首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The development of macrophages from myeloid progenitor cells is primarily controlled by the growth factor colony stimulating factor-1 (CSF-1) and its cognate receptor, a transmembrane tyrosine kinase encoded by the c-Fms proto-oncogene. The CSF-1 receptor exerts its biological effects on cells via a range of signaling proteins including Erk1/2 and Akt. Here we have investigated the potential involvement of the Src-like adapter protein (SLAP-2) in signaling by the CSF-1 receptor in mouse bone marrow-derived macrophages. RT-PCR analysis revealed constitutive expression of the SLAP-2 gene in bone marrow macrophages. Surprisingly, co-immunoprecipitation and GST binding experiments demonstrated that the CSF-1 receptor could bind to SLAP-2 in a ligand-independent manner. Furthermore, the binding of SLAP-2 to the CSF-1 receptor involved multiple domains of SLAP-2. SLAP-2 also bound c-Cbl, with the interaction being mediated, at least in part, by the unique C-terminal domain of SLAP-2. Overexpression of SLAP-2 in bone marrow macrophages partially suppressed the CSF-1-induced tyrosine phosphorylation and/or expression level of a approximately 80 kDa protein without affecting CSF-1-induced global tyrosine phosphorylation, or activation of Akt or Erk1/2. Significantly, CSF-1 stimulation induced serine phosphorylation of SLAP-2. Pharmacologic inhibition of specific protein kinases revealed that CSF-1-induced phosphorylation of SLAP-2 was dependent on JNK activity. Taken together, our results suggest that SLAP-2 could potentially be involved in signaling by the CSF-1 receptor.  相似文献   

3.
The macrophage-specific CSF (CSF-1), purified from murine L cell-conditioned medium, supports the in vitro proliferation and survival of various murine mononuclear phagocyte colony-forming cells. In this report we describe the production and functional characterization of two monoclonal antibodies (mAb) to CSF-1 obtained from rat X rat hybridomas. These two mAb are functionally distinct and recognize different epitopes on CSF-1. The mAb 5A1 binds to and inhibits the biologic function of CSF-1, and the second mAb (D24) binds CSF-1 but does not neutralize its biologic activity. The mAb 5A1 inhibits colony formation of tissue mononuclear phagocyte colony-forming cells as well as the committed bone marrow stem cells for both granulocytes and monocytes. The extent of colony inhibition by mAb 5A1 is dependent on the tissue origin of colony-forming cells. CSF-1 complexed with mAb 5A1 does not bind to its cell surface receptor of peritoneal exudate macrophages, and mAb 5A1 does not complex with cell-bound CSF-1. Although both bone marrow cell-derived macrophages and J774.1 macrophages bind CSF-1, mAb 5A1 inhibits the proliferation of only bone marrow cell-derived macrophages. The non-neutralizing mAb D24 does not block binding of CSF-1 to its cellular receptor, and it recognizes cell-bound CSF-1.  相似文献   

4.
Osteoclasts differentiate from hematopoietic mononuclear precursor cells under the control of both colony stimulating factor-1 (CSF-1, or M-CSF) and receptor activator of NF-kappaB ligand (RANKL, or TRANCE, TNFSF11) to carry out bone resorption. Using high density gene microarrays, we followed gene expression changes in long bone RNA when CSF-1 injections were used to restore osteoclast populations in the CSF-1-null toothless (csf1(tl)/csf1(tl)) osteopetrotic rat. We found that ovarian cancer G-protein-coupled receptor 1 (OGR1, or GPR68) was strongly up-regulated, rising >6-fold in vivo after 2 days of CSF-1 treatments. OGR1 is a dual membrane receptor for both protons (extracellular pH) and lysolipids. Strong induction of OGR1 mRNA was also observed by microarray, real-time RT-PCR, and immunoblotting when mouse bone marrow mononuclear cells and RAW 264.7 pre-osteoclast-like cells were treated with RANKL to induce osteoclast differentiation. Anti-OGR1 immunofluorescence showed intense labeling of RANKL-treated RAW cells. The time course of OGR1 mRNA expression suggests that OGR1 induction is early but not immediate, peaking 2 days after inducing osteoclast differentiation both in vivo and in vitro. Specific inhibition of OGR1 by anti-OGR1 antibody and by small inhibitory RNA inhibited RANKL-induced differentiation of both mouse bone marrow mononuclear cells and RAW cells in vitro, as evidenced by a decrease in tartrate-resistant acid phosphatase-positive osteoclasts. Taken together, these data indicate that OGR1 is expressed early during osteoclastogenesis both in vivo and in vitro and plays a role in osteoclast differentiation.  相似文献   

