首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new method was developed to synthesize a cortexolone-substituted affinity matrix, based on the fast, mild and quantitative reaction between alpha-ketomesylates and thiols. The resulting cortexolone-Sepharose absorbed easily the cytosolic chick thymus glucocorticoid receptor. Owing to the relatively fast dissociation of the glucocorticoid receptor-cortexolone complex, glucocorticoid receptor could be eluted with cortexolone as well as with triamcinolone acetonide from the affinity gel with similarly good yields. We obtained 75-150-fold purification factors (yield: 20-30%) using this column procedure. The partially purified glucocorticoid receptor was obtained in non-activated form. It had a Stokes radius of 6.2 +/- 0.1 nm. It could be activated to DNA-cellulose binding form by heat or 0.3 M KCl. KCl treatment activated 30-50% of the partially purified glucocorticoid receptor. Heat activation, however, was rather poor. Cortexolone-complexed, partially purified glucocorticoid receptor dissociated easily, and partially purified free glucocorticoid receptor, capable of steroid binding, could be obtained. Binding properties of the partially purified glucocorticoid receptor were then analyzed using different steroids. Dissociation rate constants were similar to those of the cytosolic glucocorticoid complexes. Association rate constants were consistently smaller than in the case of cytosolic glucocorticoid receptor, but the relative order of rates for different steroids was basically the same for glucocorticoid receptor in the two studied systems.  相似文献   

2.
Functional domains of the human glucocorticoid receptor   总被引:96,自引:0,他引:96  
  相似文献   

3.
The purified activated glucocorticoid receptor is a homodimer   总被引:12,自引:0,他引:12  
The structure of purified preparations of activated (DNA-binding) glucocorticoid receptor (GR) was analyzed in the presence or absence of DNA. A 35-base pair DNA fragment harboring a strong GR-binding site from the mouse mammary tumor virus promoter (-189/-166) was used for stoichiometric analysis of the GR.DNA complex. Glycerol gradient centrifugation was utilized in order to separate the 6 S GR.DNA complex from the 4 S GR and the 3 S DNA fragment. Synthetic glucocorticoid [3H]triamcinolone acetonide bound to GR and 32P-5'-end-labeled DNA fragment were used as probes for quantitation of each component. Such experiments demonstrated that two hormone molecules (two 87.5-kDa GR peptides) are associated with each cognate DNA site. Quantitative DNase I footprinting confirmed this result. The formation of the GR.DNA complex was ligand-dependent, but once formed the complex remained stable after ligand dissociation. Incubation of GR with 0.01-0.1% (w/v) glutaraldehyde resulted in a shift in its sedimentation rate from 4 to 6 S. Gel filtration chromatography of glutaraldehyde-treated GR resulted in a complex of slightly larger size than the gamma-globulin standard (158 kDa). Gel filtration of GR without glutaraldehyde treatment gave the identical result. This suggests that a GR multimer, probably a homodimer, is stable during gel filtration chromatography but needs to be stabilized by glutaraldehyde cross-linking or DNA during glycerol gradient centrifugation. We conclude that the activated GR exists as a homodimer when unbound as well as when bound to DNA.  相似文献   

4.
Molybdate-stabilized nonactivated rat liver glucocorticoid receptor (GR) was purified to near homogeneity using a biospecific affinity adsorbent, Bio Gel A 0.5 m and DEAE-Sephacel. The purified GR sedimented in the 9-10S region in 5-20% sucrose gradients containing 0.10M KCl and 20mM Na2MoO4. SDS-polyacrylamide gel electrophoresis revealed a major single band with an apparent molecular weight of 90,000 +/- 2,000. Affinity labeling of GR with [3H]-dexamethasone mesylate showed association of the radioactivity with a peptide of 90,000 molecular weight. Purified receptor preparation was dialyzed to remove molybdate and was incubated with different protein substrates in the presence of 50 microM [gamma-32P]-ATP and divalent cations. Radioactive phosphate from [gamma-32P]-ATP was seen to be incorporated into calf thymus histones, turkey gizzard myosin light chain kinase and rabbit skeletal muscle kinase in the presence of Mg2+ and Ca2+ ions. Addition of steroid ligand exogenously to the reaction mixture appeared to increase the extent of protein phosphorylation. No autophosphorylation of GR was evident under the above conditions. The data suggest that purified rat liver GR displays protein kinase activity.  相似文献   

5.
Sodium molybdate can affect the properties of the glucocorticoid receptor in relatively crude preparations. To obtain more information as to whether these effects are due to direct interactions of the ion with the receptor or with other components present in the receptor-containing mixtures, the effects were examined of sodium molybdate on glucocorticoid receptors purified 3000-5000-fold to about 10% homogeneity from rat liver cytosol. The ion was found to: (1) increase the stability of the purified receptor at either 0 or 20 degrees C, although the effect was more pronounced at 20 degrees C (2) induce an apparent dimerization of the receptors as judged by sephadex G-150 gel filtration and sucrose density gradient sedimentation and (3) decrease the ionic strength required for elution of the purified receptor from DEAE-cellulose columns. Although, it is conceivable that each of these observed effects is due to indirect actions of the ion on contaminants in the preparations, it is more likely that the ion exerts its effects through direct interactions with the receptor.  相似文献   

