首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction between type 1 plasminogen activator inhibitor (PAI-1) and fragments of vitronectin (Vn) was investigated. The PAI-1-binding domain was not destroyed when Vn was cleaved by treatment with either acid or CNBr. Acid-cleaved Vn was fractionated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and analyzed by PAI-1 ligand binding. The smallest fragment (Mr 40,000) that retained PAI-1 binding function was sequenced and shown to contain the NH2 terminus of the molecule. Further cleavage of this fragment by treatment with CNBr generated a Mr 35,000 fragment (Pro52-Asp239) that did not interact with PAI-1, and a Mr 6,000 NH2-terminal fragment (Asp1-Met51) that spanned the somatomedin B domain and contained the RGD (cell binding) sequence. The purified Mr 6,000 fragment competed with immobilized Vn for PAI-1 binding, and formed complexes with activated PAI-1. These complexes could be immunoprecipitated by antibodies to PAI-1. Synthetic peptides containing the RGD sequence had no effect on the binding of this fragment to PAI-1. These results suggest that the cell-binding and PAI-1 binding sequences of Vn occupy distinct regions in the NH2-terminal somatomedin B domain of the molecule.  相似文献   

2.
3.
We have shown that synthetic peptides containing the amino acid sequence Asn-Arg-Arg-Leu, derived from the amino acid sequence of the inner loop of the kringle-2 domain of tissue-type plasminogen activator (tPA), inhibited complex formation between two chain tPA and plasminogen activator inhibitor-1 (PAI-1) by binding to PAI-1. This binding was reversible and was inhibited by not only tPA but also by enzymatically inactive tPA. Quantitative analyses of the interaction of PAI-1 with the peptide containing the Asn-Arg-Arg-Leu sequence indicated that the PAI-1 binding site residues in the inner loop of the kringle-2 domain and is preferentially expressed in two chain tPA.  相似文献   

4.
5.
R Zeheb  T D Gelehrter 《Gene》1988,73(2):459-468
A cDNA encoding rat plasminogen activator-inhibitor (PAI-1) has been isolated from an HTC rat hepatoma cell cDNA library constructed in phage lambda gt10. The cDNA contains 118 bp of 5'-untranslated sequence, 1206 bp encoding a 402-amino acid (aa) protein and 1747 bp of 3'-untranslated sequence. The protein-coding sequence and the derived amino acid sequence share 82% and 81% identity, respectively, with human PAI-1 cDNA and protein. The rat cDNA encodes a preprotein with a 23-aa leader peptide and a predicted N-terminal serine for the mature protein. Three of four potential N-glycosylation acceptor sites as well as the active site of rat PAI-1 are identical to the human protein. The 3'-untranslated region contains a number of unusual regions, including 80 bp of tandemly repeated GpA dinucleotides, a 115-bp stretch which shares greater than 90% sequence identity with a region within the 3'-untranslated cDNA of human PAI-1, and two 70-bp stretches of highly T-rich sequence located close to the 3'-terminus of the cDNA.  相似文献   

6.
We have determined the nucleotide sequence of the human plasminogen activator inhibitor-1 (PAI-1) gene and significant stretches of DNA which extend into its 5'-and 3'-flanking DNA regions; a total sequence of 15,867 base pairs (bp) is presented. The sequenced 5'-flanking DNA (1,520 bp) contains the essential eukaryotic cis-type proximal regulatory elements CCAAT and TATAA; the more distal 5'-flanking DNA region, as well as some introns, contain sequence elements which share identities with known eukaryotic enhancer elements. A major finding is the identification of a large region of shared nucleotides (comprising of about 520 bp) between the 5'-flanking DNAs of PAI-1 and tissue-type plasminogen activator genes. The length of the PAI-1 5'-untranslated region was found to be 145 bp as determined by nuclease analysis. The remaining PAI-1 structural gene consists of amino acid coding regions (containing a total of 1,206 bp, coding for the 23 amino acids of the signal peptide and 379 amino acids of the mature PAI-1 protein), 8 intron regions (a total of 8,978 bp), and a long 3'-untranslated region of about 1,800 bp which contains several polyadenylation sites. Two types of repetitive DNA elements are located within the PAI-1 structural gene and flanking DNAs: we have found 12 Alu elements and 5 repeats of a long poly (Pur) element. These Alu-Pur elements may represent a subset of the more abundant Alu family of repetitive sequence elements.  相似文献   