5.
The tumor-promoting phorbol diester, 12-O-tetradecanoylphorbol-13-acetate (TPA) was found to act both independently of and synergistically with the mononuclear phagocyte specific colony stimulating factor (CSF-1) to stimulate the formation of macrophage colonies in cultures of mouse bone marrow cells. In contrast, TPA did not synergize with other CSF subclasses that stimulate the formation of eosinophil, eosinophil-neutrophil, neutrophil, neutrophil-macrophage, and macrophage colonies, nor with either of the two factors required for megakaryocyte colony formation, megakaryocyte CSF, and megakaryocyte colony potentiator. In serum-free mouse bone marrow cell cultures TPA retained the ability to independently stimulate macrophage colony formation. However, TPA-stimulated colony formation was suboptimal and delayed in serum-free cultures that could support optimal colony formation in the presence of CSF-1. In addition, TPA did not directly compete with [125I]CSF-1 at 4 degrees C for its specific, high-affinity receptor on mouse peritoneal exudate macrophages. However, a 2-hour preincubation of the cells with TPA at 37 degrees caused almost complete loss of the receptor. Thus, TPA is able to mimic CSF-1 in its effects on CSF-1 responsive cells in some aspects (the spectrum of target cells, the morphology of resulting colonies, and the ability to down-regulate the CSF-1 receptor) but it is not able to mimic CSF-1 in other ways (TPA alone cannot stimulate the full CSF-1 response, TPA does not stimulate the most primitive CSF-1 responsive cells, and TPA does not bind to the CSF-1 receptor).  相似文献   

6.
To investigate the role of specific cytokines in the development of the fully mature macrophage, we have employed murine bone marrow cells that were grown in the presence of CSF-1, a colony-stimulating factor that has been shown to induce the proliferation and differentiation of macrophages from their precursor cells. The CSF-1 employed in these studies was partially purified to ensure removal of contaminating interferon (IFN) from the preparations. After 1 to 2 wk in the presence of the partially purified CSF-1, the adherent macrophages were removed from flasks enzymatically and were recultured at known densities in the absence of CSF-1. Cell surface antigens (Mac-1 and Ia) and Fc receptor capacity (as assessed by Fc-mediated phagocytosis) were examined as markers of macrophage differentiation. Basal levels of Fc receptor capacity and Mac-1 antigen were markedly influenced by exposure to CSF-1, and appear to be modulated by CSF-induced, macrophage-derived IFN. When the bone marrow-derived macrophages were exposed to exogenous IFN in the absence of CSF-1, they proved to be extremely inducible with respect to Fc-mediated phagocytosis (IFN-beta and rIFN-gamma) and Ia antigen expression (rIFN-gamma) when compared with thioglycollate-elicited macrophages. Thus, macrophage growth factors, such as CSF-1, promote macrophage maturation by inducing the production of autostimulatory signals, such as macrophage-derived IFN. In addition, exogenous cytokine stimuli, such as IFN-gamma, further amplify the differentiative potential of these cells. Bone marrow-derived macrophages, propagated under well-defined conditions and never exposed to eliciting agents, provide a powerful model for studying the role of cytokines, such as CSF-1 and IFN, in the differentiative pathway of macrophages.  相似文献   

