首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plasminogen activator activity by cultured bovine aortic endothelial cells   总被引:1,自引:0,他引:1  
This communication reports the observations that bovine aortic endothelial cells (EC) in culture during their log phase of growth secrete plasminogen activator. Hydrocortisone, dibutyryl cAMP, theophylline, colchicine and cycloheximide, dependent upon concentration, inhibit plasminogen activator activity. Several substances associated with inflammation and thrombosis, such as thrombin, serotonin,catecholomines, histamine, vasopressin, endotoxin, and indomethacin, at the concentrations tested, did not significantly alter plasminogen activator activity when compared with controls.  相似文献   

2.
The role of extracellular ethanolamine in phospholipid synthesis was examined in cultured bovine aortic endothelial cells. Serine and ethanolamine were both readily accumulated by these cells and incorporated into phospholipid. Exposing cells to extracellular ethanolamine for 4-6 weeks had no effect on cell growth, yet increased the phosphatidylethanolamine content of these cells by 31% as compared to control cells. The intracellular content of ethanolamine was measured by high performance liquid chromatography, and results showed that the ethanolamine-treated cells contained a significantly greater amount of free ethanolamine compared to control cells (0.62 +/- 0.07 nmol/mg of protein versus 0.27 +/- 0.05 nmol/mg of protein, respectively). Ethanolamine-treated cells also had decreased accumulation and incorporation into lipid of [3H]ethanolamine throughout a 48-h incubation and increased K'm and V'max parameters of ethanolamine transport as compared to control cells. Studies were also done to examine the effect of ethanolamine on the generation of free ethanolamine from phosphatidylserine. In pulse-chase experiments with [3H]serine, a physiological concentration of ethanolamine (25 microM) decreased the amount of 3H-labeled phosphatidylethanolamine produced from 3H-labeled phosphatidylserine by 12 h as compared to the amount of 3H-labeled phosphatidyl-ethanolamine produced in the absence of ethanolamine in the chase incubation. Furthermore, ethanolamine-treated cells accumulated 20% less labeled ethanolamine in the aqueous pool from [3H]serine after 24 h of incubation than did control cells. These results can be explained by isotope dilution with the ethanolamine pool that accumulates in these cells with time when exposed to media supplemented with a physiological concentration of ethanolamine and by an effect of ethanolamine on ethanolamine generation from phosphatidylserine. The results show that an extracellular source of ethanolamine significantly influences the phospholipid metabolism of cultured bovine aortic endothelial cells.  相似文献   

3.
Bovine aortic endothelial cells in culture were incubated with endotoxin. The amount of thromboxane A2 synthesized was then determined by a specific radioimmunoassay for thromboxane B2. After a lag of several hours the cells changed their shape and parallel to the change in cell shape release of thromboxane B2 occurred. At 24 h the amount of thromboxane B2 generated in response to endotoxin was 200-fold above baseline. Thromboxane B2 generation could be blocked by aspirin and the specific thromboxane synthetase inhibitor UK 37248. The endotoxin effect was dependent on protein and RNA synthesis as evidenced by the inhibitory action of cycloheximide (1.5 microM) and actinomycin D (2 micron).  相似文献   

