首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
The mechanism that causes neutrophils to sequester in the pulmonary circulation is unknown. Because the CD11/CD18 glycoprotein family on the surface membrane of neutrophils participates in many adhesive interactions with the endothelium, we investigated the role of these proteins in the intravascular sequestration of pulmonary neutrophils. Neutrophils were isolated from normal dogs and from the only living dog known to have leukocyte adhesion deficiency disease, an inherited deficiency of the CD11/CD18 adhesion family. The neutrophils were labeled with fluorescein dye, injected into normal recipient dogs, and their passage through the pulmonary microcirculation was recorded by in vivo videofluorescence microscopy through a transparent thoracic window. Transit times for normal and deficient neutrophils were similar over a wide range of hemo-dynamic conditions. Activation by zymosan-activated plasma, which increases the surface membrane expression of CD11/CD18, prolonged the transit of normal neutrophils but did not alter the transit time of the deficient neutrophils. These results indicate that neutrophil CD11/CD18 adhesion-promoting glycoproteins are not involved in the normal pulmonary sequestration of neutrophils but have a significant role in the arrest of activated neutrophils in the pulmonary capillaries.  相似文献   

2.
Transmigration through the endothelium is a key step in the immune response. In our recent work, the mechanical properties of the subendothelial matrix and biophysical state of the endothelium have been identified as key modulators of leukocyte trans-endothelial migration. Here, we demonstrated that neutrophil contractile forces and cytoskeletal dynamics also play an active biophysical role during transmigration through endothelial cell-cell junctions. Using our previously-established model for leukocyte transmigration, we first discovered that >93% of human neutrophils preferentially exploit the paracellular mode of transmigration in our in vitro model, and that is independent of subendothelial matrix stiffness. We demonstrated that inhibition of actin polymerization or depolymerization completely blocks transmigration, thus establishing a critical role for neutrophil actin dynamics in transmigration. Next, inhibition of neutrophil myosin II-mediated contractile forces renders 44% of neutrophils incapable of retracting their trailing edge under the endothelium for several minutes after the majority of the neutrophil transmigrates. Meanwhile, inhibition of neutrophil contractile forces or stabilization of microtubules doubles the time to complete transmigration for the first neutrophils to cross the endothelium. Notably, the time to complete transmigration is significantly reduced for subsequent neutrophils that cross through the same path as a previous neutrophil and is less dependent on neutrophil contractile forces and microtubule dynamics. These results suggest that the first neutrophil induces a gap in endothelial cell-cell adhesions, which “opens the door” in the endothelium and facilitates transmigration of subsequent neutrophils through the same hole. Collectively, this work demonstrates that neutrophils play an active biophysical role during the transmigration step of the immune response.  相似文献   

3.
《Biorheology》1996,33(1):45-58
Smoking and elevated leukocyte counts are risk factors for cardiovascular disease. Experimental studies suggest that leukocyte activation may be a requirement for certain cardiovascular complications. Clinical studies have demonstrated activated leukocytes in the peripheral blood of stroke victims. Accordingly, neutrophil activation in unseparated whole blood of smokers as well as naive neutrophils of non-smokers exposed to plasma of smokers was investigated. Both spontaneous Superoxide formation as determined by nitroblue tetrazolium reduction, as well as pseudopod formation, are significantly elevated in autologous neutrophils of smokers. The surface expression of CD 18 and L-selectin on autologous circulating neutrophils of smokers is not significantly different from non-smoker controls. In contrast, incubation of naive neutrophils with smoker plasma leads to significantly higher levels of Superoxide formation, pseudopod formation, and L-selectin shedding, compared with non-smoker plasma, suggesting that the plasma of smokers contains a transferable factor which causes leukocyte activation. The results indicate that analysis of blood samples from large peripheral veins may not accurately reflect leukocyte activation in the circulation since activated leukocytes have a higher probability to be trapped in the microcirculation.  相似文献   

