首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Alzamora R  Harvey BJ 《Steroids》2008,73(9-10):885-888
The non-genomic action of steroid hormones regulates a wide variety of cellular responses including regulation of ion transport, cell proliferation, migration, death and differentiation. In order to achieve such plethora of effects steroid hormones utilize nearly all known signal transduction pathways. One of the key signalling molecules regulating the non-genomic action of steroid hormones is protein kinase C (PKC). It is thought that rapid action of steroids hormones results from the activation of plasma membrane receptors; however, their molecular identity remains elusive. In recent years, an increasing number of studies have pointed at the selective binding and activation of specific PKC isoforms by steroid hormones. This has led to the hypothesis that PKC could act as a receptor as well as a transducer of the non-genomic effects of these hormones. In this review we summarize the current knowledge of the direct binding and activation of PKC by steroid hormones.  相似文献   

2.
Studies from our laboratory have demonstrated rapid ( < 1 min) non-genomic activation of Na(+)-H(+) exchange, K(+) recycling, PKC activity and a PKC-dependent Ca(2+) entry through L-type Ca(2+) channels specifically by mineralocorticoids in distal colon. Aldosterone directly stimulates the activity of the PKC alpha isoform (but not PKC delta, PKC epsilon and PKC zeta) in a cell-free assay system containing only purified commercially available enzyme, appropriate substrate peptide, co-factors and lipid vesicles. The primary ion transport target of the non-genomic signal transduction cascade elicited by aldosterone in epithelia is the Na(+)-H(+) exchanger. In isolated colonic crypts, aldosterone produced a PKC alpha sensitive intracellular alkalinisation within 1 min of hormone addition. Intracellular alkalinisation upregulates an ATP-dependent K(+) channel, which is involved in K(+) recycling to maintain the electrical driving force for Na(+) absorption, while inhibiting a Ca(2+) -dependent K(+) channel, which generates the charge balance for Cl(-) secretion. The non-genomic response to aldosterone in distal colon appears to enhance the capacity for absorption while down-regulating the potential for secretion. We have also demonstrated rapid (< 1 min) non-genomic activation of Na(+)-H(+) exchange, K(+) recycling, PKC alpha activity, and a PKC delta- and PKA-dependent Ca(2+) entry through di-hydropyridine-blockable Ca(2+) channels specifically by 17beta-estradiol in distal colon. These rapid effects are female gender specific and are insensitive to inhibitors of the classical estrogen receptor (ER). 17 beta-Estradiol directly stimulated the activity of both PKC delta and PKC alpha (but not PKC epsilon or PKC zeta) in a cell-free assay system. E2 rapidly inhibited basolateral K(Ca) channel activity which would be expected to result in an acute inhibition of Cl(-) secretion. Physiological concentrations of E2 (0.1-10 nM) reduced both basal and secretagogue-induced Cl(-) secretion. This anti-secretory effect of E2 is sensitive to PKC inhibition, intracellular Ca(2+) chelation, and is female gender specific and insensitive to inhibitors of the classical ER. These observations link rapid non-genomic activation of second messengers with a rapid gender-specific physiological effect in the whole tissue. Aldosterone and E2 differ in their protein kinase signal transduction and both hormones stimulate specific PKC isoforms indicating both common and divergent signalling systems for salt-retaining steroid hormones. The physiological function of non-genomic effects of aldosterone and estradiol is to shift the balance from net secretion to net absorption in a pluripotential epithelium.  相似文献   

3.
4.
Genomic and non-genomic effects of estrogens on endothelial cells   总被引:7,自引:0,他引:7  
  相似文献   

5.
6.
7.
Conversion of mechanical force into biochemical signaling   总被引:7,自引:0,他引:7  
Physical forces play important roles in regulating cell proliferation, differentiation, and death by activating intracellular signal transduction pathways. How cells sense mechanical stimulation, however, is largely unknown. Most studies focus on cellular membrane proteins such as ion channels, integrins, and receptors for growth factors as mechanosensory units. Here we show that mechanical stretch-induced c-Src protein tyrosine kinase activation is mediated through the actin filament-associated protein (AFAP). Distributed along the actin filaments, AFAP can directly active c-Src through binding to its Src homology 3 and/or 2 domains. Mutations at these specific binding sites on AFAP blocked mechanical stretch-induced c-Src activation. Therefore, mechanical force can be transmitted along the cytoskeleton, and interaction between cytoskeletal associated proteins and enzymes related to signal transduction may convert physical forces into biochemical reactions. Cytoskeleton deformation-induced protein-protein interaction via specific binding sites may represent a novel intracellular mechanism for cells to sense mechanical stimulation.  相似文献   