4.
Platelet-derived growth factor (PDGF) is a potent mitogen for cultured cells of mesenchymal origin. Known sources of PDGF or PDGF-like protein are blood platelets, several transformed cell lines, and cultured endothelial cells (EC). We have examined the regulation of production of a PDGF-like protein in cultures of bovine aortic EC using a specific radioreceptor assay for PDGF. EC constitutively secreted PDGF-like protein into serum-containing or serum-free medium. The rate of production of PDGF-like protein was constant for at least 3 weeks and was not due to release of an internal store, since cell lysis by repeated freeze/thaw cycles did not relase significant amounts of the protein. Synthesis of PDGF-like protein was sensitive to changes in the pH of the media and was maximal at pH 8.5. Production of PDGF-like protein was independent of EC growth rate: rapidly dividing cells and confluent, quiescent cells produced equal amounts per cell. However, sparse, quiescent EC produced more PDGF-like protein per cell than did confluent, quiescent cells. Several phorbol esters stimulated production of PDGF-like protein. At a concentration of 10?6 M, a twofold stimulation was observed upon addition of the tumor promoter 12-O-tetradecanoylphorbol 13-acetate (TPA) and nearly a fourfold stimulation upon addition of the nonpromoting analog, methyl TPA. Incubation of EC with endotoxin (10 μ/ml) resulted in a twofold stimulation of PDGF-like protein production. In all experiments with endotoxin and phorbol esters, an increase in the production of PDGF-like protein was accompanied by morphological changes in the EC cultures. The cells appeared elongated and fibroblastic and exhibited low viability. A mathematical model was developed in which PDGF-like protein production was shown to consist of two separate components—production at a constant rate by healthy cells and a large burst of synthesis and secretion by dying cells. These results suggest that injurious agents may be capable of stimulating production of a growth factor by the endothelium.  相似文献   

5.
Summary Bovine aortic endothelial cells (BAECs) respond to bradykinin with an increase in cytosolic-free Ca2+ concentration, [Ca2+] i , accompanied by an increase in surface membrane K+ permeability. In this study, electrophysiological measurement of K+ current was combined with86Rb+ efflux measurements to characterize the K+ flux pathway in BAECs. Bradykinin- and Ca2+-activated K+ currents were identified and shown to be blocked by the alkylammonium compound, tetrabutylammonium chloride and by the scorpion toxin,noxiustoxin, but not by apamin or tetraethylammonium chloride. Whole-cell and single-channel current analysis suggest that the threshold for Ca2+ activation is in the range of 10 to 100nm [Ca2+] i . The whole-cell current measurement show voltage sensitivity only at the membrane potentials more positive than 0 mV where significant current decay occurs during a sustained depolarizing pulse. Another K+ current present in control conditions, an inwardly rectifying K+ current, was blocked by Ba2+ and was not affected bynoxiustoxin or tetrabutylammonium chloride. Efflux of86Rb from BAEC monolayers was stimulated by both bradykinin and ionomycin. Stimulated efflux was blocked by tetrabutyl- and tetrapentyl-ammonium chloride and bynoxiustoxin, but not by apamin or furosemide. Thus,86Rb+ efflux stimulated by bradykinin and ionomycin has the same pharmacological sensitivity as the bradykinin- and Ca2+-activated membrane currents. The results confirm that bradykinin-stimulated86Rb+ efflux occurs via Ca2+-activated K+ channels. The blocking agents identified may provide a means for interpreting the role of the Ca2+-activated K+ current in the response of BAECs to bradykinin.  相似文献   

6.
Prostacyclin (PGI2) is a potent vasodilator and an inhibitor of platelet aggregation. We found that antithrombin III (AT III), an anticoagulant present in circulating blood, stimulated PGI2 production by cultured bovine aortic endothelial cells in a dose- and time-dependent manner. The stimulation of PGI2 production by AT III was observed at physiological concentrations and was inhibited by the addition of anti-AT III antiserum and heparin. These results suggest that AT III may stimulate PGI2 production by binding to heparin-like molecules on the endothelial cell membrane.  相似文献   

7.
Summary The ability of selected vasoactive agents to influence cyclic AMP levels of confluent, early-passaged bovine calf aortic and pulmonary artery endothelial cells was investigated. Among the agents tested, only the catecholamines (isoproterenol, epinephrine, nonrepinephrine) and prostaglandins (PGE1, PGE2, PGF2a) resulted consistently in increased cyclic AMP production in both cell populations. The degree of cyclic AMP stimulation obtained with other vasoactive compounds (angiotensins I and II, bradykinin, and serotonin) tended to be either very small or difficult to reproduce. Isoproterenol stimulation was blocked completely by propanolol, a β-blocking agent, but not by phentolamine, an α-blocking agent. These results reveal that bovine calf aortic and pulmonary artery endothelial cells are responsive to catecholamines and prostaglandins, and therefore presumably possess both sensitive adenylate cyclases and plasma membrane receptors for these compounds. This work was supported by a Young Investigator Grant HL-21189 from the National Institutes of Health, United States Public Health Service.  相似文献   