7.
The structural events taking place during the reaction between PAI-1 (plasminogen-activator inhibitor 1) and the plasminogen activators sc-tPA (single-chain tissue plasminogen activator) and tc-tPA (two-chain tissue plasminogen activator) were studied. Complexes were formed by mixing sc-tPA or tc-tPA with PAI-1 in slight excess (on an activity basis). The complexes were purified from excess PAI-1 by affinity chromatography on fibrin-Sepharose. Examination of the purified complexes by SDS/polyacrylamide-gel electrophoresis (SDS/PAGE) and N-terminal amino acid sequence analysis demonstrated that a stoichiometric 1:1 complex is formed between PAI-1 and both forms of tPA. Data obtained from both complexes revealed the amino acid sequences of the parent molecules and, in addition, a new sequence: Met-Ala-Pro-Glu-Glu-. This sequence is found in the C-terminal portion of the intact PAI-1 molecule and thus locates the reactive centre of PAI-1 to Arg346-Met347. The proteolytic activity of sc-tPA is demonstrated by its capacity to cleave the 'bait' peptide bond in PAI-1. The complexes were inactive and dissociated slowly at physiological pH and ionic strength, but rapidly in aq. NH3 (0.1 mol/l). Amidolytic tPA activity was generated on dissociation of the complexes, corresponding to 0.4 mol of tPA/mol of complex. SDS/PAGE of the dissociated complexes indicated a small decrease in the molecular mass of PAI-1, in agreement with proteolytic cleavage of the 'bait' peptide bond during complex-formation.  相似文献   

8.
Plasminogen activator inhibitor type 1 (PAI-1) is the primary physiologic inhibitor of the naturally occurring plasminogen activators. In higher primates two forms of mature PAI-1 mRNA (3.2 kb and 2.2 kb) arise by alternative cleavage and polyadenylation of PAI-1 hnRNA which is regulated in a tissue-specific fashion in humans. In other mammals only the 3.2 kb mRNA has been detected. The putative downstream polyadenylation site in humans that gives rise to the 3.2 kb PAI-1 mRNA consists of three overlapping copies of the consensus polyadenylation sequence while no consensus polyadenylation sequence is found upstream at a position that could generate the shorter mRNA species. To determine whether differential cleavage and polyadenylation of PAI-1 mRNA is due to species-specific differences in trans-acting factors that process PAI-1 mRNA or to the presence of a nonconsensus polyadenylation site acquired recently during primate evolution we prepared plasmids in which the 3' nontranslated region of the human PAI-1 gene or the mouse PAI-1 cDNA was inserted downstream of the neomycin gene in the plasmid pSV2neo. We show that the 3'-nontranslated region of the human PAI-1 gene but not the mouse PAI-1 cDNA conferred alternative cleavage and polyadenylation to the neomycin gene in transfected human Hep G2 cells as well as mouse NIH3T3 and rat L6 cells.  相似文献   

9.
10.
11.
12.
《The Journal of cell biology》1996,134(6):1563-1571
Induction of the urokinase type plasminogen activator receptor (uPAR) promotes cell adhesion through its interaction with vitronectin (VN) in the extracellular matrix, and facilitates cell migration and invasion by localizing uPA to the cell surface. We provide evidence that this balance between cell adhesion and cell detachment is governed by PA inhibitor-1 (PAI-1). First, we demonstrate that uPAR and PAI-1 bind to the same site in VN (i.e., the amino-terminal somatomedin B domain; SMB), and that PAI-1 competes with uPAR for binding to SMB. Domain swapping and mutagenesis studies indicate that the uPAR-binding sequence is located within the central region of the SMB domain, a region previously shown to contain the PAI-1-binding motif. Second, we show that PAI-1 dissociates bound VN from uPAR and detaches U937 cells from their VN substratum. This PAI-1 mediated release of cells from VN appears to occur independently of its ability to function as a protease inhibitor, and may help to explain why high PAI-1 levels indicate a poor prognosis for many cancers. Finally, we show that uPA can rapidly reverse this effect of PAI-1. Taken together, these results suggest a dynamic regulatory role for PAI-1 and uPA in uPAR-mediated cell adhesion and release.  相似文献   