8.
Our understanding of the role of phospholipids in ion transport processes is only beginning to be appreciated. Although the role of polyphosphoinositide and its derived second messenger molecules IP3, diacylglycerol, and arachidonic acid are well studied, we are still not certain as to how changes in the lipid bilayer structure influence the status of ion channels. This review focused on those studies which show a strong correlation with ion conductance changes and the status of the membrane phospholipids. In addition, a number of observations point to a major role of lipid second messengers that activate enzymes involved in protein phosphorylations, i.e., protein kinase C, as major regulators of a variety of ion channels and transporters. Such lipid second messengers provide a cellular mechanism whereby hormones, neurotransmitters, and pharmacologic agents functionally control the ionic environment and intracellular pH of target cells. Some of these pathways still remain to be elucidated; however, an appreciation for the participation of membrane phospholipids in these actions has been presented.  相似文献   

9.
Estrogen signaling multiple pathways to impact gene transcription   总被引:2,自引:0,他引:2  
  相似文献   

10.
Eukaryotic cells respond to extracellular stimuli, such as viruses, by recruiting signal transduction pathways, many of which are mediated through activation of distinct mitogen-activated protein kinase (MAPK) cascades and activation of transductional regulation factors. The best characterized of this pathway are the extracellular signal regulated kinase (ERK), the c-Jun N-terminal kinase/stress activated protein kinase (JNK/SAPK), and the p38 MAPK cascade. Herpes simplex virus type 1 (HSV-1) encodes at least 11 envelope glycoproteins, which alone or in concert play different roles in viral adsorption, entry, cell-to-cell spread, and immune evasion. Of these proteins, three are designated glycoprotein B (gB), glycoprotein D (gD), and the gH/gL heterodimer, are clearly involved in attachment and entry, and therefore possible candidates in inducing early cellular activation.Nevertheless, the precise role of each glycoprotein and the cellular factor involved remain elusive. The signal transduction pathways involved, and the outcome of cellular activation on viral entry or postentry events, are still to be elucidated. To better understand the role of signal transduction pathways and phosphorylation events in HSV-1 entry, synthetic peptides modeled on HSV-1 gH were synthesized and tested for MEK1-MEK2/MAPK cascade activation. Our results show a major involvement of the JNK pathway in the intracellular signal transmission after stimulation with gH HSV-1 peptides.  相似文献   

11.
Aldosterone plays a central role in the homeostatic regulation of extracellular fluid volume by stimulating transepithelial electrolyte transport. These effects involve binding to an intracellular receptor, modification of genomic events and protein synthesis. Rapid cellular responses to steroid hormones have been observed in a variety of nonepithelial tissues. The term ``nongenomic' has been proposed for these fast steroid responses since they are unaffected by inhibitors of protein synthesis. We hypothesized that colonic crypts, recently demonstrated to absorb fluid, would respond rapidly to aldosterone. Cytoplasmic pH changes in crypts loaded with a pH-sensitive, fluorescent dye (BCECF) were recorded with confocal laser imaging. An intracellular alkalization of colonic crypts was observed within one minute of aldosterone application that was inhibited by ethylisopropylamiloride or the absence of extracellular sodium, yet unaffected by inhibitors of protein synthesis. The genesis of this rapid and distinct steroid action involves a signal transduction pathway that involves G proteins, protein kinase C, and prostaglandins. We have identified, by real-time imaging, a nongenomic upregulation of sodium-hydrogen exchange in colonic crypts by aldosterone that occurs independent of the traditional receptor. This distinct, rapid onset effect of aldosterone on epithelial ion transport has major implications for our understanding of fluid and electrolyte homeostasis in health and disease. Received: 27 October 1998/Revised: 23 March 1999  相似文献   

12.
13.
In the gonads, there are two recognized signal transduction mechanisms which operate in the processing of hormonal stimuli. The gonadotropins, follicle stimulating hormone and luteinizing hormone, act primarily through the generation of cyclic AMP. Several other hormonal regulators in the ovary and the testis, such as gonadotropin releasing hormone and prostaglandin F2 stimulate inositol lipid metabolism following receptor binding. This triggers a cascading mechanism which ultimately results in the generation of increased cytosolic free calcium levels, enhanced protein kinase C activity, and liberation of arachidonic acid. There is also evidence that luteinizing hormone shares in the activation of this pathway. In this review, the significance of these signal transduction pathways is discussed in relation to the effects of various hormones on steroid biosynthesis in the gonads.  相似文献   