4.
We have previously reported that cytokine- or LPS-activated human umbilical vein endothelial cell (HUVEC) monolayers secrete IL-8 that can act as a neutrophil-selective adhesion inhibitor. In our study we investigated the mechanisms involved in the leukocyte adhesion inhibitory action of IL-8. The leukocyte adhesion inhibitory effect appears to be mediated by the action of IL-8 on the neutrophil, does not involve down-regulation of relevant endothelial adhesion molecules such as endothelial-leukocyte adhesion molecule-1 or intercellular adhesion molecule-1, and is quantitatively similar in different endothelial activation states that are predominantly endothelial-leukocyte adhesion molecule-1 dependent or intercellular adhesion molecule-1 dependent. In addition to inhibiting the attachment of freshly isolated peripheral blood neutrophils to cytokine-activated HUVEC monolayers, IL-8 also promoted a rapid detachment of tightly adherent neutrophils from activated HUVEC, and abolished neutrophil transendothelial migration. Certain other chemoattractants, including FMLP and C5a, had similar inhibitory actions, indicating IL-8 was not unique in its ability to inhibit various neutrophil-endothelial interactions. In contrast, two other neutrophil agonists 1-0-alkyl-2-acetyl sn-glycero-3-phosphocholine and granulocyte-macrophage-CSF, which, like IL-8, are produced by activated HUVEC, as well as the leukocyte-derived chemoattractant leukotriene B4, exerted minimal inhibitory effects on adhesion. Regardless of their ability to modulate neutrophil-endothelial cell adhesion, all these agents induced altered leukocyte surface expression of functionally important adhesion molecules, including loss of L-selectin (leukocyte adhesion molecule-1, LECAM-1) and increase in CD11b/CD18. Thus, although the above agonists have been characterized primarily as chemoattractants, our findings demonstrate that these agents can exert a wide range of modulatory effects on neutrophil-endothelial adhesive interactions.  相似文献   

5.
Recent work has revealed an essential involvement of soluble CD40L (sCD40L) in inflammation and vascular disease. Activated platelets are the major source of sCD40L, which has been implicated in platelet and leukocyte activation, although its exact functional impact on leukocyte-platelet interactions and the underlying mechanisms remain undefined. We aimed to determine the impact and the mechanisms of sCD40L on neutrophils. We studied neutrophil interactions with activated, surface-adherent platelets as a model for leukocyte recruitment to the sites of injury. Our data show that CD40L contributes to neutrophil firm adhesion to and transmigration across activated surface-adherent platelets, possibly through two potential mechanisms. One involves the direct interaction of ligand-receptor (CD40L-CD40), i.e., platelet surface CD40L interaction with neutrophil CD40; another involves an indirect mechanism, i.e. soluble CD40L stimulates activation of the leukocyte-specific β2 integrin Mac-1 in neutrophils and thereby further promotes neutrophil adhesion and migration. Activation of the integrin Mac-1 is known to be critical for mediating neutrophil adhesion and migration. sCD40L activated Mac-1 in neutrophils and enhanced neutrophil-platelet interactions in wild-type neutrophils, but failed to elicit such responses in CD40-deficient neutrophils. Furthermore, our data show that the protein kinase C zeta (PKCζ) is critically required for sCD40L-induced Mac-1 activation and neutrophil adhesive function. sCD40L strongly stimulated the focal clustering of Mac-1 (CD11b) and the colocalization of Mac-1 with PKCζ in wild-type neutrophils, but had minimal effect in CD40-deficient neutrophils. Blocking PKCζ completely inhibited sCD40L-induced neutrophil firm adhesion. Moreover, sCD40L strongly stimulates neutrophil oxidative burst via CD40-dependent activation of PI3K/NF-KB, but independent of Mac-1 and PKCζ. These findings may contribute to a better understanding of the underlying mechanisms by which sCD40L/CD40 pathway contributes to inflammation and vascular diseases.  相似文献   

