首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
微生物气溶胶采集技术的特点及应用   总被引:1,自引:0,他引:1  
微生物气溶胶是悬浮于空气中粒径差异显著的生物粒子。污水处理、垃圾填埋等污水和固体废弃物的处理过程会产生大量的微生物气溶胶。近年来,随着对微生物气溶胶的不断认识,对其产生、逸散以及危害环境和人体的研究越来越多。在过去的150年,研究者们研发了多种微生物气溶胶采集技术和仪器设备,每种采集技术各有特点和适用条件。本文阐述沉降法、惯性采样法和过滤法3种典型微生物气溶胶采集技术的特点和原理,分析各种采样设备的适用性,为微生物气溶胶的采集和研究提供参考。  相似文献   

2.
Modern intensive husbandry practices can create poor indoor air quality, with high levels of airborne dust, endotoxins, ammonia, and microorganisms. Air in a sow breeding barn was investigated to determine the biomass composition of bioaerosols using molecular methods supplemented with microscopic and cultivation-dependent approaches. A total of 2.7?±?0.7?×?10(7) bacterial cells?m(-3) air and 1.2?±?0.3?×?10(6) fungi spores?m(-3) were detected, corresponding to the fungal biovolume constituted 98% of the total microbial biovolume (fungal and bacterial). Fifty-two percent of all 4',6-diamidino-2-phenyl indole-stained cells were detectable with fluorescence in situ hybridization (FISH) with a general bacterial probe mixture. Quantitative FISH of the bacterial consortium revealed Firmicutes as the dominant group with Streptococcus as the major genus, while Actinobacteria constituted 10% of the detectable bacteria. Additionally, the study revealed an abundant and diverse fungal community including species not previously found in similar environments. The most abundant fungal 18S rRNA gene clone sequences identified affiliated with the Aspergillus-Eurotium cluster, but among others, species of Wallemia, Mucorales, and Russulales were detected. For both fungi and anaerobic bacteria, a hitherto undescribed diversity was found in bioaerosols from a modern sow breeding barn, which potentially could create poor indoor air quality, although their effect on the health of farmworkers and stock still is not resolved.  相似文献   

3.
Human occupants are an important source of microbes in indoor environments. In this study, we used DNA sequencing of filter samples to assess the fungal and bacterial composition of air in an environmental chamber under different levels of occupancy, activity, and exposed or covered carpeting. In this office-like, mechanically ventilated environment, results showed a strong influence of outdoor-derived particles, with the indoor microbial composition tracking that of outdoor air for the 2-hour sampling periods. The number of occupants and their activity played a significant but smaller role influencing the composition of indoor bioaerosols. Human-associated taxa were observed but were not particularly abundant, except in the case of one fungus that appeared to be transported into the chamber on the clothing of a study participant. Overall, this study revealed a smaller signature of human body-associated taxa than had been expected based on recent studies of indoor microbiomes, suggesting that occupants may not exert a strong influence on bioaerosol microbial composition in a space that, like many offices, is well ventilated with air that is moderately filtered and moderately occupied.  相似文献   

4.
Most studies focusing on detecting microorganisms in air by polymerase chain reaction (PCR) have used a liquid impinger to sample bioaerosols, mainly because a liquid sample is easy to be processed by PCR analysis. Nevertheless, the use of multiple-hole impactors for the analysis of bioaerosols by PCR has not been reported despite its great utility in culture analysis. In this study we have modified the impaction onto an agar surface sampling method to impaction onto a liquid medium using the MAS-100 air sampler (Merck) (single-stage multiple-hole impactor). To evaluate the recovery of airborne microorganisms of both sampling methods, a suspension containing Escherichia coli was artificially aerosolized and bioaerosols were collected onto Tergitol-7 agar and phosphate-buffered saline (PBS) with the MAS-100. A linear regression analysis of the results showed a strong positive correlation between both sampling methods (r = 0.99, slope 0.99, and y intercept 0.07). Afterwards, the method of impingement into a liquid medium was used to study airborne Legionella pneumophila by PCR. A total of 64 samples were taken at a wastewater treatment plant, a chemical plant, and an office building and analyzed by culture and PCR. Results showed that three samples were positive both by PCR and plate culture, and that nine samples negative by plate culture were positive by PCR, proving that L. pneumophila was present in bioaerosols from these three different environments. The results demonstrate the utility of this single-stage multiple-hole impactor for sampling bioaerosols, both by culture and by PCR.  相似文献   