14.
Cellular signal transduction and the reversal of malignancy   总被引:3,自引:0,他引:3  
Animal cells contain only a few defined molecular systems that transduce hormonal and growth signals from the external environment to the intracellular milieu to regulate cellular growth and differentiation. Among the most ubiquitous of these "second messenger" pathways are those utilizing cyclic AMP and phosphatidylinositide turnover. The former activates protein kinase A, while the latter leads to the activation of protein kinase C and mobilization of intracellular calcium. Lesions induced by oncogenes in signal transduction systems may be responsible for the cancerous transformation of cells. In many tumor cell lines, including some transformed by the ras and sis oncogenes, activation of protein kinase A by elevation of cyclic AMP or activation of protein kinase C by addition of phorbol esters can restore many normal aspects of growth and morphology. Such "reverse transformation" is accompanied by the phosphorylation of unique cellular proteins and alterations in the phosphoinositide cycle. Molecular mechanisms by which activation of signal transduction systems can attenuate the malignant phenotype are considered in the context of cellular growth and differentiation.  相似文献   

15.
The steady-state maintenance of highly asymmetric concentrations of the major inorganic cations and anions is a major function of both plasma membranes and the membranes of intracellular organelles. Homeostatic regulation of these ionic gradients is critical for most functions. Due to their charge, the movements of ions across biological membranes necessarily involves facilitation by intrinsic membrane transport proteins. The functional characterization and categorization of membrane transport proteins was a major focus of cell physiological research from the 1950s through the 1980s. On the basis of these functional analyses, ion transport proteins were broadly divided into two classes: channels and carrier-type transporters (which include exchangers, cotransporters, and ATP-driven ion pumps). Beginning in the mid-1980s, these functional analyses of ion transport and homeostasis were complemented by the cloning of genes encoding many ion channels and transporter proteins. Comparison of the predicted primary amino acid sequences and structures of functionally similar ion transport proteins facilitated their grouping within families and superfamilies of structurally related membrane proteins. Postgenomics research in ion transport biology increasingly involves two powerful approaches. One involves elucidation of the molecular structures, at the atomic level in some cases, of model ion transport proteins. The second uses the tools of cell biology to explore the cell-specific function or subcellular localization of ion transport proteins. This review will describe how these approaches have provided new, and sometimes surprising, insights regarding four major questions in current ion transporter research. 1) What are the fundamental differences between ion channels and ion transporters? 2) How does the interaction of an ion transport protein with so-called adapter proteins affect its subcellular localization or regulation by various intracellular signal transduction pathways? 3) How does the specific lipid composition of the local membrane microenvironment modulate the function of an ion transport protein? 4) How can the basic functional properties of a ubiquitously expressed ion transport protein vary depending on the cell type in which it is expressed?  相似文献   

16.
17.
Guanylyl cyclase C (GC-C) was found to function as the principal receptor for heat-stable enterotoxins (STa), major causative factors in E. coli-induced secretory diarrhea. GC-C is enriched in intestinal epithelium, but was also detected in other epithelial tissues. The enzyme belongs to the family of receptor guanylyl cyclases, and consists of an extracellular receptor domain, a single transmembrane domain, a kinase homology domain, and a catalytic domain. GC-C is modified by N-linked glycosylation and, at least in the small intestine, by proteolysis, resulting in a STa receptor that is coupled non-covalently to the intracellular domain. So far two endogenous ligands of mammalian GC-C have been identified i.e. the small cysteine-rich peptides guanylin and uroguanylin. The guanylins are released in an auto- or paracrine fashion into the intestinal lumen but may also function as endocrine hormones in gut-kidney communication and as regulators of ion transport in extra-intestinal epithelia. They are thought to activate GC-C by inducing a conformational change in the extracellular portion of the homotrimeric GC-C complex, which allows two of the three intracellular catalytic domains to dimerize and form two active catalytic clefts. In the intestine, activation of GC-C results in a dual action: stimulation of Cl and HCO3 secretion, through the opening of apical CFTR Cl channels; and inhibition of Na absorption, through blockade of an apical Na/H exchanger. The principal effector of the GC-C effect on ion transport is cGMP dependent protein kinase type II, which together with GC-C and the ion transporters, may form a supramolecular complex at the apical border of epithelial cells.  相似文献   