6.
Recently alpha-chloro fatty aldehydes have been shown to be products of reactive chlorinating species targeting the vinyl ether bond of plasmalogens utilizing a cell-free system. Accordingly, the present experiments were designed to show that alpha-chloro fatty aldehydes are produced by activated neutrophils and to determine their physiologic effects. A sensitive gas chromatography-mass spectrometry technique was developed to detect pentafluorobenzyl oximes of alpha-chloro fatty aldehydes utilizing negative ion chemical ionization. Phorbol 12-myristate 13-acetate activation of neutrophils resulted in the production of both 2-chlorohexadecanal and 2- chlorooctadecanal through a myeloperoxidase-dependent mechanism that likely involved the targeting of both 16 and 18 carbon vinyl ether-linked aliphatic groups present in the sn-1 position of neutrophil plasmalogens. 2-Chlorohexadecanal was also produced by fMLP-treated neutrophils. Additionally, reactive chlorinating species released from activated neutrophils targeted endothelial cell plasmalogens resulting in 2-chlorohexadecanal production. Physiologically relevant concentrations of 2-chlorohexadecanal induced neutrophil chemotaxis in vitro suggesting that alpha-chloro fatty aldehydes may have a role in neutrophil recruitment. Taken together, these studies demonstrate for the first time a novel biochemical mechanism that targets the vinyl ether bond of plasmalogens during neutrophil activation resulting in the production of alpha-chloro fatty aldehydes that may enhance the recruitment of neutrophils to areas of active inflammation.  相似文献   

7.
Serine proteinases of human polymorphonuclear neutrophils play an important role in neutrophil-mediated proteolytic events; however, the non-oxidative mechanisms by which the cells can degrade extracellular matrix in the presence of proteinase inhibitors have not been elucidated. Herein, we provide the first report that human neutrophils express persistently active cell surface-bound human leukocyte elastase and cathepsin G on their cell surface. Unstimulated neutrophils have minimal cell surface expression of these enzymes; however, phorbol ester induces a 30-fold increase. While exposure of neutrophils to chemoattractants (fMLP and C5a) stimulates modest (two- to threefold) increases in cell surface expression of serine proteinases, priming with concentrations of lipopolysaccharide as low as 100 fg/ml leads to striking (up to 10-fold) increase in chemoattractant-induced cell surface expression, even in the presence of serum proteins. LPS-primed and fMLP-stimulated neutrophils have approximately 100 ng of cell surface human leukocyte elastase activity per 10(6) cells. Cell surface- bound human leukocyte elastase is catalytically active, yet is remarkably resistant to inhibition by naturally occurring proteinase inhibitors. These data indicate that binding of serine proteinases to the cell surface focuses and preserves their catalytic activity, even in the presence of proteinase inhibitors. Upregulated expression of persistently active cell surface-bound serine proteinases on activated neutrophils provides a novel mechanism to facilitate their egress from the vasculature, penetration of tissue barriers, and recruitment into sites of inflammation. Dysregulation of the cell surface expression of these enzymes has the potential to cause tissue destruction during inflammation.  相似文献   

8.
Neutrophil transmigration requires the localization of neutrophils to endothelial cell junctions, in which receptor-ligand interactions and the action of serine proteases promote leukocyte diapedesis. NB1 (CD177) is a neutrophil-expressed surface molecule that has been reported to bind proteinase 3 (PR3), a serine protease released from activated neutrophils. PR3 has demonstrated proteolytic activity on a number of substrates, including extracellular matrix proteins, although its role in neutrophil transmigration is unknown. Recently, NB1 has been shown to be a heterophilic binding partner for the endothelial cell junctional protein, PECAM-1. Disrupting the interaction between NB1 and PECAM-1 significantly inhibits neutrophil transendothelial cell migration on endothelial cell monolayers. Because NB1 interacts with endothelial cell PECAM-1 at cell junctions where transmigration occurs, we considered that NB1-PR3 interactions may play a role in aiding neutrophil diapedesis. Blocking Abs targeting the heterophilic binding domain of PECAM-1 significantly inhibited transmigration of NB1-positive neutrophils through IL-1β-stimulated endothelial cell monolayers. PR3 expression and activity were significantly increased on NB1-positive neutrophils following transmigration, whereas neutrophils lacking NB1 demonstrated no increase in PR3. Finally, using selective serine protease inhibitors, we determined that PR3 activity facilitated transmigration of NB1-positive neutrophils under both static and flow conditions. These data demonstrate that PR3 contributes in the selective recruitment of the NB1-positive neutrophil population.  相似文献   