7.
Since the osteopetrotic (op/op) mouse was demonstrated to have a mutation within the coding region of the CSF-1 gene itself, it serves as a model for investigating the differentiation mechanism of macrophage populations in the absence of functional CSF-1. The op/op mice were severely monocytopenic and showed marked reduction and abnormal differentiation of tissue macrophages. Osteoclasts as well as marginal metallophilic macrophages and marginal zone macrophages in the spleen were absent. Most of the tissue macrophages were reduced in number and ultrastructurally immature. However, the degree of reduction in numbers of macrophages in the mutant mice was variable among tissues, suggesting that the heterogeneity of macrophages was generated by their different dependency on CSF-1. After daily CSF-1 injection, the numbers of monocytes, tissue macrophages, and osteoclasts were remarkably increased, and the macrophages showed morphological maturation. However, the numbers of macrophages in the ovary, uterus, and synovial membrane were not increased. In the bone marrow, macrophage precursors detected by monoclonal antibody ER-MP58 proliferated and differentiated into preosteoclasts and osteoclasts. In the spleen, marginal metallophilic macrophages and marginal zone macrophages developed slowly. In this manner, CSF-1 plays an important role in the development, proliferation, and differentiation of certain tissue macrophage populations and osteoclasts. In the op/op mice, Kupffer cells proliferated, transformed into epithelioid cells and multinucleated giant cells, and participated in glucan-induced granuloma formation. In CSF-1-treated op/op mice, the process of granuloma formation was similar to that in normal littermates due to increased monocytopoiesis and monocyte influx into the granulomas. These results indicate that CSF-1 is a potent inducer of the development and differentiation of CSF-1-dependent monocyte/macrophages, and that CSF-1-independent macrophages also play an important role in granuloma formation. Mol Reprod Dev 46:85–91, 1997. © 1997 Wiley Liss, Inc.  相似文献   

8.
Colony stimulating factor (CSF-1) and its receptor, CSF-1R, have been previously well studied in humans and rodents to dissect the role they play in development of cells of the mononuclear phagocyte system. A second ligand for the CSF-1R, IL-34 has been described in several species. In this study, we have cloned and expressed the feline CSF-1R and examined the responsiveness to CSF-1 and IL-34 from a range of species. The results indicate that pig and human CSF-1 and human IL-34 are equally effective in cats, where both mouse CSF-1 and IL-34 are significantly less active. Recombinant human CSF-1 can be used to generate populations of feline bone marrow and monocyte derived macrophages that can be used to further dissect macrophage-specific gene expression in this species, and to compare it to data derived from mouse, human and pig. These results set the scene for therapeutic use of CSF-1 and IL-34 in cats.  相似文献   

9.
10.
We previously reported a dramatically increased number of macrophages in tumor-bearing mice. In this study, we investigated the involvement of CSF in that phenomenon. CSF-1 responding cells as macrophages precursors increased significantly in number in the spleens of tumor-bearing mice as compared with those in normal mice. Splenic cells and sera from the tumor-bearing mice respectively expressed CSF-1 in mRNA and serum protein levels, but failed to express the other CSF (granulocyte-macrophage-CSF or IL-3). Nonadherent splenic mononuclear cells (< 0.5% macrophages) from normal mice proliferated and differentiated into mature macrophages in culture within 7 days with recombinant mouse CSF-1 (rCSF-1). Both macrophages harvested from tumor-bearing mice and those activated in vitro with rCSF-1 expressed mostly Mac-1, -2 (and -3) Ag, showed yeast phagocytosis, produced IL-1 but not IL-2 or IL-3, and displayed potent cytotoxicity against NK cell resistant Meth-A tumor cells. These macrophages also expressed lipocortin I mRNA and secreted lipocortin I protein, and suppressed mitogenic responses of splenic lymphocytes. rCSF-1-activated macrophages derived from nonadherent splenic cells expressed both CSF-1 and CSF-1 receptor (c-fms) mRNA. Administration of rCSF-1 into normal mice induced hemopoietic and immunologic alternations similar to those observed in tumor-bearing mice. These results suggest that CSF-1 is involved in the dramatic increase of macrophages in tumor-bearing mice, possibly through an autocrine or paracrine loop.  相似文献   

