首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stems, incl. rhizomes, and roots of 42 species ofValerianaceae were investigated in order to reveal the occurrence, structure and distribution of xylem transfer cells. Within nodes and internodes their frequency, distribution and gradients of development are similar to other families. — Within the secondary xylem of some species transfer cells can develop from cambial derivates, inValeriana tuberosa andPatrinia villosa even from pith cells. Within the turnip ofV. tuberosa transfer cells are very frequent and well developed. Here, after degradation of the cell-wall ingrowths they can be redifferentiated into storage cells which usually contain starch grains (Hüllenstärkekörner). In the transitional zone between stem and root of some predominantly herbaceous taxa transfer cells are often very frequent and form large protuberances before they degrade and lignify. SEM observations inValeriana decussata show that the cell-wall ingrowths are degradated at the beginning of lignification with the exception of brush-like protuberances remaining in the half-bordered pit-pairs. During the subsequent process of lignification the simple pits of a wall adjacent to a vessel can be transformed into corresponding pit-pairs. In this case the residues of the protuberances within the pit chamber can be transformed into incrustations similar to the vestures of bordered pits described byBailey (1933). Structural similarities between the brush-like protuberances in the half-bordered pits of theValeriana transfer cells and the ingrowths found inLauraceae (Castro 1982, 1985) are evident. Supposedly, all the cambial derivatives inValerianaceae can develop protuberances at least within their pits. Thus, it appears possible to interpret the vestures of the bordered pits as rudimentary protuberances, and to suggest that they have a specific function in the selective transport of solutes.
Transferzellen im Xylem derValerianaceae
  相似文献   

2.
Valeriana officinalis L. is an extremely polymorphic polyploid complex. On the basis of morphological, cytological, and phytochemical investigations of Bulgarian populations ofV. officinalis the two subspeciesV. officinalis subsp.officinalis (2n = 14, 28) andV. officinalis subsp.collina (2n = 14, 28) were each subdivided into diploid and tetraploid cytotypes.  相似文献   

3.
Summary The structure of the phloem was studied in stem and leaf ofArtemisia afra Jacq., with particular attention being given to the sieve element walls. Both primary and secondary sieve elements of stem and midvein have nacreous walls, which persist in mature cells. Histochemical tests indicated that the sieve element wall layers contained some pectin. Sieve element wall layers lack lignin. Sieve elements of the minor veins (secondary and tertiary veins) lack nacreous thickening, although their walls may be relatively thick. These walls and those of contiguous transfer cells are rich in pectic substances. Transfer cell wall ingrowths are more highly developed in tertiary than in secondary veins.  相似文献   

4.
Ros Barceló A 《Planta》2005,220(5):747-756
Lignification in Zinnia elegans L. stems is characterized by a burst in the production of H2O2, the apparent fate of which is to be used by xylem peroxidases for the polymerization of p-hydroxycinnamyl alcohols into lignins. A search for the sites of H2O2 production in the differentiating xylem of Z. elegans stems by the simultaneous use of optical (bright field, polarized light and epi-polarization) and electron-microscope tools revealed that H2O2 is produced on the outer-face of the plasma membrane of both differentiating (living) thin-walled xylem cells and particular (non-lignifying) xylem parenchyma cells. From the production sites it diffuses to the differentiating (secondary cell wall-forming) and differentiated lignifying xylem vessels. H2O2 diffusion occurs mainly through the continuous cell wall space. Both the experimental data and the theoretical calculations suggest that H2O2 diffusion from the sites of production might not limit the rate of xylem cell wall lignification. It can be concluded that H2O2 is produced at the plasma membrane in differentiating (living) thin-walled xylem cells and xylem parenchyma cells associated to xylem vessels, and that it diffuses to adjacent secondary lignifying xylem vessels. The results strongly indicate that non-lignifying xylem parenchyma cells are the source of the H2O2 necessary for the polymerization of cinnamyl alcohols in the secondary cell wall of lignifying xylem vessels.  相似文献   

5.
Parkinson′s disease (PD) is one of the most important neurodegenerative worldwide disorders. The potential cytoprotective effects of aqueous extract of Valeriana officinalis on rotenone-induced apoptosis in human neuroblastoma SH-SY5Y cells were demonstrated. The cytotoxicity, cell viability and analysis of cellular morphology were performed by MTT-tetrazole (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and phase contrast microscopy, respectively. Significant changes in the cellular morphology, and condensation of the cell body could be observed when cells were treated with 300 nM rotenone for 48 h. Three different concentrations of Valeriana officinalis extract were used (0.049, 0.098 and 0.195 mg/mL). These extracts brought about an increase of 7.0 ± 1.3%, 14.5 ± 1.3% and 14.5 ± 3.2% in cell viability. Our results indicated that neuroprotector action of the Valeriana officinalis extract provides support for later studies as they help understanding this drug for the development of cytoprotective various therapies in PD.  相似文献   