9.
Neutrophils have an impressive array of microbicidal weapons, and in the presence of a pathogen, progress from a quiescent state in the bloodstream to a completely activated state. Failure to regulate this activation, for example, when the blood is flooded with cytokines after severe trauma, causes inappropriate neutrophil activation that paradoxically, is associated with tissue and organ damage. Acidic proteomic maps of quiescent human neutrophils were analyzed and compared to those of activated neutrophils from severe trauma patients. The analysis revealed 114 spots whose measured volumes differed between activated and quiescent neutrophils, with 27 upregulated and 87 downregulated in trauma conditions. Among the identified proteins, grancalcin, S100-A9 and CACNB2 reinforce observed correlations between motility and ion flux, ANXA3, SNAP, FGD1 and Zfyve19 are involved in vesicular transport and exocytosis, and GSTP1, HSPA1 HSPA1L, MAOB, UCH-L5, and PPA1 presented evidence that activated neutrophils may have diminished protection against oxidative damage and are prone to apoptosis. These are discussed, along with proteins involved in cytoskeleton reorganization, reactive oxygen species production, and ion flux. Proteins such as Zfyve19, MAOB and albumin- like protein were described for the first time in the neutrophil. In this work we achieved the identification of several proteins potentially involved in inflammatory signaling after trauma, as well as proteins described for the first time in neutrophils.  相似文献   

10.
Endothelial and platelet P-selectin (CD62P) and leukocyte integrin αMβ2 (CD11bCD18, Mac-1) are cell adhesion molecules essential for host defense and innate immunity. Upon inflammatory challenges, P-selectin binds to PSGL-1 (P-selectin glycoprotein ligand-1, CD162) to mediate neutrophil rolling, during which integrins become activated by extracellular stimuli for their firm adhesion in a G-protein coupled receptor (GPCR)-dependent mechanism. Here we show that cross-linking of PSGL-1 by dimeric or multimeric forms of platelet P-selectin, P-selectin receptor-globulin, anti-PSGL-1 mAb and its F(ab’)2 induced adhesion of human neutrophils to fibrinogen (Fg) and intercellular cell adhesion molecule-1 (ICAM-1, CD54) and triggered a moderate clustering of αMβ2, but monomeric forms of soluble P-selectin and anti-PSGL-1 Fab did not. Interestingly, P-selectin did not induce a detectable interleukine-8 (IL-8) secretion (<0.1 ng/ml) in 30 minutes, whereas a high concentration of IL-8 (>50 ng/ml) was required to increase neutrophil adhesion to Fg. P-selectin-induced neutrophil adhesion was significantly inhibited by PP2 (a Src kinase inhibitor), but not by Pertussis toxin (PTX; a GPCR inhibitor). Activated platelets also increased neutrophil binding to fibrinogen and triggered tyrosine phosphorylation of cellular proteins. Our results indicate that P-selectin-induced integrin activation (Src kinase-dependent) is distinct from that elicited by cytokines, chemokines, chemoattractants (GPCR-dependent), suggesting that these two signal transduction pathways may cooperate for maximal activation of leukocyte integrins.  相似文献   