5.
Airborne fungal contaminants are increasingly gaining importance in view of health hazards caused by the spores themselves or by microbial metabolites. In addition to the risk for infection, the allergenic and toxigenic properties, as well as the inflammatory effects are discussed in this review as possible health impacts of bioaerosols. A major problem is the lack of threshold values for pathogenic and non-pathogenic fungi, both in the workplace and in outdoor air. While the relevance of mycotoxins has been intensely studied in connection with contamination of food and feed, the possible respiratory uptake of mycotoxins from the air has so far not been sufficiently taken into account. Toxic secondary metabolites are expected to be present in airborne spores, and may thus occur in airborne dust and bioaerosols. Potential health risks cannot be estimated reliably unless exposure to mycotoxins is determined qualitatively and quantitatively. Microbial volatile organic compounds (MVOC) have been suggested to affect human health, causing lethargy, headache, and irritation of the eyes and mucous membranes of the nose and throat. The production of MVOC by fungi has been discussed in connection with domestic indoor microbial pollution, but the relevance of fungal metabolites in working environments remains insufficiently studied.  相似文献   

6.
Gregg M. Recer 《Aerobiologia》2004,20(3-4):179-190
Exposure to fungal allergens is an important contributor to allergic respiratory disease, but information on the efficacy of residential fungal allergen-avoidance in allergic-disease management is lacking. Using vacuum cleaners with high-efficiency exhaust filtration is one method recommended for reducing residential allergen exposure levels, but their use to reduce fungal-spore exposure levels has not been evaluated. To evaluate the effectiveness of high-efficiency vacuuming to control airborne fungal-spore levels, fungal bioaerosols were repeatedly assessed over the course of 10 months in homes randomly assigned to groups using either conventionally filtered (control) or high-efficiency-filtered vacuum cleaners for routine vacuum cleaning. Air samples were analyzed for three fungal-spore categories representing taxa with predominantly outdoor sources and one representing taxa that commonly have indoor sources. In a two-way analysis of variance, sampling period had a significant effect on mean levels of all fungal-spore categories. Vacuum cleaner type had a marginally significant effect on the indoor spore category, with one high-efficiency vacuum group mean (of three) significantly lower than one control mean. No effect was observed of vacuum cleaner type on outdoor spore categories. Including home-environment variables in analysis of covariance models strengthened the effect of the vacuum-type treatment on the indoor spore category, with no effect on the three outdoor spore categories. Decreased indoor spore levels vs. controls were only observed in high-efficiency vacuum groups during the last sampling period, at the end of the heating season. The results suggest that using a vacuum with high-efficiency filtered exhaust could have some modest effectiveness in controlling airborne fungal-spore exposure in homes when infiltration of outdoor air is very limited.  相似文献   

7.
Exposure to fungal allergens is an important contributor to allergic respiratory disease, but information on the efficacy of residential fungal allergen-avoidance in allergic-disease management is lacking. Using vacuum cleaners with high-efficiency exhaust filtration is one method recommended for reducing residential allergen exposure levels, but their use to reduce fungal-spore exposure levels has not been evaluated. To evaluate the effectiveness of high-efficiency vacuuming to control airborne fungal-spore levels, fungal bioaerosols were repeatedly assessed over the course of 10 months in homes randomly assigned to groups using either conventionally filtered (control) or high-efficiency-filtered vacuum cleaners for routine vacuum cleaning. Air samples were analyzed for three fungal-spore categories representing taxa with predominantly outdoor sources and one representing taxa that commonly have indoor sources. In a two-way analysis of variance, sampling period had a significant effect on mean levels of all fungal-spore categories. Vacuum cleaner type had a marginally significant effect on the indoor spore category, with one high-efficiency vacuum group mean (of three) significantly lower than one control mean. No effect was observed of vacuum cleaner type on outdoor spore categories. Including home-environment variables in analysis of covariance models strengthened the effect of the vacuum-type treatment on the indoor spore category, with no effect on the three outdoor spore categories. Decreased indoor spore levels vs. controls were only observed in high-efficiency vacuum groups during the last sampling period, at the end of the heating season. The results suggest that using a vacuum with high-efficiency filtered exhaust could have some modest effectiveness in controlling airborne fungal-spore exposure in homes when infiltration of outdoor air is very limited.  相似文献   