6.
Summary Xylem parenchyma transfer cells were observed in the primary and secondary vascular tissue of stem internodes of 21 in 28 species of grain legumes. Their structural features were similar to those of other transfer cells. The relationships of these cells to transfer cells at nodes were investigated. Non-nodulated seedlings ofPhaseolus vulgaris L. formed internode transfer cells if provided mineral nutrients through their roots, but not if grown in distilled water or fed nutrients entirely through their leaves. Wall ingrowths formed in parenchyma of primary xylem ofPhaseolus just before full extension of an internode. The significance of this new location for transfer cells was discussed.  相似文献   

7.
Summary Haustoria ofTriphysaria pusilla andT. versicolor subsp.faucibarbata from a natural habitat were analysed by light and electron microscopy. The keel-shaped edge of the secondary haustorium generally splits the epidermis and cortex of the host root parallel to the root axis, and penetrates to the host vascular tissue. Anticlinally elongated epidermal cells of the haustorium constitute most of the host/parasite interface. Some of these epidermal cells are divided by oblique cell walls. Some of their oblique daughter cells as well as some undivided epidermal cells differentiate into xylem elements. Single epidermal cells occasionally intrude into the vascular tissue of the host and individual host cells can be invaded. The surface area of the plasmalemma in parasitic parenchymatous interface cells is increased by the differentiation of wall labyrinths characteristic of transfer cells and by the development of membrane-lined cytoplasmic tubules or flattened sacs which become embedded in the partly lignified interface cell-wall. Mycorrhizal fungal hyphae enter the xylem bridge in some haustoria. Implications of these observations for the function of the haustorium are discussed.  相似文献   

8.
Summary The ultrastructure of the antipodals ofAconitum vulparia Rchb. was studied in mature embryo sacs. Antipodal cell wall thickness varies in different parts of the cells. The antipodals resemble transfer cells with distinctly marked wall ingrowths which are particularly well developed in the chalazal part and between the antipodals. A few plasmodesmata occur in the cell wall between the antipodals and the central cell. The cytoplasm is rich in ribosomes which occur free or bound to the membranes of the well developed endoplasmic reticulum. Only in the micropylar region of the cells are some larger vacuoles found. The antipodals contain numerous mitochondria, plastids and apparently active dictyosomes. Vesicles with electron dense contents, microbodies, multivesicular bodies as well as lipid droplets and small multiple concentric cisternae are also present in the cytoplasm. The giant endopolyploid nuclei have lobed outlines, especially at the chalazal side of the nuclei.Ultrastructural features, especially the occurrence of numerous free ribosomes and the development of extensive rough endoplasmic reticulum, suggest high metabolic activity in the growing and differentiating antipodals of this species.  相似文献   

9.
The vascular anatomy ofHelminthostachys zeylanica was examined with special reference to anomalous secondary tissue. Primary xylem development gradually takes place centrifugally. In branched rhizomes with destroyed apices, the vascular cylinder apical to the insertion of branch traces is generally composed of primary xylem, accessory xylem, inner parenchyma of radially arranged cells, outer parenchyma of irregularly arranged cells, and partly crushed phloem, listed in order going outwards. The accessory xylem as well as the inner parenchyma ofHelminthostachys zeylanica is probably secondarily produced, partly to contribute to the branch traces, in a position corresponding to that of secondary vascular tissue developed from a normal cambium inBotrychium sensu lato. It is suggested that although a cambium is lacking inHelminthostachys zeylanica, the secondary vascular tissues are comparable between the genera. The phylogenetic implication of this tissue is discussed.  相似文献   