11.
GPI-80 is a glycosylphosphatidylinositol (GPI)-anchored protein that is mainly expressed in human neutrophils. Previous studies using 3H9, a monoclonal antibody (mAb) against GPI-80, suggested that GPI-80 regulates leukocyte adherence and migration through Mac-1. GPI-80, which is anchored at the plasma membrane in resting neutrophils, moves into the pseudopodia and is released from activated human neutrophils. Here, we demonstrate that neutrophil activation affects GPI-80 dynamics using a new anti-GPI-80 mAb, designated 4D4, which is directed against the form of GPI-80 found on resting human neutrophils. Similar to 3H9, 4D4 influences Mac-1-dependent neutrophil adhesion. Treatment of purified GPI-80 with periodic acid and trypsin indicated that 3H9 and 4D4 recognize peptide and carbohydrate moieties, respectively. Stimulation with fMLP decreased the binding of 4D4 to GPI-80 on the neutrophil surface but increased the overall expression of GPI-80, as visualized by the 3H9 signal. Confocal laser microscopy revealed the 4D4 signal mainly on cell bodies and at a low level on pseudopodia during migration toward increasing concentrations of fMLP, whereas the 3H9 signal was observed in both areas. In addition, soluble GPI-80 released from activated neutrophils did not bind 4D4. These results suggest that there are two populations of GPI-80 that differ in the ability to bind 4D4. The 4D4-recognized form may regulate Mac-1-dependent neutrophil adhesion, and may subsequently be converted to a 4D4-unrecognized form during neutrophil activation.  相似文献   

12.
13.
Adherence of neutrophils to endothelium is a key event in the sequence of inflammatory leukocyte responses. Double-color FACS analysis was used to determine the extent and kinetics of neutrophil adherence to rIL-1 beta-pretreated endothelial cells (EC). Neutrophils bound very avidly when the EC were prestimulated for 4 to 6 h with rIL-1 beta. Anti-ELAM-1 F(ab)2 fragments inhibited this adherence for more than 80%. On the other hand, anti-CD18 F(ab)2 fragments also inhibited the neutrophil adherence (40 to 50%). Combined use of anti-ELAM-1 and anti-CD18 F(ab)2 fragments completely prevented adherence. Neutrophils became activated as soon as they made contact with the rIL-1 beta-pretreated EC. First, neutrophils depleted of intracellular ATP showed a clearly decreased adherence completely dependent on ELAM-1-mediated binding, i.e., without additional effects of CD18 adhesion proteins. Thus, CD18 is activated during neutrophil adherence and then participates in the binding process. Secondly, the neutrophils responded with a transient rise in [Ca2+]i upon binding to rIL-1 beta-pretreated EC, which was demonstrated to be caused by endothelial cell-associated platelet-activating factor (PAF). However, the extent of neutrophil adherence to rIL-1 beta-pretreated EC was not affected by the use of the PAF-receptor antagonist WEB 2086, or removal of the EC-bound PAF. The only effect was a complete dependency of the neutrophil adherence on ELAM-1-mediated binding, although anti-CD18 mAb still induced 40 to 50% inhibition under these conditions. We therefore conclude that ELAM-1-mediated binding is the major mechanism for CD18 activation during neutrophil adherence to rIL-1 beta-pretreated EC.  相似文献   

14.
S100A8 and S100A9 are small calcium-binding proteins that are highly expressed in neutrophil and monocyte cytosol and are found at high levels in the extracellular milieu during inflammatory conditions. Although reports have proposed a proinflammatory role for these proteins, their extracellular activity remains controversial. In this study, we report that S100A8, S100A9, and S100A8/A9 caused neutrophil chemotaxis at concentrations of 10(-12)-10(-9) M. S100A8, S100A9, and S100A8/A9 stimulated shedding of L-selectin, up-regulated and activated Mac-1, and induced neutrophil adhesion to fibrinogen in vitro. Neutralization with Ab showed that this adhesion was mediated by Mac-1. Neutrophil adhesion was also associated with an increase in intracellular calcium levels. However, neutrophil activation by S100A8, S100A9, and S100A8/A9 did not induce actin polymerization. Finally, injection of S100A8, S100A9, or S100A8/A9 into a murine air pouch model led to rapid, transient accumulation of neutrophils confirming their activities in vivo. These studies 1) show that S100A8, S100A9, and S100A8/A9 are potent stimulators of neutrophils and 2) strongly suggest that these proteins are involved in neutrophil migration to inflammatory sites.  相似文献   