11.
Primary cultures of murine bone marrow macrophages (BMMs) were prepared from marrow cell suspensions. These cells expressed specific receptors that recognized the transformed conformation of human alpha 2-macroglobulin (alpha 2M) generated by reaction with CH3NH2. alpha 2M receptor expression was regulated by colony-stimulating factor-1 (CSF-1). The BMMs were deprived of CSF-1 for 6 h and then treated with different concentrations of the purified cytokine. After 18 h, binding of 125I-alpha 2M-CH3NH2 was examined at 4 degrees C. Analysis of the saturation isotherms and Scatchard transformations indicated that the KD was not affected by CSF-1 (1.9-2.4 nM), whereas the maximum specific radioligand binding capacity (Bmax) was increased from 5.6 x 10(4) receptors/cell in the absence of CSF-1 to 2.2 x 10(5) and 2.6 x 10(5) receptors/cell for BMMs treated with 1,000 and 10,000 units/ml CSF-1, respectively. The difference in total cellular protein after exposure to different levels of CSF-1 for 18 h was small (1.50-1.92 ng/cell) and not statistically significant. A 6-12-h lag phase was identified between the time of CSF-1 exposure and increased alpha 2M receptor expression. Cycloheximide completely blocked the increase in alpha 2M receptor expression when added simultaneously with the CSF-1; greater than 50% inhibition was observed when the cycloheximide was added up to 8 h later. The RNA synthesis inhibitors, actinomycin D and daunomycin, prevented increased alpha 2M receptor expression when added up to 4 h after the CSF-1, but had no effect at 8 h. At 37 degrees C, uptake and digestion of 125I-alpha 2M-CH3NH2 was increased in BMMs treated with 1,000 units/ml CSF-1 for 18 h compared with untreated cells. These studies demonstrate that CSF-1 increases the expression of alpha 2M receptors in BMMs through a pathway that requires new RNA and protein synthesis. We hypothesize that increased alpha 2M receptor expression may play an important role in cellular growth and differentiation.  相似文献   

12.
13.
Mice null for the T-cell protein tyrosine phosphatase (Tcptp-/-) die shortly after birth due to complications arising from the development of a systemic inflammatory disease. It was originally reported that Tcptp-/- mice have increased numbers of macrophages in the spleen; however, the mechanism underlying the aberrant growth and differentiation of macrophages in Tcptp-/- mice is not known. We have identified Tcptp as an important regulator of colony-stimulating factor 1 (CSF-1) signaling and mononuclear phagocyte development. The number of CSF-1-dependent CFU is increased in Tcptp-/- bone marrow. Tcptp-/- mice also have increased numbers of granulocyte-macrophage precursors (GMP), and these Tcptp-/- GMP yield more macrophage colonies in response to CSF-1 relative to wild-type cells. Furthermore, we have identified the CSF-1 receptor (CSF-1R) as a physiological target of Tcptp through substrate-trapping experiments and its hyperphosphorylation in Tcptp-/- macrophages. Tcptp-/- macrophages also have increased tyrosine phosphorylation and recruitment of a Grb2/Gab2/Shp2 complex to the CSF-1R and enhanced activation of Erk after CSF-1 stimulation, which are important molecular events in CSF-1-induced differentiation. These data implicate Tcptp as a critical regulator of CSF-1 signaling and mononuclear phagocyte development in hematopoiesis.  相似文献   

14.
In this study the effects of rhIGF-I on macrophage differentiation and growth have been studied using liquid suspension cultures of rat bone marrow cells. IGF-I stimulated macrophage growth in a dose-dependent manner, a maximum response was found at a concentration of 20 ng/ml. IGF-I effects could be ascribed to stimulation of both postmitotic and proliferating cells. A remarkable finding was that IGF-I induced formation of multinucleated cells (MNC). The MNC resembled macrophage-like cells (AcP, NSE positive). A monoclonal antibody to rhIGF-I significantly inhibited IGF-stimulated macrophage growth and MNC formation. A specific antibody to mouse CSF-1 reduced IGF-stimulated macrophage growth in mouse bone marrow cultures indicating that IGF-I effects could, at least in part, be ascribed to endogenous production of CSF-1. These findings indicate that IGF-I in concert with locally induced CSF-1 can influence the differentiation and growth of bone marrow-derived macrophages.  相似文献   