10.
Brian A. Fineran 《Protoplasma》1996,194(1-2):40-53
Summary Flange cells are an unusual type of parenchyma cells with an open reticulate pattern of secondary wall thickenings. The cells superficially resemble tracheary elements but are otherwise fundamentally different. Flange cells were found in haustorial sucker tissue of the dwarf mistletoeKorthalsella. Such cells were previously unknown for a mistletoe, or other parasitic angiosperm. Flange cells are confined to the xylem of the sucker and occur as either diffuse aggregates amongst the ordinary parenchyma tissue lying between the tracts of vessels, or abut the vessels. Typical flange cells are absent at the parasite/host xylem interface. The cells contain a well differentiated protoplast, including chloroplasts with extensive granal stacks. Histochemical staining and fluorescence microscopy indicate lignification of the flange wall. In thin section, the flange wall is often stratified into dark and light staining layers. Flange cells inKorthalsella resemble contact cells, vessel associated cells and certain types of transfer cells reported in the literature. Based on morphological considerations, it is suggested that flange cells inKorthalsella are involved in absorption and transport between host and parasite. As host sap moves through the sucker apoplasm, substance might be selectively absorbed by the flange cell, before the remaining the sap passes into the vessels for long distance transport in the mistletoe.Dedicated to Prof. Dr. Rainer Kollmann on the occasion of his 65th birthday  相似文献   

11.
Summary 1. In motor organs ofMimosa pudica xylem contains living fibriform elements limited by a thick lignified highly pitted wall, whereas in other parts of the plant (stem, petiole, rachis), xylem and protoxylem vessels are closely associated with parenchyma cells which possess wall ingrowths. These ingrowths, at the apex of which the plasmalemma and the tonoplast touch, are localized like those of transfer cells of C type described byGunning andPate. Nevertheless, xylem parenchyma cells differ from cells of C type in several characteristics. Moreover, in motor organs, phloem contains cells characterized by wall ingrowths, less abundant on the parts adjacent to the sieve tubes; these cells which are localized near collenchyma cells of primary phloem, look like transfer cells of A type defined byGunning andPate; they are absent from internodes, petioles and rachides. 2. In motor organs, three types of vascular cells (companion cells, living xylem fibriform elements and protoxylem parenchyma cells) are characterized by reduced vacuolar volumes and well developed membrane systems, as compared with homologuous cells belonging to other parts of the plant. 3. A symplastic continuity holds from the middle of motor organs to their cortex: it is provided by the presence, in xylem and phloem respectively, of living fibriform elements and collenchyma cells bearing numerous pit fields containing large numbers of plasmodesmata. Several ultrastructural features suggest that the vascular apparatus ofMimosa pudica would be the site of intensive lateral transfer at different levels, specially in motor organs. Possible functions of certain structures observed are discussed in relation to some hypotheses relative to excitatory conduction pathways.  相似文献   

12.
Y. Habricot  L. Sossountzov 《Protoplasma》1984,119(1-2):141-149
Summary The active terminal bud and the quiescent lateral buds and corresponding nodes inserted at different levels on the main rhizome ofMarsilea drummondii were examined with the EM afterin vivo feeding with lanthanum nitrate. These tracer experiments demonstrate that all the buds are fed by their phloem cells. In the lateral bud axis the labelling of the sieve elements apoplast indicates that a solute transfer took place in the node between xylem and phloem via xylem transfer cells. La3+ deposits are completely absent from the apical dome of inhibited buds indicating that the walls of the quiescent meristematic cells are not permeated by the tracer. The removal of the terminal bud has two effects. It rapidly (in 2 hours) allows the lanthanum to penetrate the lateral bud tip walls at a stage when no fine structural changes are discernable and to bind to the outer surface of the plasmalemma as it does in the active terminal bud. This study including inhibited buds and buds released from apical dominance support the view that changes in the state of the cell surface (cell wall and plasma membrane) may be a prerequisite for the resumption growth activity.This study was supported in part by a grant from the Centre National de la Recherche Scientifique to L.Sossountzov (AI 031275).  相似文献   

13.
A homozygous recessive mutant of Arabidopsis thaliana has been selected which displays altered patterns of cellulose deposition. The mutant was selected because leaf and stem trichomes lacked the strong birefringence under polarized light which is characteristic of plant cells which contain highly ordered cellulose in their secondary cell walls. Compared with wild-type A. thaliana, this mutant (designated tbr for trichome birefringence) also displays reduced birefringence in the xylem of the leaf. Direct chemical analyses of root, stem, and leaf tissues, including isolated leaf trichomes, support the conclusion that tbr is impaired in its ability to deposit secondary wall cellulose in specific cell types, most notably in trichomes where the secondary wall appears to be totally absent. Altered patterns of wound-induced callose deposition in trichomes and surrounding cells is another trait which also co-segregates with the tbr mutation.  相似文献   