15.
We investigated the roles of the potent, chemotactic antimicrobial proteins S100A8, S100A9, and S100A8/A9 in leukocyte migration in a model of streptococcal pneumonia. We first observed differential secretion of S100A8, S100A9, and S100A8/A9 that preceded neutrophil recruitment. This is partially explained by the expression of S100A8 and S100A9 proteins by pneumocytes in the early phase of Streptococcus pneumoniae infection. Pretreatment of mice with anti-S100A8 and anti-S100A9 Abs, alone or in combination had no effect on bacterial load or mice survival, but caused neutrophil and macrophage recruitment to the alveoli to diminish by 70 and 80%, respectively, without modifying leukocyte blood count, transendothelial migration or neutrophil sequestration in the lung vasculature. These decreases were also associated with a 68% increase of phagocyte accumulation in lung tissue and increased expression of the chemokines CXCL1, CXCL2, and CCL2 in lung tissues and bronchoalveolar lavages. These results show that S100A8 and S100A9 play an important role in leukocyte migration and strongly suggest their involvement in the transepithelial migration of macrophages and neutrophils. They also indicate the importance of antimicrobial proteins, as opposed to classical chemotactic factors such as chemokines, in regulating innate immune responses in the lung.  相似文献   

16.
The role of the neutrophil in inflammatory diseases of the lung   总被引:7,自引:0,他引:7  
L A Boxer  R Axtell  S Suchard 《Blood cells》1990,16(1):25-40; discussion 41-2
Under certain circumstances, the neutrophil has been implicated in causing disease by damaging normal host tissue. This may occur in the adult respiratory distress syndrome (ARDS). The neutrophil has been implicated since a) substances that activate neutrophils are produced in association with the predisposing risks that lead to ARDS; b) activated neutrophils migrate into the alveolar spaces and their toxic products can be found in lung lavage fluid and in the breath of patients with ARDS; and c) the magnitude of the physiologic alterations correlate with the number of neutrophils in the alveolar space. Additionally, the neutrophils may be primed by substances which are released by activated platelets within the confines of the lung. Both platelet adenine nucleotides and the platelet-derived extracellular matrix protein (ECM), thrombospondin, can prime the neutrophil for subsequent O2- generation following activation of the cells with the chemotactic peptide, F-met-leu-phe (FMLP). Furthermore, neutrophils can be primed or O2- generation by the basement membrane ECM protein, laminin. Since neutrophils express receptors for both laminin and thrombospondin, these constituents may serve to modulate neutrophil behavior for subsequent oxidative metabolism and contribute to exacerbating pulmonary disease.  相似文献   

17.
Abdominal neutrophils effect on rat skeletal muscle m. soleus was investigated in vitro. The incubation was carried out in Hanks balanced solution within 24 hrs. It was a release of proteins from m. soleus 1 hr later. Creatine kinase (CK) and aspartate aminotransferase (AAT) activities increase was detected in incubation medium. The neutrophils released their proteins quicker than muscles. A dramatic inhibition of CK and AAT activities took place during coincubation of m. soleus and neutrophils. Zymosan-activated cells had a higher inhibition potency in comparison to nonactivated neutrophils. Analysis of proteinase and myeloperoxidase activities in incubation medium has given evidence that CK and AAT inhibition by non-activated neutrophils mainly depends on cell-secreted proteinases. Zymosan-activated neutrophil inhibition of CK and AAT consists of proteinases and myeloperoxidase effects. AAT appeared to be more resistant than CK to the damage by neutrophils. The used approach failed to demonstrate the direct damage effect of neutrophils on m. soleus, but the described enzyme inhibition mechanism can take place in vivo during leukocyte infiltration of skeletal muscles after intensive muscular activity.  相似文献   