8.
J S Makarski 《In vitro》1981,17(5):450-458
The ability of selected vasoactive agents to influence cyclic AMP levels of confluent, early-passaged bovine calf aortic and pulmonary artery endothelial cells was investigated. Among the agents tested, only the catecholamines (isoproterenol, epinephrine, norepinephrine) and prostaglandins (PGE1, PGE2, PGF2 alpha) resulted consistently in increased cyclic AMP production in both cell populations. The degree of cyclic AMP stimulation obtained with other vasoactive compounds (angiotensins I and II, bradykinin, and serotonin) tended to be either very small or difficult to reproduce. Isoproterenol stimulation was blocked completely by propanolol, a beta-blocking agent, but not by phentolamine, and alpha-blocking agent. These results reveal that bovine calf aortic and pulmonary artery endothelial cells are responsive to catecholamines and prostaglandins, and therefore presumably possess both sensitive adenylate cyclases and plasma membrane receptors for these compounds.  相似文献   

9.
The transport of the polar head groups, ethanolamine and choline, was examined in cultured bovine aortic endothelial cells. Both ethanolamine and choline are taken up by high- and low-affinity systems. The K'm and V'max for the Na+-dependent, high-affinity ethanolamine and choline transport system are 3.0 and 3.0 microM and 5.4 and 7.3 pmol/mg protein/min, respectively. Ethanolamine and choline competitively influence one another's transport as the presence of 50 microM ethanolamine increases the K'm but not the V'max of choline uptake. Likewise, 50 microM choline increases the K'm but not the V'max of ethanolamine transport. The concentration of ethanolamine that inhibits maximal velocity of 5 microM choline by 50% is 9.7 microM, while 12 microM choline inhibits 5 microM ethanolamine maximal velocity by 50%. Uptake of both head groups is only partially Na+-dependent and is inhibited similarly by 2-methylethanolamine and 2,2-dimethylethanolamine at all concentrations examined. Hemicholinium-3, a classic inhibitor of high-affinity, Na+-dependent choline transport, reduces both ethanolamine and choline accumulation in a concentration-dependent fashion, but has a greater effect on choline transport at higher concentrations. The major portion of these data is consistent with our hypothesis that the uptake of physiological concentrations of ethanolamine and choline may occur through the same transport system. However, the results of the effect of hemicholinium-3 and the extent of Na+-dependency of choline and ethanolamine uptake could be interpreted as meaning that separate transport systems for choline and ethanolamine exist which cross react or that a single transport system exists which has separate active sites for the two compounds.  相似文献   

10.
1. The addition of ATP to cultured bovine aortic endothelial cells induced the increase in intracellular free calcium concentration ([Ca2+]i) and thereby activated the sodium/proton exchanger and the prostacyclin production in a similar dose-dependent manner, as observed by the addition of ATP. 2. Other nucleoside triphosphates also activated the cells and the potency orders of the nucleotides were ATP greater than UTP greater than ITP greater than CTP greater than GTP for all the responses. 3. Pretreatment of the cells with UTP desensitized the response to ATP and the pretreatment of ATP desensitized the response to UTP. 4. The responses to ATP and UTP were inhibited by neither pertussis nor cholera toxin. 5. The receptor for UTP, however, may be a distinct pyrimidinoceptor different from the purinoceptor of the cells for ATP, because the 50% effective concentration of UDP was much larger than that of UTP, while ATP and ADP were essentially equipotent ligands to the endothelial cells.  相似文献   