8.
Ambient bioaerosols are ubiquitous in the daily environment and can affect health in various ways. However, few studies have been conducted to comprehensively evaluate personal bioaerosol exposure in occupational and indoor environments because of the complex composition of bioaerosols and the lack of standardized sampling/analysis methods. We conducted a study to determine the most efficient collection/analysis method for the personal exposure assessment of multiple bioaerosols. The sampling efficiencies of three filters and four samplers were compared. According to our results, polycarbonate (PC) filters had the highest relative efficiency, particularly for bacteria. Side-by-side sampling was conducted to evaluate the three filter samplers (with PC filters) and the NIOSH Personal Bioaerosol Cyclone Sampler. According to the results, the Button Aerosol Sampler and the IOM Inhalable Dust Sampler had the highest relative efficiencies for fungi and bacteria, followed by the NIOSH sampler. Personal sampling was performed in a pig farm to assess occupational bioaerosol exposure and to evaluate the sampling/analysis methods. The Button and IOM samplers yielded a similar performance for personal bioaerosol sampling at the pig farm. However, the Button sampler is more likely to be clogged at high airborne dust concentrations because of its higher flow rate (4 L/min). Therefore, the IOM sampler is a more appropriate choice for performing personal sampling in environments with high dust levels. In summary, the Button and IOM samplers with PC filters are efficient sampling/analysis methods for the personal exposure assessment of multiple bioaerosols.  相似文献   

9.
Most recent air quality issues related to particulate matter pollution address ultrafine (UFP?<?0.1???m) and nanoparticle (NP?<?0.05???m) size fractions and their involvement in health related issues. Consequently, large efforts have been dedicated to the evaluation of their concentration levels in ambient air, with particular reference to those situations typically representative of the highest expected human exposures (urban sites with high traffic density, indoor domestic environments, industrial workplaces). Similar investigations for assessing emissions arising from outdoor sources responsible of their origin have been mostly confined to vehicle emissions, particularly light and heavy duty diesel engines, with very limited informations for stationary combustion activities, yet considered of potential significance in the whole emissions budget. Still less attention has been attracted by some specific sources like waste to energy (WTE) plants and small scale residential heating boilers, despite their large utilization in or near heavily populated areas and their interest in public stakeholders for health related concerns. Present paper reports on the available data of UFP and NP emissions from full scale WTE plants and from small scale boilers fired with fuels typical of heat generation in the residential sector (wood pellets, light oil, natural gas), with particular reference on measurements conducted with those sampling techniques proposed recently for investigating also the contribution of the condensable fraction from semivolatile flue gas components on primary UFP concentrations and corresponding size distributions.  相似文献   

10.
Peat moss processing plant workers are exposed to high concentrations of bioaerosols. Although mycobacteria have been cultured from peat moss, no study has examined the workers' exposure to mycobacterial bioaerosols. We evaluated the presence of mycobacteria in air samples from peat moss processing plants using molecular biology approaches (cloning-sequencing and polymerase chain reaction (PCR)) and the workers exposure using immunoglobulin G (IgG) complexes to mycobacteria. In addition, species detected in air samples and in peat moss were compared. Two peat moss processing plants were chosen among 14 previously studied. A total of 49 clones were sequenced. Real-time PCR was also performed on the same air samples to evaluate the airborne concentration of mycobacteria and estimate exposure levels. Several Mycobacterium species were present in the air samples (M. malmoense, M. smegmatis, M. graceum, M. bohemicum, and M. interjectum). Mycobacterium avium was recovered by culture in peat moss but not in the air using the molecular approach. Total airborne Mycobacterium concentration was estimated at 8.2 x 10(8)/m3. Workers had IgG against the mycobacterial mix and M. avium, suggesting significant exposure. The findings from air samples, supported by IgG measurements, demonstrate that peat moss processing plant workers are exposed to mycobacteria in addition to other biological agents.  相似文献   