18.
Annexin 1 (ANXA1), galectin-1 (Gal-1) and galectin-3 (Gal-3) proteins have been identified as important mediators that promote or inhibit leukocyte migration. The expression of these proteins was studied in human neutrophils and endothelial cells (ECs) during a transmigration process induced by IL-8. Upon neutrophil adhesion to EC, a significant increase in the cleaved ANXA1 (LCS3, raised against all ANXA1 isoforms) expression was detected in the plasma membrane of adhered neutrophils and ECs compared to intact ANXA1 isoform (LCPS1, against N-terminus of protein). Adherent neutrophils had elevated Gal-3 levels in the nucleus and cytoplasm, and ECs in their plasma membranes. In contrast, a decrease in the total amounts of Gal-1 was detected in migrated compared to non-migrated neutrophils. Therefore, ANXA1 and Gal-3 changed in their content and localization when neutrophils adhere to endothelia, suggesting a process of sensitive-balance between two endogenous anti- and pro-inflammatory mediators.  相似文献   

19.
Chemoattractants differ in their capacity to stimulate neutrophils to adhere to and to migrate through matrices containing fibrin. Formyl methionyl leucyl phenylalanine (fMLP) stimulates neutrophils to adhere closely to, but not to migrate into, fibrin gels. Leukotriene B4 (LTB4) stimulates neutrophils to adhere loosely to and to migrate through fibrin gels. We report that alpha5beta1 integrins regulate the different migratory behaviors on fibrin gels of neutrophils in response to these chemoattractants. fMLP, but not LTB4, activated neutrophil beta1 integrins, as measured by binding of mAb 15/7 to an activation epitope on the beta1 integrins. Antibodies or peptides that block alpha5beta1 integrins prevented fMLP-stimulated neutrophils from forming zones of close apposition on fibrin and reversed fMLP's inhibitory effect on neutrophil chemotaxis through fibrin. In contrast, neither peptides nor antibodies that block beta1 integrins affected the capacity of LTB4-stimulated neutrophils to form zones of loose apposition or to migrate through fibrin gels. These results suggest that chemoattractants generate at least two different messages that direct neutrophils, and perhaps other leukocytes, to accumulate at specific anatomic sites: a general message that induces neutrophils to crawl and a specific message that prepares neutrophils to stop when they contact appropriate matrix proteins for activated beta1 integrins.  相似文献   

20.
Leukocyte chemoattractant peptides from the serpin heparin cofactor II   总被引:4,自引:0,他引:4  
Heparin cofactor II (HC) is a plasma serine proteinase inhibitor (serpin) that inhibits the coagulant proteinase alpha-thrombin. We have recently demonstrated that proteolysis of HC by catalytic amounts of polymorphonuclear leukocyte proteinases (elastase or cathepsin G) generates leukocyte chemotaxins (Hoffman, M., Pratt, C. W., Brown, R. L., and Church, F. C. (1989) Blood 73, 1682-1685). One of four peptides produced when HC is degraded by neutrophil elastase has chemotactic activity for both monocytes and neutrophils with maximal migration comparable to formyl-Met-Leu-Phe, the "gold standard" bacterially derived chemotaxin. The amino-terminal sequence of this HC peptide is Asp-Phe-His-Lys-Glu-Asn-Thr-Val-... and the peptide corresponds to Asp-39 to Ile-66 of HC. A variety of synthetic peptides derived from this sequence were evaluated for leukocyte migration activity, and a dodecapeptide from Asp-49 to Tyr-60 (Asp-Trp-Ile-Pro-Glu-Gly-Glu-Glu-Asp-Asp-Asp-Tyr) was identified as the active site for leukocyte chemotactic action. The 12-mer synthetic peptide possesses significant neutrophil chemotactic action at 1 nM (60% of the maximal activity of formyl-Met-Leu-Phe), while a peptide with the reverse sequence has essentially no chemotactic activity. Cross-desensitization experiments also show that pretreatment of neutrophils with a 19-mer peptide (Asn-48 to Ile-66) greatly reduces subsequent chemotaxis to HC-neutrophil elastase proteolysis reaction products. When injected intraperitoneally in mice, the HC-neutrophil elastase digest elicits neutrophil migration. Our results demonstrate that not only does HC function as a thrombin inhibitor, but that limited proteolysis of HC near the amino terminus yields biologically active peptide(s) which might participate in inflammation and in wound healing and tissue repair processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号