11.
Expression of dystroglycan (DG) by cultured bovine aortic endothelial (BAE) cells was confirmed by cDNA cloning from a BAE cDNA library, Northern blotting of mRNA, Western blotting of membrane proteins, and double immunostaining with antibodies against betaDG and platelet endothelial cell adhesion molecule-1. Immunocytochemical analysis revealed localization of DG in multiple plaques on the basal side of resting cells. This patchy distribution was obscured in migrating cells, in which the most prominent staining was observed in the trailing edge anchoring the cells to the substratum. Biotin-labeled laminin-1 overlay assay of dissociated BAE membrane proteins indicated the interaction of laminin-1 with alphaDG. The laminin alpha5 globular domain fragment expressed in bacteria and labeled with biotin could also bind alphaDG on the membrane blot, and the unlabeled fragment disrupted the binding of biotin-laminin-1 to alphaDG. The interaction of biotin-laminin-1 with alphaDG was inhibited by soluble alphaDG contained in the conditioned medium from DG cDNA-transfected BAE cells and by a series of glycosaminoglycans (heparin, dextran sulfate, and fucoidan). Soluble alphaDG in the conditioned medium inhibited the adhesion of BAE cells to laminin-1-coated dishes, whereas it had no effect on their adhesion to fibronectin. All three glycosaminoglycans that disrupted the biotin-laminin-1 binding to alphaDG inhibited BAE cell adhesion to laminin-1, whereas they failed to inhibit the adhesion to fibronectin. These results indicate a role of DG as a non-integrin laminin receptor involved in vascular endothelial cell adhesion to the extracellular matrix.  相似文献   

12.
The effects of specific human platelet-secreted proteins on prostacyclin (PGI2) production by primary cultures of bovine aortic endothelial cells have been studied. Cells were incubated with various concentrations of highly purified preparations of platelet factor 4 (PF4), low-affinity platelet factor 4 (LA-PF4), beta-thromboglobulin (beta TG), platelet basic protein (PBP), and partially purified platelet-derived growth factor (PDGF) in the presence or absence of arachidonic acid (AA). The amount of 6-Keto-PGF1 alpha, the stable degradation product of PGI2, was determined in the cell incubation medium by means of a specific radioimmunoassay. Short-term (15 min) incubation of cell monolayers with either LA-PF4 or beta TG slightly reduced 6-keto-PGF1 alpha production. The effect was not dose-related and could not be observed after prolonged (24 hr) incubation of the cells with the same proteins. It was not seen in the cell suspensions. Moreover, 6-keto-PGF1 alpha production stimulated by AA was not affected by incubation with either of the proteins. PF4 and PBP had no significant effect on 6-keto-PGF1 alpha production by endothelial cells. Human PDGF showed a slight tendency to stimulate 6-keto-PGF1 alpha release when cells were incubated for 24 hr with the protein; however, PDGF did not potentiate the stimulatory effect of AA on 6-keto-PGF1 alpha release by the cells. We suggest that platelet-derived proteins exert only a moderate and possibly nonspecific effect on PGI2 production by endothelial cells.  相似文献   

13.
The macromolecular transport in bovine aortic endothelial monolayers, cultured in vitro, was studied by fluorescence microscopy, confocal laser scanning microscopy, and transmission electron microscopy. A fluid-phase endocytic tracer, fluorescein isothiocyanate dextran 70 kD (FITC-dextran 70), was found to be transported into and out of endothelial cells via vesicles arranged as chains stretching between the luminal surface and the cell interior and also from cell interior to the abluminal surface. The endocytic activity was reduced by colchicine, which disrupts microtubules, and increased during treatment with cytochalasin B, which blocks microfilament polymerization. These findings indicate that microtubules are required for fluid-phase endocytosis and that microfilaments hinder this process. © 1993 Wiley-Liss, Inc.  相似文献   