11.
Poor indoor air quality is a health problem of escalating magnitude, as communities become increasingly urbanised and people’s behaviours change, lending to lives spent almost exclusively in indoor environments. The accumulation of, and continued exposure to, indoor air pollution has been shown to result in detrimental health outcomes. Particulate matter penetrating into the building, volatile organic compounds (VOCs) outgassing from synthetic materials and carbon dioxide from human respiration are the main contributors to these indoor air quality concerns. Whilst a range of physiochemical methods have been developed to remove contaminants from indoor air, all methods have high maintenance costs. Despite many years of study and substantial market demand, a well evidenced procedure for indoor air bioremediation for all applications is yet to be developed. This review presents the main aspects of using horticultural biotechnological tools for improving indoor air quality, and explores the history of the technology, from the humble potted plant through to active botanical biofiltration. Regarding the procedure of air purification by potted plants, many researchers and decades of work have confirmed that the plants remove CO2 through photosynthesis, degrade VOCs through the metabolic action of rhizospheric microbes, and can sequester particulate matter through a range of physical mechanisms. These benefits notwithstanding, there are practical barriers reducing the value of potted plants as standalone air cleaning devices. Recent technological advancements have led to the development of active botanical biofilters, or functional green walls, which are becoming increasingly efficient and have the potential for the functional mitigation of indoor air pollutant concentrations.  相似文献   

12.
Scientific evidence associates indoor environment pollutants with respiratory effects (asthma and allergies), and children constitute one of most sensitive groups. Indoor air quality (IAQ) in schools may indeed be a significant health factor for children, with effects on school attendance and performance. Our aim was to characterize IAQ of classrooms in Maia County (north of Portugal) for which there was no information available. The study was conducted in 21 of the 40 primary schools, selected by stratified random sampling. Depending on the dimension, one or two classrooms were tested at each school. Walkthrough surveys of school grounds, buildings, and individual classrooms were done. Continuous measurements were taken of temperature, relative humidity, airborne respirable particles, total volatile organic compounds, and carbon dioxide, whereas bioaerosols were counted on Plate Count Agar during regular school activities. The indoor arithmetic mean for PM10, CO2, TCOV, and bioaerosol concentrations were 0.14 mg/m3, 999 ppm, 0.41 mg/m3, and 4140 UCF/m3, respectively. The values of PM10 and CO2 were close to their acceptable maximum values, but bioaerosols were much higher. This study supports previous studies conducted in school environments and emphasizes the need for proactive indoor air quality audits in school buildings.  相似文献   

13.
Bioaerosols (or biogenic aerosols) have largely been overlooked by molecular ecologists. However, this is rapidly changing as bioaerosols play key roles in public health, environmental chemistry and the dispersal ecology of microbes. Due to the low environmental concentrations of bioaerosols, collecting sufficient biomass for molecular methods is challenging. Currently, no standardized methods for bioaerosol collection for molecular ecology research exist. Each study requires a process of optimization, which greatly slows the advance of bioaerosol science. Here, we evaluated air filtration and liquid impingement for bioaerosol sampling across a range of environmental conditions. We also investigated the effect of sampling matrices, sample concentration strategies and sampling duration on DNA yield. Air filtration using polycarbonate filters gave the highest recovery, but due to the faster sampling rates possible with impingement, we recommend this method for fine ‐scale temporal/spatial ecological studies. To prevent bias for the recovery of Gram‐positive bacteria, we found that the matrix for impingement should be phosphate‐buffered saline. The optimal method for bioaerosol concentration from the liquid matrix was centrifugation. However, we also present a method using syringe filters for rapid in‐field recovery of bioaerosols from impingement samples, without compromising microbial diversity for high ‐throughput sequencing approaches. Finally, we provide a resource that enables molecular ecologists to select the most appropriate sampling strategy for their specific research question.  相似文献   