14.
Very recentlySarcandra, which had long been known as the only vesselless genus in Chloranthaceae, was found by Carlquist to have vessels in root secondary xylem. The present study further shows on the basis of observations of the xylem ontogeny that vessels occur in stem metaxylem ofSarcandra glabra as well, thus offering additional evidence for the occurrence of vessels in the genus, virtually in all Chloranthaceae. Metaxylem elements of the stem are thicker than the other tracheary elements in general and have scalariform pittings at the end wall, and their ontogeny indicates that, as the surrounding cytoplasm disintegrates, pit membranes at the end wall disappear at least in some elements, resulting in a perforated end wall, i.e., vessel perforation. The present study further shows thatChloranthus spicatus, which is closely related toSarcandra, may have an incomplete perforation plate because of retaining membranes at places on the plate. An evolutionary state of the “vesselless” condition in Chloranthaceae is discussed.  相似文献   

15.
Summary Spontaneous nodules were formed on the primary roots of alfalfa plants in the absence ofRhizobium. Histologically, these white single-to-multilobed structures showed nodule meristems, cortex, endodermis, central zone, and vascular strands. Nodules were devoid of bacteria and infection threads. Instead, the larger cells were completely filled with many starch grains while smaller cells had very few or none. Xylem parenchyma and phloem companion cells exhibited long, filiform and branched wall ingrowths. The characteristic features of both types of transfer cells were polarity of wall ingrowths, high cytoplasmic density, numerous mitochondria, abundant ribosomes, well-developed nucleus and nucleolus, and vesicles originated from rough endoplasmic reticulum. These results were compared with normal nodules induced byRhizobium. Our results suggest that xylem parenchyma and phloem companion transfer cells are active and probably involved in the short distance transport of solutes in and out of spontaneous nodules. Since younger nodules showed short, papillate, and unbranched wall ingrowths, and older tissue showed elongated, filiform and branched wall ingrowths, the development of wall ingrowths seemed to be gradual rather then abrupt. The occurrence of both type-A and -B wall ingrowths suggests that phloem companion transfer cells may be active in loading and unloading of sieve elements. Since there were no symbiotic bacteria and thus no fixed nitrogen, it is tempting to speculate that xylem parenchyma transfer cells may be re-transporting accumulated carbon from starch grains to the rest of the plant body by loading xylem vessels. Fusion of ER-originated vesicles with wall ingrowth membrane indicated the involvement of ER in the membrane formation for elongating wall ingrowths. Since transfer cells were a characteristic feature of both spontaneous andRhizobium-induced nodules, their occurrence and development is controlled by the genetic make-up of alfalfa plant and not by a physiological source or sink emanating from symbiotic bacteria.Abbreviations ATP adenosine triphosphate - ATPase adenosine triphosphatase - EH emergent root hair - EM electron microscope - Nar nodulation in the absence of Rhizobium - RT root tip - RER rough endoplasmic reticulum - YEMG yeast extract mannitol-gluconate  相似文献   

16.
Summary The role of microtubules in tracheary element formation in cultured stem segments ofColeus has been investigated through the use of the antimicrotubule drug, colchicine. Colchicine treatment of the cultured stem segments produced a dual effect on xylem differentiation. If applied at the time of stem segment isolation or shortly thereafter, wound vessel member formation is almost completely blocked. However, if colchicine is applied after the third day of culture, it does not inhibit differentiation, but instead large numbers of xylem elements are formed which have highly deformed secondary walls. Both effects are related to colchicine's specific affinity for microtubules. In the first case it is shown that colchicine blocks mitosis, presumably by destroying the spindle apparatus, and thus inhibits divisions which are prerequisite for the initiation of xylem differentiation. While, if colchicine is applied after the necessary preparative divisions have taken place, it destroys specifically the cortical microtubules associated with the developing bands of secondary wall, thus causing aberrant wall deposition.Light and electron microscopic analysis of drug-treated cells reveals that the secondary wall becomes smeared over the surface of the primary wall and does not retain the discrete banded pattern characteristic of secondary thickenings in untreated cells. Examination of colchicine-treated secondary walls in KMnO4 fixed material shows that in the absence of microtubules the cellulose microfibrils lose their normal parallel orientation and are deposited in swirls and curved configurations, and often lie at sharp angles to the axis of the secondary wall band. Microtubules, thus, appear to play a major role in defining the pattern of secondary wall deposition and in directing the orientation of the cellulose microfibrils of the wall. Factors in addition to microtubules also act in controlling the secondary wall pattern, since we observe that even in the absence of microtubules secondary thickenings of two adjacent xylem elements are deposited directly opposite one another across the common primary wall.  相似文献   