14.
Three glucuronic acid-rich dermatan sulfate proteoglycans (DS-PGs) have been isolated by chromatographic and electrophoretic techniques from cultures of bovine aortic endothelial cells and characterized structurally. The smallest of the DS-PGs (DS-II) has an apparent Mr of approximately 100,000 and glycosaminoglycan chains of Mr approximately 29,000. Core glycoprotein samples prepared by chondroitin ABC lyase digestion run as doublets of Mr = 45,000 and 48,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A decrease in core size is apparent after N-glycanase digestion, or when DS-PG is isolated from tunicamycin-treated cultures, providing evidence that the core protein is N-glycosylated. Isolated DS-II shows evidence of self-association when subjected to liquid chromatography under conditions of reduced ionic strength, but not during sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In addition, DS-II, but not other endothelial cell DS-PG subclasses, is bound by an antibody against human skin fibroblast DS-PG, indicating that this DS-PG belongs to a family of widely distributed small DS-PGs, previously isolated from various connective tissues. A slightly larger (Mr approximately 220,000) DS-PG (DS-I) can be separated from DS-II by preparative electrophoresis. Despite similarities in core size and extent of N-glycosylation between DS-I and DS-II, DS-I shows only limited ability to self-associate, and does not interact with the anti-fibroblast DS-PG antibody. DS-I glycosaminoglycan chains are also smaller (Mr approximately 18,000) than those from DS-II, similar in size to the chains borne by the DS-PG subclass of largest size (high molecular weight (HMW)-DS). HMW-DS, which predominated in cell layer extracts, runs with a Kav of 0.45 on Sepharose CL-2B and is estimated to have an Mr greater than 700,000. Reduction and alkylation of HMW-DS indicates that it forms disulfide-bonded aggregates with other matrical proteins within the cell layer. HMW-DS displayed multiple protein cores (Mr greater than 200,000) upon chondroitin ABC lyase treatment. Despite some similarity in size to the family of large, aggregating chondroitin sulfate proteoglycans and DS-PGs, immunological evidence suggests that it lacks a hyaluronic acid binding region.  相似文献   

15.
Acute hydrolysis of phosphoinositides has been demonstrated in bovine aortic endothelial cells (BAEC) treated with bradykinin (BK) (10(-7)M). The first phosphoinositide to decrease was phosphatidylinositol-4,5-bisphosphate (PIP2) indicating this to be the initial substrate of phospholipase action. Other lipid changes associated with the stimulation of BAEC were an increase in diacylglycerol (DAG) and arachidonic acid (AA) with a sustained production of phosphatidic acid (PA). The changes in cell phospholipids were accompanied by the release of inositol phosphates. Inositol-1,4,5-trisphosphate (Ins-1,4,5-P3) was produced within 10 s of stimulation with BK. There was no evidence for the production of inositol-1,3,4-trisphosphate. The release of ionic calcium (Ca2+) intracellularly was demonstrated. The timecourse of the rise in intracellular Ca2+ was consistent with the timecourse of production of IP3. Intracellular Ca2+ rose from 127 +/- 21 nM to 462 +/- 27 nM. The Ca2+ peak was at 7.0 +/- 0.4 s and took 3 min to reach a steady state which remained above the basal level. When extracellular Ca2+ was depleted in the extracellular medium a spike of intracellular Ca2+ release was measured with an immediate return to basal. Entry of extracellular Ca2+ into the cell after ionophore A23187 treatment does not induce inositol phosphate release, indicating that phosphoinositide hydrolysis is likely to be the cause rather than consequence of the elevation in cytosolic Ca2+. These data indicate action of phospholipase C (PLC) on PIP2 after BK stimulation of BAEC with the subsequent production of InsP3 causing the resulting intracellular Ca2+ release.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
We studied the ionic currents activated by basic fibroblast growth factor (bFGF) and insulin-like growth factor-I (IGF-I) in cultured bovine aortic endothelial cells (BAE-1) by using patch-clamp and single-cell fluorimetric calcium measurements. In whole-cell, voltage-clamp experiments at V(h) = -50 mV, the addition of either bFGF (20 ng/ml) or IGF-I (50 ng/ml) induced an inward current with similar amplitude, time course, and permeation properties. The response was dependent on receptor occupancy and showed a desensitisation in the continued presence of the factors. Ionic substitutions in whole-cell experiments indicated that the current barely discriminated among Na(+), Ca(+), and K(+) ions. Accordingly, stimulation with bFGF or IGF-I induced a dose-dependent [Ca(2+)](i) elevation completely due to entry from the extracellular medium, whereas no detectable release from internal stores was observed. Calcium influx was dependent on protein tyrosine kinase (PTK) activity; it was significantly inhibited by treatment with genistein or tyrphostin 47, two PTK inhibitors, and not affected by inactive analogues, daidzein, and tyrphostin 1. Moreover, addition of 200 microM Na(3)VO(4), an inhibitor of protein tyrosine phosphatase (PTP) activity, evoked the responses to the factors both in patch-clamp and in fluorimetric measurements. Cell-attached recordings using 100 mM CaCl(2) in the pipette showed that bFGF and IGF-I activate calcium-permeable channels with similar properties. These results provide evidence for a calcium influx induced by two factors that bind to tyrosine kinase receptors (RTK) in endothelial cells.  相似文献   