14.
Despite the ubiquity of biofilms in natural and man-made environments, research on surface-associated cells has focused primarily on solid–liquid interfaces. This study evaluated the extent to which bacterial cells persist on inanimate solid–air interfaces. The desiccation tolerance of bacterial strains isolated from indoor air, as well as of a test strain (Pseudomonas aeruginosa), was determined at different levels of relative humidity (RH) using the large droplet inoculation method in an aerosol chamber. The cells survived longer at lower (25 and 42%) than at high RH (95%). Four of the seven indoor strains selected for further study showed extended period of survival following deposition as 0.05–0.1?ml of washed culture followed by desiccation, each with different effects on the survival of the test strain, P. aeruginosa. A strain closely related to Arthrobacter species afforded the highest level of protection to the test strain. Even though the desiccation-tolerant strains survived when they were deposited as bioaerosols, the protective role towards the test strain was not observed when the latter was deposited as a bioaerosol. These, which are often-unculturable, bacteria may go undetected during routine monitoring of biofouling, thereby allowing them to act as reservoirs and extending the habitat range of undesired microorganisms.  相似文献   

15.

Despite significant public health concerns regarding infectious diseases in air environments, potentially harmful microbiological indicators, such as antibiotic resistance genes (ARGs) in bioaerosols, have not received significant attention. Traditionally, bioaerosol studies have focused on the characterization of microbial communities; however, a more serious problem has recently arisen due to the presence of ARGs in bioaerosols, leading to an increased prevalence of horizontal gene transfer (HGT). This constitutes a process by which bacteria transfer genes to other environmental media and consequently cause infectious disease. Antibiotic resistance in water and soil environments has been extensively investigated in the past few years by applying advanced molecular and biotechnological methods. However, ARGs in bioaerosols have not received much attention. In addition, ARG and HGT profiling in air environments is greatly limited in field studies due to the absence of suitable methodological approaches. Therefore, this study comprehensively describes recent findings from published studies and some of the appropriate molecular and biotechnological methods for monitoring antibiotic resistance in bioaerosols. In addition, this review discusses the main knowledge gaps regarding current methodological issues and future research directions.

  相似文献   

16.
Characterizing the variation in bioaerosol concentrations is important for the estimation of health effects associated with bioaerosols and planning exposure assessment strategies. This investigation was conducted in order to develop a better understanding of exposure to fungal spores, pollen, and (1→3)-β-d-glucan, by determining the variations of their concentrations between and within homes. In the study, 24-h air sampling was performed on five consecutive days in four Cincinnati area homes. The samples (a total of 160) were taken simultaneously in four different rooms inside each home and at four different outside locations near the home using Button Personal Inhalable Aerosol Samplers. The relative sizes of the between- and within-home variability to the total variability were calculated for each outcome. The relative sizes of the between- and within-home variability in indoor air ranged from 0.10 to 0.52 and 0.09 to 0.10, respectively. For outdoor air, the between- and within-home variability ranged from 0.27 to 0.50 and 0.09 to 0.10, respectively. Thus, the ranges of within-home variability, both indoors and outdoors, were much less than the variability between different homes. The results suggest that, if long-term sampling methods are employed to characterize the bioaerosol exposure for a population, the sampling should be repeated in a larger number of homes as an alternative to replicate sampling in a fewer number of homes. When characterizing exposure within one home, the sampling should be repeated in different rooms, rather than repeating it on different days.  相似文献   