18.
Boyan BD  Schwartz Z 《Steroids》2004,69(8-9):591-597
Our work is based on the hypothesis that steroid hormones regulate cells through traditional cytoplasmic and nuclear receptor-mediated mechanisms, as well as by rapid effects that are mediated by membrane-associated pathways. We have used the rat costochondral growth plate chondrocyte culture model to study the signaling mechanisms used by steroid hormones to elicit rapid responses and to modulate gene expression in target cells. Our studies show that the secosteroids 1,25-dihydroxyvitamin D3 [1alpha,25(OH)2D3] and 24,25-dihydroxyvitamin D3 [24R,25(OH)2D3], and the steroid hormone 17beta-estradiol, cause rapid increases in protein kinase C alpha (PKCalpha) activity, and many of the physiological responses of the cells to these regulators are PKC-dependent. Target cell specificity and the mechanisms by which PKCalpha is activated vary with each hormone. PKC activation initiates a signaling cascade that results in activation of the ERK1/2 family of mitogen activated protein kinases (MAPK), providing an alternate method for the steroids to modulate gene expression other than by traditional steroid hormone receptor-mediated pathways. In addition to their effects on growth plate chondrocytes, steroid hormones secreted by the cells also control events in the extracellular matrix through direct non-genomic regulation of matrix vesicles.  相似文献   

19.
Fluid shear stress regulates endothelial cell function, but the signal transduction mechanisms involved in mechanotransduction remain unclear. Recent findings demonstrate that several intracellular kinases are activated by mechanical fórces. In particular, members of the mitogen-activated protein (MAP) kinase family are stimulated by hyperosmolárity, stretch, and stress such as heat shock. We propose a model for mechanotransduction in endothelial cells involving calcium-dependent and calcium-independent protein kinase pathways. The calcium-dependent pathway involves activation of phospholipase C, hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2), increases in intracellular calcium and stimulation of kinases such as calcium-calmodulin and C kinases (PKC). The calcium-independent pathway involves activation of a small GTP-binding protein and stimulation of calcium-independent PKC and MAP kinases. The calcium-dependent pathway mediates the rapid, transient response to fluid shear stress including activation of nitric oxide synthase (NOS) and ion transport. In contrast, the calcium-independent pathway mediates a slower response including the sustained activation of NOS and changes in cell morphology and gene expression. We propose that focal adhesion complexes link the calcium-dependent and calcium-independent pathways by regulating activity of phosphatidylinositol 4-phosphate (PIP) 5-kinase (which regulates PIP2 levels0 and p125 focal adhesion kinase (FAK, which phosphorylates paxillin and interacts with cytoskeletal proteins). This model predicts that dynamic interactions between integrin molecules present in focal adhesion complexes and membrane events involved in mechanotransduction will be integrated by calcium-dependent and calcium-independent kinases to generate intracellular signals involved in the endothelial cell response to flow.  相似文献   

20.
Activation of ion transport pathways by changes in cell volume.   总被引:9,自引:0,他引:9  
Swelling-activated K+ and Cl- channels, which mediate RVD, are found in most cell types. Prominent exceptions to this rule include red cells, which together with some types of epithelia, utilize electroneutral [K(+)-Cl-] cotransport for down-regulation of volume. Shrinkage-activated Na+/H+ exchange and [Na(+)-K(+)-2 Cl-] cotransport mediate RVI in many cell types, although the activation of these systems may require special conditions, such as previous RVD. Swelling-activated K+/H+ exchange and Ca2+/Na+ exchange seem to be restricted to certain species of red cells. Swelling-activated calcium channels, although not carrying sufficient ion flux to contribute to volume changes may play an important role in the activation of transport pathways. In this review of volume-activated ion transport pathways we have concentrated on regulatory phenomena. We have listed known secondary messenger pathways that modulate volume-activated transporters, although the evidence that volume signals are transduced via these systems is preliminary. We have focused on several mechanisms that might function as volume sensors. In our view, the most important candidates for this role are the structures which detect deformation or stretching of the membrane and the skeletal filaments attached to it, and the extraordinary effects that small changes in concentration of cytoplasmic macromolecules may exert on the activities of cytoplasmic and membrane enzymes (macromolecular crowding). It is noteworthy that volume-activated ion transporters are intercalated into the cellular signaling network as receptors, messengers and effectors. Stretch-activated ion channels may serve as receptors for cell volume itself. Cell swelling or shrinkage may serve a messenger function in the communication between opposing surfaces of epithelia, or in the regulation of metabolic pathways in the liver. Finally, these transporters may act as effector systems when they perform regulatory volume increase or decrease. This review discusses several examples in which relatively simple methods of examining volume regulation led to the discovery of transporters ultimately found to play key roles in the transmission of information within the cell. So, why volume? Because it's functionally important, it's relatively cheap (if you happened to have everything else, you only need some distilled water or concentrated salt solution), and since it involves many disciplines of experimental biology, it's fun to do.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号