17.
Neovascular responses induced by cultured aortic endothelial cells   总被引:7,自引:0,他引:7  
Neovascularization was studied in the chorioallantoic membrane of the chick embryo after implantation of bovine aortic endothelial and smooth muscle cells, Swiss and BALB/c 3T3 cells and human diploid fibroblasts cultured separately on microcarrier beads. Quantitative analysis of neovascularization indicated a 3 1/2-fold increase in the number of blood vessels responding to endothelial cells while smooth muscle cells induced a twofold increase when compared to the response of beads without cells. Skin fibroblasts and Swiss 3T3 cells did not elicit a comparable response. The marked angiogenic response induced by endothelial cells was characterized by a 137% increase in total vessel length and a 35% increase in average vessel area when compared to controls. Two of the properties required for an angiogenesis factor--stimulation of cellular migration and proliferation--can also be demonstrated using endothelial cell-conditioned medium in cell culture systems. Medium from cultured bovine aortic endothelium stimulates DNA synthesis, proliferation, and migration of smooth muscle cells. In addition, conditioned media from both endothelial cells and smooth muscle cells produced an angiogenic response in the chorioallantoic membrane assay, which was comparable to that produced by intact cells growing on microcarrier beads. Similar responses were not evident with medium conditioned by other cell types. These results indicate the potential importance of endothelial cells and endothelial cell products in regulating blood vessel growth.  相似文献   

18.
We have investigated whether the presence of other fatty acids in physiologic amounts will influence the effects of eicosapentaenoic acid on cellular lipid metabolism and prostaglandin production. Eicosapentaenoic acid uptake by cultured bovine aortic endothelial cells was time and concentration dependent. At concentrations between 1 and 25 microM, most of the eicosapentaenoic acid was incorporated into phospholipids and of this, 60-90% was present in choline phosphoglycerides. Eicosapentaenoic acid inhibited arachidonic acid uptake and conversion to prostacyclin (prostaglandin I2) but was not itself converted to eicosanoids. Only small effects on the uptake of 10 microM eicosapentaenoic acid occurred when palmitic, stearic or oleic acids were added to the medium in concentrations up to 75 microM. In contrast, eicosapentaenoic acid uptake was reduced considerably by the presence of linoleic, n-6 eicosatrienoic, arachidonic or docosahexaenoic acids. Although a 100 microM mixture of palmitic, stearic, oleic and linoleic acid (25:10:50:15) had little effect on the uptake of 10 or 20 microM eicosapentaenoic acid, less of this acid was channeled into endothelial phospholipids. However, the fatty acid mixture did not prevent the inhibitory effect of eicosapentaenoic acid on prostaglandin I2 formation in response to either arachidonic acid or ionophore A23187. An 8 h exposure to eicosapentaenoic acid was required for the inhibition to become appreciable and, after 16 h, prostaglandin I2 production was reduced by as much as 60%. These findings indicate that the capacity of aortic endothelial cells to produce prostaglandin I2 is decreased by continuous exposure to eicosapentaenoic acid. Even if the eicosapentaenoic acid is present as a small percentage of a physiologic fatty acid mixture, it is still readily incorporated into endothelial phospholipids and retains its inhibitory effect against endothelial prostaglandin I2 formation. Therefore, these actions may be representative of the in vivo effects of eicosapentaenoic acid on the endothelium.  相似文献   