17.
The objective of this study was to investigate a relationship between indoor air pollution from heating and cooking with coal-burning stoves and from environmental tobacco smoke (ETS), and the level of urinary 1-hydroxypyrene (1-OH-PY). 1-OH-PY was analysed in children living in three areas of Silesia, a province in Poland. Urine samples were collected in winter, (1) from children exposed to ETS and smoke resulting from indoor coal-burning and (2) from control children. Airborne particulates had been sampled by use of stationary samplers by the Regional Sanitary-Epidemiological Station, Katowice throughout 12 months prior to the urine sampling. The urinary level of 1-OH-PY tended to increase in children exposed to ETS, but the increase was not significant. The concentrations of 1-OH-PY in urine of passive smokers were significantly elevated only in Bytom where an index of smoking parents of the studied children was highest as compared to other areas. Exposure to polycyclic aromatic hydrocarbons (PAH) due to domestic heating and cooking with coal-burning stoves resulted in significantly increased levels of 1-OH-PY. The results of this study indicate that the uptake of PAH due to indoor air pollution strongly affected the level of 1-OH-PY and that the main source of PAH in indoor air was the household use of coal for heating and/or cooking. When the results associated with this kind of exposure were excluded, median 1-OH-PY levels from the three examined areas assumed a pattern more similar to that of the benzo(a)pyrene (BaP) concentrations in ambient air.  相似文献   

18.
The microbiological quality of indoor air is creating an increasing interest especially as far as places at risk such as hospitals, clinics, medical and odontological surgeries are concerned. Working with the odontologists of our province we have been carrying out a research aimed at preventing cross-infection in odontology. Data obtained from the microbiological analysis of the air in 36 surgeries using S.A.S. were discussed during the V National Congress of Aerobiology. During that congress the need of setting a standardized technique of air sampling in indoor environments emerged and two routes have been identified: (1) the gravimetric technique on open plate exposed for an hour close to the dental unit and (2) the use of the volumetric sampler which gives qualitative data expressed as colonies forming units per cubic metre of air. However, both of these techniques present some problems: using the first a loss of micro-organisms has been noticed due to the variability of the air fluxes and the different weight of the biological particles; using the second one the bacterial charge is also undervalued, because of the stress suffered by the bacteria with the use of the volumetric sampler. In the light of these statements we decided to use both in dental surgeries to be able to compare the results obtained. Our project is expected to carry out at least one inspection and the relative sampling (indoor air, water of the dental unit, air of the syringe, disinfectant solution, surface tampons, biological test of sterility) in each dental surgery in the territory of our health Unit, located in Ferrara, Northern Italy.  相似文献   

19.
The microbiological quality of indoor air is creating an increasing interest especially as far as places at risk such as hospitals, clinics, medical and odontological surgeries are concerned. Working with the odontologists of our province we have been carrying out a research aimed at preventing cross-infection in odontology. Data obtained from the microbiological analysis of the air in 36 surgeries using S.A.S were discussed during the V National Congress of Aerobiology. During that congress the need of setting a standardized technique of air sampling in indoor environments emerged and two routes have been identified: (1) the gravimetric technique on open plate exposed for an hour close to the dental unit and (2) the use of the volumetric sampler which gives qualitative data expressed as colonies forming units per cubic metre of air. However, both of these techniques present some problems: using the first a loss of micro-organisms has been noticed due to the variability of the air fluxes and the different weight of the biological particles; using the second one the bacterial charge is also undervalued, because of the stress suffered by the bacteria with the use of the volumetric sampler. In the light of these statements we decided to use both in dental surgeries to be able to compare the results obtained. Our project is expected to carry out at least one inspection and the relative sampling (indoor air, water of the dental unit, air of the syringe, disinfectant solution, surface tampons, biological test of sterility) in each dental surgery in the territory of our health Unit, located in Ferrara, Northern Italy.  相似文献   

20.
近年来,新型冠状病毒肺炎疫情全球肆虐,引起了公众对于微生物气溶胶潜在风险的极大关注,其中人为源微生物气溶胶潜在的健康危害逐步成为越来越多学者关注的热点之一。本文综述了近年来4类主要人为源微生物气溶胶的研究现状,比较了不同人为源微生物气溶胶的分布特征和微生物组成特性,并探究了影响微生物气溶胶特征的主要因素及其存在的潜在风险。结果表明,畜禽养殖场微生物气溶胶平均浓度最高,其次是污水处理厂和垃圾填埋场,医院最低。从微生物组成特性来说,不同人为源微生物气溶胶中微生物组成与其产生源密切相关;同时,其组成也受其所处环境条件影响。基于以上分析,本文进一步展望了未来人为源微生物气溶胶的主要研究方向,以期为微生物气溶胶控制标准的制定及控制技术的研发奠定基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号