17.
Summary The development of mestome sheath cells ofAegilops comosa var.thessalica was studied by electron microscopy. Anatomical and cytological observations show that this grass belongs to the C3 or non-Kranz plants. In the asymmetrically thickened walls of mestome sheath cells a suberized lamella is present. This lamella is deposited asynchronously. In the midrib and the large lateral bundles it appears first in the outer and inner walls and usually later in the radial walls. In the small lateral bundles its appearance is delayed in the inner walls of those cells situated on the xylem side. At maturity the suberized lamella is observed in all cell walls; however, in the small lateral bundles it is partly or totally absent from the walls of some cells situated on the xylem side. Tertiary wall formation is asynchronous as well, for it generally follows the deposition pattern of the suberized lamella.During the development of the mestome sheath cells microtubules show marked changes in their number and orientation, being fewer and longitudinal during suberin deposition. Dictyosomes are very active and may be involved in primary and tertiary wall formation. Endoplasmic reticulum cisternae are abundant and partly smooth, while plasmalemmasomes may function to reduce the plasmalemma extension. However, cytoplasmic structures that are clearly involved in suberin synthesis could not be identified.Suberized lamellae react strongly with silver hexamine. This is probably due to post-fixation with osmium tetroxide.On the basis of structural characteristics the mestome sheath may be regarded as an endodermis (cf., alsoFahn 1974). The significance of this view for water and assimilate exchange between the mesophyll and the bundle is discussed.This report represents a portion of a doctoral dissertation.  相似文献   

18.
N. Harris  N. J. Chaffey 《Planta》1985,165(2):191-196
Plasmatubules are tubular evaginations of the plasmalemma. They have previously been found at sites where high solute flux between apoplast and symplast occurs for a short period and where wall proliferations of the transfer cell type have not been developed (Harris et al. 1982, Planta 156, 461–465). In this paper we describe the distribution of plasmatubules in transfer cells of the leaf minor veins of Pisum sativum L. Transfer cells are found in these veins associated both with phloem sieve elements and with xylem vessels. Plasmatubules were found, in both types of transfer cell and it is suggested that the specific distribution of the plasmatubules may reflect further membrane amplification within the transfer cell for uptake of solute from apoplast into symplast.  相似文献   

19.
The developmental anatomy of the vascular cambium and periderm ofBotrypus virginianus was studied, and its bearing on the systematic position of Ophioglossacease is discussed. The cambial zone including cambium is initiated in a procambial ring of the stem before primary vascular tissue is well differentiated. The presumed cambium is composed of fusiform and ray initials. The cambium is extremely unequally bifacial, producing secondary xylem centripetally, and quite a small number of parenchymatous cells but no secondary phloem centrifugally. The cambial activity persists long, although it is very low in the mature part of the stem. It seems that the circumferential increase of the cambium is accommodated by an increase in the number of cambial initials. Secondary xylem is nonstoried and composed of tracheids with circular-bordered pits with evenly thick pit membranes, and uniseriate or partly biseriate radial rays. It makes up the bulk of the stem xylem. Periderm is formed almost entirely around the stem, simultaneous with its increment due to the secondary xylem. The combination of these anatomical features of secondary tissue supports the idea that Ophioglossaceae are living progymnosperms.  相似文献   

20.
Valeriana officinalis L. (Valerian) is widely used as a traditional medicine to improve the quality of sleep. Although V. officinalis have been well documented as promising pharmacological agent; the exact mechanisms by which this plant act is still unknown. Limited literature data have indicated that V. officinalis extracts can exhibit antioxidant properties against iron in hippocampal neurons in vitro. However, there is no data available about the possible antioxidant effect of V. officinalis against other pro-oxidants in brain. In the present study, the protective effect of V. officinalis on lipid peroxidation (LPO) induced by different pro-oxidant agents with neuropathological importance was examined. Ethanolic extract of valerian (0–60 μg/ml) was tested against quinolinic acid (QA); 3-nitropropionic acid; sodium nitroprusside; iron sulfate (FeSO4) and Fe2+/EDTA induced LPO in rat brain homogenates. The effect of V. officinalis in deoxyribose degradation and reactive oxygen species (ROS) production was also investigated. In brain homogenates, V. officinalis inhibited thiobarbituric acid reactive substances induced by all pro-oxidants tested in a concentration dependent manner. Similarly, V. officinalis caused a significant decrease on the LPO in cerebral cortex and in deoxyribose degradation. QA-induced ROS production in cortical slices was also significantly reduced by V. officinalis. Our results suggest that V. officinalis extract was effective in modulating LPO induced by different pro-oxidant agents. These data may imply that V. officinalis extract, functioning as antioxidant agent, can be beneficial for reducing insomnia complications linked to oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号