13.
A binding protein for plasminogen activator inhibitor 1 (PAI-1-BP) was isolated from human plasma by a four-step procedure. 1) The 7 S globulin fraction of plasma was isolated by gel filtration on Sephacryl S-300. 2) Human endothelial cell-type plasminogen activator inhibitor (PAI-1), pretreated with 12 M urea, was added to this fraction (22 micrograms of PAI-1/ml of plasma), and a PAI-1 antigen peak with apparent mass 450 kDa (representing 65% of PAI-1 antigen and 85% of PAI activity) was isolated by gel filtration of this mixture. 3) The PAI-1.PAI-1-BP complex was further purified by immunoadsorption on an immobilized murine monoclonal antibody directed against PAI-1 (MA-7D4) and by elution with 4 M KSCN. 4) The complex was then dissociated by addition of excess human tissue-type plasminogen activator (t-PA), and t-PA and PAI-1 antigen (t-PA.PAI-1 complexes and free t-PA and PAI-1) were removed by immunoadsorption on monoclonal antibodies directed against t-PA (MA-62E8) and against PAI-1 (MA-7D4 and MA-12A4). Sodium dodecyl sulfate-gel electrophoresis of the purified material under nonreducing conditions revealed two bands with apparent mass approximately equal to 150 kDa and two bands with mass 74 and 68 kDa. Reduced sodium dodecyl sulfate-gel electrophoresis displayed two main bands with apparent masses of 73 and 64 kDa. The PAI-1-BP reacts with urea-treated, but not with inactive PAI-1. t-PA dissociates the complex between PAI-1 and PAI-1-BP. PAI-1 in complex with PAI-1-BP is 2-3-fold more stable at 37 degrees C than purified PAI-1, suggesting that PAI-1-BP may stabilize PAI-1 in blood. The concentration of PAI-1-BP in plasma determined by titration with PAI-1 is approximately 130 mg/liter. The isolated PAI-1-BP was shown to be identical to S protein (vitronectin) both by cross-reactivity with monospecific rabbit antisera and by NH2-terminal amino acid sequence analysis. The gel filtration behavior, mobility on sodium dodecyl sulfate-gel electrophoresis, and concentration in plasma suggest that PAI-1-BP is a multimer (presumably a dimer) of S protein accounting for approximately 35% of the S protein in plasma.  相似文献   

14.
Expression of human recombinant plasminogen activator inhibitor type-1 (PAI-1) in Escherichia coli has led to crystallization of ‘latent’ PAI-1. Cleavage with restriction endonucleases of a cDNA clone encoding PAI-1 yielded an 1127 base pair fragment encoding residues 2–376 of the 379 amino acid serpin. Synthetic DNA linkers were ligated to the 5′ and 3′ ends of the subclone to add an initiation codon and restore the full coding sequence, and the resulting semisynthetic gene was incorporated into an expression plasmid, pPAIST-7, under the control of the E. coli trp promoter. Transformation of E. coli GE81 with pPAIST-7 led to expression of unglycosylated PAI-1. Lysates of expression cultures contained PAI-1 activity and PAI-1 protein with the predicted Mr. Unglycosylated PAI-1 from E. coli exhibited characteristic properties of authentic PAI-1: (1) it was recovered in both active and inactive (latent) forms; (2) its activity declined during incubation at 37°C; (3) latent PAI-1 was activated by treatment with 4 M guanidine hydrochloride; (4) reactivated PAI-1 formed a detergent-stable complex with tissue plasminogen activator. Latent PAI-1 accounted for more than 85% of PAI-1 in cell lysates and was purified by ammonium sulfate fractionation, anion-exchange chromatography and hydrophobic interaction chromatography. The purified latent PAI-1 was crystallized.  相似文献   

15.
The adhesive glycoprotein vitronectin (VN) forms a function-stabilizing complex with plasminogen activator inhibitor-1 (PAI-1), the major fibrinolysis inhibitor in both plasma and vessel wall connective tissue. VN also interacts with two-chain high molecular weight kininogen (HKa), particularly its His-Gly-Lys-rich domain 5, and both HKa and PAI-1 are antiadhesive factors that have been shown to compete for binding to VN. In this study the influence of HKa and domain 5 on the antifibrinolytic function of PAI-1 was investigated. In a purified system, HKa and particularly domain 5 inhibited the binding of PAI-1 to VN and promoted PAI-1 displacement from both isolated VN as well as subendothelial extracellular matrix-associated VN. The sequence Gly(486)-Lys(502) of HKa domain 5 was identified as responsible for this inhibition. Although having no direct effect on PAI-1 activity itself, HKa domain 5 or the peptide Gly(486)-Lys(502) markedly destabilized the VN.PAI-1 complex interaction, resulting in a significant reduction of PAI-1 inhibitory function on plasminogen activators, resembling the effect of VN antibodies that prevent stabilization of PAI-1. Furthermore, high affinity fibrin binding of PAI-1 in the presence of VN as well as the VN-dependent fibrin clot stabilization by the inhibitor were abrogated in the presence of the kininogen forms mentioned. Taken together, our data indicate that the peptide Gly(486)-Lys(502) derived from domain 5 of HKa serves to interfere with PAI-1 function. Based on these observations potential low molecular weight PAI-1 inhibitors could be designed for the use in therapeutic interventions against thromboembolic complications.  相似文献   