15.
All solid organs contain resident monocyte-derived cells that appear early in organogenesis and persist throughout life. These cells are critical for normal development in some organs. Here we report the use of a previously described transgenic line, with EGFP driven by the macrophage-restricted Csf1r (c-fms) promoter, to image macrophage production and infiltration accompanying organogenesis in many tissues. Using microarray analysis of FACS-isolated EGFP-positive cells, we show that fetal kidney, lung and brain macrophages show similar gene expression profiles irrespective of their tissue of origin. EGFP-positive cells appeared in the renal interstitium from 12 days post coitum, prior to nephrogenesis, and maintain a close apposition to renal tubules postnatally. CSF-1 added to embryonic kidney explants increased overall renal growth and ureteric bud branching. Expression profiling of tissue macrophages and of CSF-1-treated explants showed evidence of the alternate, pro-proliferative (M2) activation profile, including expression of macrophage mannose receptor (CD206), macrophage scavenger receptor 2 (Msr2), C1q, CD163, selenoprotein P, CCL24 and TREM2. This response has been associated with the trophic role of tumour-associated macrophages. These findings suggest a trophic role of macrophages in embryonic kidney development, which may continue to play a similar role in postnatal repair.  相似文献   

16.
The interactions of the macrophage colony-stimulating factor 1 (CSF-1) receptor with potential targets were investigated after ligand stimulation either of mouse macrophages or of fibroblasts that ectopically express mouse CSF-1 receptors. In Rat-2 cells expressing the mouse CSF-1 receptor, full activation of the receptor and cellular transformation require exogenous CSF-1, whereas NIH 3T3 cells expressing mouse c-fms are transformed by autocrine stimulation. Activated CSF-1 receptors physically associate with a phosphatidylinositol (PI) 3'-kinase. A mutant CSF-1 receptor with a deletion of the kinase insert region was deficient in its ability to bind functional PI 3'-kinase and to induce PI 3'-kinase activity precipitable with antiphosphotyrosine antibodies. In fibroblasts, CSF-1 stimulation also induced the phosphorylation of the GTPase-activating protein (GAP)-associated protein p62 on tyrosine, although GAP itself was a relatively poor substrate. In contrast to PI 3'-kinase association, phosphorylation of p62 and GAP was not markedly affected by deletion of the kinase insert region. These results indicate that the kinase insert region selectively enhances the CSF-1-dependent association of the CSF-1 receptor with active PI 3'-kinase. The insert deletion mutant retains considerable transforming activity in NIH 3T3 cells (G. Taylor, M. Reedijk, V. Rothwell, L. Rohrschneider, and T. Pawson, EMBO J. 8:2029-2037, 1989). This mutant was more seriously impaired in Rat-2 cell transformation, although mutant-expressing Rat-2 cells still formed small colonies in soft agar in the presence of CSF-1. Therefore, phosphorylation of GAP and p62 through activation of the CSF-1 receptor does not result in full fibroblast transformation. The interaction between the CSF-1 receptor and PI 3'-kinase may contribute to c-fms fibroblast transformation and play a role in CSF-1-stimulated macrophages.  相似文献   

17.
Unmethylated CpG motifs within bacterial DNA constitute a pathogen-associated molecular pattern recognized by the innate immune system. Many of the immunomodulatory functions of bacterial DNA can be ascribed to the ability to activate macrophages and dendritic cells. Here we show stimulatory DNA, like LPS, caused growth arrest of murine bone marrow-derived macrophages proliferating in CSF-1. Stimulatory DNA caused selective down-modulation of CSF-1 receptor surface expression. Flow cytometric analysis of CSF-1-deprived bone marrow-derived macrophages revealed that in contrast to the synchronous reduction of CSF-1 receptor upon CSF-1 addition, activating DNA (both bacterial DNA and CpG-containing oligonucleotide) caused rapid removal of receptor from individual cells leading to a bimodal distribution of surface expression at intermediate times or submaximal doses of stimulus. Despite causing growth arrest, both stimulatory DNA and LPS promoted factor-independent survival of bone marrow-derived macrophages, which was associated with phosphorylation of the mitogen-activated protein kinase family members, extracellular-regulated kinase 1 and 2. CSF-1 receptor down-modulation may polarize the professional APC compartment to the more immunostimulatory dendritic cell-like phenotype by suppressing terminal macrophage differentiation mediated by CSF-1.  相似文献   

