMW subunit was present in T. timopheevi. The PCR products from Ae. cyclindrica were derived from 1Cy and 1Dy genes and a silent 1Dx gene containing an in-frame internal stop codon, while those from T. timopheevi were derived from 1Ax and 1Ay genes. The 1Cx, 1Gx and 1Gy sequences were not amplified successfully. The proteins encoded by the five novel genes had similar structures to previously characterized HMW subunits of bread wheat (Triticum aestivum). Differences and similarities in sequence and structure, and in the distribution of cysteine residues (relevant to the ability of HMW subunits to form high Mr polymers) distinguished the HMW subunits of x- and y-type and of each genome rather than those of the different species. There was no evidence of a change in HMW subunit expression or structure resulting from selective breeding of bread wheat. The novel 1Ax, 1Ay, 1Cy and 1Dy HMW subunits were expressed in Escherichia coli, and the expressed proteins were shown to have very similar mobilities to the endogenous HMW subunits on SDS-PAGE. The truncated 1Dx gene from Ae. cylindrica failed to express in E. coli, and no HMW subunit-related protein of the size predicted for the truncated 1Dx subunit could be identified by immunodetection in seed extracts.  相似文献   

17.
The low-molecular weight (LMW) glutenin subunits are major determinants of the viscoelasticity of durum wheat gluten, and therefore of its technological quality, with both quantitative effects and qualitative effects. We have modified the LMW glutenin subunit composition of the durum wheat cultivar Ofanto by expression of a transgene encoding a B-type LMW glutenin subunit and have carried out detailed analyses of two independent transformed lines in order to assess the effect of the transgene on the size distribution of the glutenin polymers and on their functional properties. In one line the expression of the transgene led to an increase in the amount of large glutenin polymers resulting in stronger and more stable dough. In the second line, however, the expression of the transgenic subunit was accompanied by decreased expression of endogenous LMW subunits with consequent detrimental effects on glutenin polymers and dough viscoelasticity. These results demonstrate that the LMW glutenin subunits contribute to the functional properties of wheat by influencing the amount and the distribution of glutenin polymers and indicate that either plant breeding or GM technology can be used to 'fine tune' the properties of durum wheat for different end uses by manipulating the amount and structures of individual LMW subunit proteins.  相似文献   

18.
The high-molecular-weight (HMW) glute-nin subunit composition of seven species from the Cylindropyrum and Vertebrata sections of the Aegilops genus was studied using SDS-PAGE and Western blot analysis. Two subunits were detected in Ae. caudata and three in Ae. cylindrica. In both species, subunits showing electrophoretic mobility similar to that of 1Dx2 were present. Western blot analysis using a monoclonal antibody (IFRN 1602) specific for the 1Ax and 1Dx subunits of bread wheat showed that the 1Dx-like subunit of Ae. caudata gave only a weak reaction. This indicates that Ae. caudata expresses subunits which are more distantly related to the 1Dx subunits. Two subunits were detected in each of the 60 accessions of Ae. tauschii, including several 1Dtx subunits showing different electrophoretic mobilities from those of the 1Dx subunits commonly found in bread wheat. All of the 1Dtx subunits reacted strongly with IFRN 1602, confirming their close relationship to the 1Dx subunits of bread wheat. Three subunits were found in Ae. crassa (6 x), four in Ae. ventricosa and Ae. juvenalis and five in Ae. vavilovii. In these four species, the subunits that showed electrophoretic mobility similar, or close, to that of 1Dx2 all reacted with IFRN 1602. In addition, Ae. ventricosa contained a subunit showing electrophoretic mobility slower than that of 1Dx2.2, which also reacted with IFRN 1602. These results suggest that the D-genome component in the multiploid Aegilops species express at least one HMW glutenin subunit that is structurally related to the 1Dx subunits of bread wheat. Received: 5 November 1999 / Accepted: 12 February 2000  相似文献   

19.
Four genes encoding novel 1Dx-type high-molecular weight (HMW) subunits were amplified by polymerase chain reaction, two each from Aegilops tauschii and bread wheat Triticum aestivum. The two subunits from Ae. tauschii (1Dx2.1t and 1Dx2t) were both very similar in sequence to subunit 1Dx2 from bread wheat. In contrast, the two novel bread wheat subunits (1Dx2.2 and 1Dx2.2*) differed from subunit 1Dx2 in having different internally duplicated regions (of 132 and 186 amino acid, respectively) within their repetitive domains. These duplicated sequences were located adjacent to the regions from which they had been duplicated and had complete intact repeat motifs at each end. The implications of these results for HMW subunit evolution and wheat quality improvement are discussed.  相似文献   

20.
Bread wheat (Triticum aestivum L.) is a staple food crop eaten in different ways like pan and other food products. High molecular weight glutenin subunits (HMW-GS) are major determinants of the different wheat end-use qualities. Ethyl-methanesulfonate (EMS) mutagenized populations in plants can be used for the discovery of valuable mutants for basic research and breeding purposes. In this study, we report the identification of 27 HMW-GS M3 mutants based on SDS-PAGE patterns from an EMS mutagenized population of the cultivar Baguette Premium 11. Nine mutations were detected in Ax2*, five in Bx7, four in By8, six in Dx5 and three in Dy10 subunit. Two Ax2* null mutants were characterized at molecular level finding in both cases premature stop codons associated. EMS would tend to generate more premature stop codons in glutenins genes than in others because these have a high frequency of glutamine codons. This type of mutation generates null alleles, therefore they are easily detectable by a low cost protocol like SDS-PAGE. The potential use of knock-out (null alleles) and SDS-PAGE size altered mutants for HMW-GS in wheat quality and nutrition is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号