16.
The interaction between guanidine-activated bovine type 1 plasminogen activator inhibitor (PAI-1) and bovine vitronectin was investigated. Activated PAI-1 bound to vitronectin in a dose- and time-dependent manner, and binding was saturable. The dissociation constant (Kd) for this interaction was estimated to be 3.10(-10) mol/l by Scatchard analysis. Complexes of activated PAI-1 and vitronectin were relatively stable at 4 degrees C (T1/2 greater than 24 h), but dissociated with a T1/2 of 4 h at 37 degrees C. The half-life of PAI-1 activity was increased from 2.5 to 4.5 h upon binding to immobilized vitronectin. In order to identify the binding domain(s) in vitronectin for activated PAI-1, the ability of PAI-1 to bind to vitronectin fragments was assessed. Vitronectin was cleaved by thrombin in a dose- and time-dependent manner, generating fragments of Mr 60,000, 54,000 and 38,000. The PAI-1 binding domain(s) were not destroyed by this treatment, since the digested vitronectin competed with immobilized vitronectin for PAI-1 binding to the same extent as uncleaved vitronectin. The thrombin digested vitronectin fragments were fractionated by SDS-PAGE and analyzed by PAI-1 ligand binding. The smallest fragment (Mr 38,000) retained PAI-1 binding function, and sequence analysis demonstrated that this fragment contained the NH2-terminus of bovine vitronectin. These results suggest that the high-affinity binding site for activated PAI-1 is located in the NH2-terminal region of the bovine vitronectin molecule.  相似文献   

17.
Plasminogen activator inhibitor-2 (PAI-2) can regulate the formation of plasmin by inhibiting urokinase and tissue plasminogen activator. PAI-2 is induced in monocytes and endothelium by inflammatory mediators, and it is made in the placenta during pregnancy. PAI-2 is a member of the serine protease inhibitor gene family, and it is particularly similar to chicken ovalbumin. Like ovalbumin, PAI-2 is secreted without cleavage of a signal peptide. To determine the structure of the PAI-2 gene, two bacteriophage lambda human genomic DNA libraries were screened with PAI-2 cDNA probes. Characterization of three positive clones shows that the human PAI-2 gene spans 16.5 kilobases and has eight exons. The 5'-untranslated sequence of the PAI-2 mRNA is 77 base pairs in length as suggested by primer extension and S1 nuclease mapping. The eukaryotic consensus sequence TATAAAA is found 22 base pairs 5' of the proposed cap site. The PAI-2 gene is on chromosome 18q21-23 as determined by hybridization to flow-sorted chromosomes and by in situ hybridization. There appear to be two common PAI-2 alleles that differ by six nucleotides in exons 1, 4, and 8. The structure of the PAI-2 gene is quite different from that of PAI-1 although these two inhibitors have common target protease specificity. In contrast, the structure of the PAI-2 gene is very similar to that of the chicken ovalbumin gene. When protein sequences are aligned to obtain maximal identity, six of the seven intron positions in the PAI-2 gene are identical to those in the chicken ovalbumin gene. We conclude that PAI-2 is the closest mammalian homologue of avian ovalbumin.  相似文献   

18.
19.
Plasminogen activator inhibitor 1 (PAI-1) inhibits both tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA) and, therefore, is an important regulator of plasminogen activation. We have developed eucaryotic and procaryotic expression systems for PAI-1 and characterized the recombinant glycosylated and non-glycosylated products, together with a non-recombinant natural control, produced in the histosarcoma cell line HT 1080. For eucaryotic expression, the PAI-1 cDNA was stably transfected into chinese hamster ovary cells (CHO cells), while procaryotic expression in Escherichia coli was examined after inserting the DNA sequence encoding the mature PAI-1 protein into an inducible expression vector. Recombinant PAI-1 from CHO cells was purified approximately 50-fold in two steps and was indistinguishable from natural PAI-1. Between 3% and 4% of total cellular protein in the procaryotic expression system consisted of PAI-1, from which it was purified approximately 30-fold, with yields of between 15% and 20%. This PAI-1 formed 1:1 complexes with uPA and also with the single- and two-chain forms of tPA. Kinetic analysis demonstrated that the procaryote-produced PAI-1 had an inhibitory activity towards all three forms of PA that resembled that of natural PAI-1 with association rate constants of approximately 10(7) M-1 s-1. In contrast to PAI-1 from eucaryotic cells, the PAI-1 from E. coli had an inherent activity equal to that of guanidine/HCl-activated natural PAI-1. The activity could not be increased by treatment with denaturants suggesting that the latent form of PAI-1 was absent. However, at 37 degrees C the procaryote-produced PAI-1 lost activity at the same rate as natural PAI-1, with approximately 50% of the activity remaining after 3 h. This activity could be partially restored by treatment with 4 M guanidine/HCl. E. coli-derived PAI-1, added to human plasma and fractionated by Sephacryl S-200 chromatography, eluted in two peaks that were similar to those obtained with guanidine-activated PAI-1 from eucaryotic cells, suggesting that it bound to the PAI-1-binding protein (vitronectin).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号