19.
Glycosaminoglycans synthesized by cultured bovine corneal endothelial cells   总被引:5,自引:0,他引:5  
Bovine corneal endothelial (BCE) cells seeded and grown on plastic dishes were labeled with 35S-sulfate or 3H-glucosamine for 48 h at various phases of growth of the cultures. Newly synthesized proteoglycans were isolated from the culture medium and from the extracellular matrix (ECM) produced by the BCE cells, and the glycosaminoglycan (GAG) component of the proteoglycans was analyzed. Cells actively proliferating on plastic surfaces secreted an ECM that contained heparan sulfate as the major 35S-labeled GAG (86%) and dermatan sulfate as a minor component (13%). Upon reaching confluence, the BCE cells incorporated 35S-labeled chondroitin sulfate (20%), as well as heparan sulfate (66%) and dermatan sulfate (14%), into the EC. Seven-day postconfluent cells incorporated newly synthesized heparan sulfate and dermatan sulfate into the matrix in approximately equal proportions. Dermatan sulfate was the main 35S-labeled GAG (60-65%) in the medium of both confluent and postconfluent cultures. 35S-Labeled chondroitin sulfate (20-25%) and heparan sulfate (15%) were also secreted into the culture medium. The type of GAG incorporated into newly synthesized ECM was affected when BCE cells were seeded onto ECM-coated dishes instead of plastic. BCE cells actively proliferating on ECM-coated dishes incorporated newly synthesized heparan sulfate and dermatan sulfate into the ECM in a ratio that was very similar to the ratio of these GAGs in the underlying ECM. Addition of mitogens such as fibroblast growth factor (FGF) to the culture medium altered the type of GAG synthesized and incorporated into the ECM by BCE cells seeded onto ECM-coated dishes if the cells were actively growing, but had no effect on postconfluent cultures.  相似文献   

20.
Amino acid deprivation induces adaptive changes in amino acid transport and the intracellular amino acid pool in cultured cells. In this study intracellular amino acid levels were determined in cultured bovine aortic endothelial cells (EC) deprived of L-arginine or total amino acids for 1, 3, 6 and 24 h. Amino acid concentrations were analyzed by reverse phase HPLC after precolumn derivatisation. Under normal culture conditions levels of L-arginine L-citrulline, total essential and non-essential amino acids were 840 +/- 90 microM, 150 +/- 40 microM, 11.4 +/- 0.9 mM and 53.3 +/- 3.4 mM (n = 9), respectively. In EC deprived of L-arginine or all amino acids for 24 h L-arginine and L-citrulline levels were 200 microM and 50 microM, and 670 microM and 100 microM Deprivation of L-arginine or total amino acids induced rapid (1 h) decreases (30 - 50%) in the levels of other cationic (lysine, ornithine) and essential branched-chain (valine, isoleucine, leucine) and aromatic (phenylalanine, tryptophan) amino acids. L-glutamine was reduced markedly in EC deprived of total amino acids for 1 h - 6 h but actually increased 3-fold in EC deprived of L-arginine for 6 h or 24 h. Arginine deprivation resulted in a rapid decrease in the total intracellular amino acid pool, however concentrations were restored after 24 h. Increased amino acid transport and/or reduced protein synthesis may account for the restoration of amino acid levels in EC deprived of L-arginine. The sustained reduction in the free amino acid pool of EC deprived of all amino acids may reflect utilization of intracellular amino acids for protein synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号