18.
CSF-1 stimulates the survival, proliferation, and differentiation of mononuclear phagocytes and may also play a role in placental development. The expression of CSF-1 and the CSF-1 receptor (CSF-1R) and their regulation were examined in cultures of mouse mesangial cells (MC). The concentration of CSF-1 in the medium of cultured MC increased linearly with time over 24 h. IFN-gamma stimulated and dibutyryl cyclic AMP inhibited CSF-1 production in a dose-dependent manner. MC expression of CSF-1 mRNA was shown by Northern blot analysis, and CSF-1 mRNA levels were increased within 4 h of IFN-gamma addition and inhibited within 4 h of dibutyryl cyclic AMP addition. Indirect immunofluorescence indicated that 90% of the untreated cultured MC expressed CSF-1. In addition, CSF-1R expression by MC was demonstrated by immunofluorescence with anti-receptor antibody, specific binding of [125I] CSF-1, and expression of the CSF-1R mRNA by Northern blot analysis. Thus, mouse MC, specialized pericytes of non-bone marrow origin, not only produce CSF-1 but also express receptors for CSF-1. The effects of CSF-1 on MC may be important in the control of immune function in the glomerulus.  相似文献   

19.
The effect of purified, recombinant murine gamma interferon (IFN-gamma) on the regulation of macrophage proliferation induced by colony-stimulating factor 1 (CSF-1) was investigated. Although both hemopoietic stem cells (GM-CFC) and tissue-derived peritoneal exudate macrophages (PEM) proliferated in response to CSF-1, the more mature PEM were much more sensitive to an antiproliferative effect of IFN-gamma. The role of IFN-gamma receptor expression and its relationship to growth inhibition was examined. Bone marrow cells as a whole did not exhibit an appreciable amount of IFN-gamma receptor binding activity. Likewise, nonadherent (NA) cells derived from CSF-1-stimulated bone marrow cultures displayed low levels of IFN-gamma receptor binding activity. On the contrary, more mature adherent (AD) cells (monocytes/macrophages) from the same culture exhibited high levels of IFN-gamma receptor binding activity, which continued to increase with culture time. The elevated IFN-gamma binding activity is due to an increase in total receptor number rather than the binding affinity as judged by Scatchard analysis. Similar to the relationship between PEM and GM-CFC, more mature AD cells were also more susceptible to the inhibitory effect of IFN-gamma on CSF-1-induced proliferation than their less mature NA counterparts. The fact that the sensitivity to IFN-gamma correlated well with the expression of existing IFN-gamma receptors strongly suggests that the inhibitory effect is mediated through IFN-gamma receptors. This study shows that the expression of IFN-gamma receptors in mononuclear phagocytes may not only represent one of the phenotypic parameters acquired by the growing macrophages during the process of differentiation, but may play some role in controlling proliferation.  相似文献   

20.
Kidney tubular epithelial cell (TEC) death may be dependent on the number and activation state of macrophages (M phi) during inflammation. Our prior studies indicate that activated M phi release soluble mediators that incite TEC death, and reducing intrarenal M phi during kidney disease diminishes TEC apoptosis. CSF-1 is required for M phi proliferation and survival. We hypothesized that in the absence of CSF-1, M phi-mediated TEC apoptosis would be prevented during renal inflammation. To test this hypothesis, we evaluated renal inflammation during unilateral ureter obstruction in CSF-1-deficient (Csf1(op)/Csf1(op)) mice. We detected fewer M phi and T cells and less apoptotic TEC in the obstructed kidneys of Csf1(op)/Csf1(op) mice compared with wild-type (WT) mice. The decrease in intrarenal M phi resulted from diminished recruitment and proliferation, not enhanced apoptosis. CSF-1 enhanced M phi activation. There were far fewer activated (CD69, CD23, Ia, surface expression) M phi in obstructed CSF-1-deficient compared with WT obstructed kidneys. Similarly, bone marrow M phi preincubated with anti-CSF-1 receptor Ab or anti-CSF-1 neutralizing Ab were resistant to LPS- and IFN-gamma-induced activation. We detected fewer apoptotic-inducing molecules (reactive oxygen species, TNF-alpha, inducible NO synthase) in 1) M phi propagated from obstructed Csf1(op)/Csf1(op) compared with WT kidneys, and 2) WT bone marrow M phi blocked with anti-CSF-1 receptor or anti-CSF-1 Ab compared with the isotype control. Furthermore, blocking CSF-1 or the CSF-1 receptor induced less TEC apoptosis than the isotype control. We suggest that during renal inflammation, CSF-1 mediates M phi recruitment, proliferation, activation, and, in turn, TEC apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号