6.
The activated glucocorticoid receptor (GR) from rat liver cytosol was purified by sequential chromatography on DNA-cellulose and DEAE-Sepharose. Analysis by sodium dodecyl sulfate-gel electrophoresis demonstrated a main band with Mr = 94,000 (94K band). Two minor bands with Mr = 79,000 (79K band) and 72,000 (72K band) were also seen in this preparation. Photoaffinity labeling showed that the hormone is bound to the 94K and 79K components but not to the 72K component. Immunoblotting using antibodies raised against the 94K protein demonstrated cross-reactivity between the 94K and 79K components but not with the 72K species. The 72K species could be partially separated from the 94K and 79K components by density gradient centrifugation. Limited proteolysis of the purified GR with trypsin or alpha-chymotrypsin led to degradation of the 94K and 79K components and appearance of a 39K fragment which still retained the hormone and could be bound to DNA-cellulose. The 72K component was not affected by digestion with trypsin or alpha-chymotrypsin. However, chromatography on DNA-cellulose of the alpha-chymotrypsin-treated GR resulted in elution of the 72K component in the flow-through of the column while the 39K fragment was retained on the column and eluted with 0.18 M NaCl. In the control experiment where no alpha-chymotrypsin treatment was performed, the 72K component could not be detected in the flow-through fraction but was eluted together with the 94K and 79K components at 0.18 M NaCl. These results suggest that the 72K protein might be bound to the 94K and/or 79K component. The 39K fragment did not bind antibodies raised against the 94K protein. The 39K fragment was further degraded by trypsin but not by alpha-chymotrypsin to a 27K and a 25K fragment while both still retained the ligand. These data obtained with limited proteolysis of the purified GR are in agreement with previous findings on proteolysis of the GR in crude cytosol (Wrange, O., and Gustafsson, J.-A. (1978) J. Biol. Chem. 253, 856-865; Carlstedt-Duke, J., Okret, S., Wrange, O., and Gustafsson, J.-A. (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 4260-4264).  相似文献   

7.
8.
The glucocorticoid receptor (GC-R) isolated from the mouse AtT-20 pituitary tumor cell line exists in three forms. The untransformed (non-DNA-binding), 9.1S species (319K) can be converted into two transformed (DNA-binding) species. One of these (5.2 S, Mr 132K) appears to be composed of one molecule of the hormone-binding, monomeric protein (96K) plus a small RNA, while the second transformed species is the monomeric, hormone-binding subunit (3.8 S, 96K) itself. We wished to determine whether the untransformed GC-R contains RNA or if the monomer binds to RNA subsequent to subunit dissociation (which occurs during receptor transformation). Kinetic studies using both the crude and purified untransformed GC-R show that the untransformed, 9.1S GC-R dissociates into 3.8S monomeric subunits, without forming a transient 5.2S complex. The untransformed receptor was then purified with affinity chromatography, gel filtration, and DEAE-cellulose chromatography. One major protein band, corresponding in size to the GC-R monomer (94K-96K), was observed on sodium dodecyl sulfate-polyacrylamide gels upon silver staining or fluorography of [3H]dexamethasone mesylate covalently labeled receptor. In vivo 32P-labeling of AtT-20 cells, followed by purification of the untransformed GC-R, yielded two major 32P-labeled components (94K-96K and 24K). Both of these bands were protease-sensitive, contained phosphoserine, and were unaffected by ribonuclease treatment. We conclude that the untransformed mouse GC-R is wholly proteinaceous and contains no RNA. Thus, RNA binding occurs subsequent to dissociation of the oligomeric, untransformed GC-R complex into monomers.  相似文献   

9.
10.
Modulator-1 and -2, proposed to be novel ether-linked aminophosphoglycerides, were originally identified as regulators of glucocorticoid receptor function (Bodine, P. V., and Litwack, G. (1990) J. Biol. Chem. 265, 9544-9554). We now demonstrate that these modulators are also potent new stimulators of protein kinase C activity in vitro. These endogenous biomolecules regulate purified protein kinase C activity in a biphasic and dose-dependent pattern, as determined by histone phosphorylation. Modulators, at concentrations within their apparent cellular range, stimulate protein kinase C-catalyzed histone phosphorylation 2-4-fold when added separately, or 10-12-fold when added together. This enhancement of kinase activity apparently is specific for protein kinase C, since neither protein kinase M, nor cAMP-dependent protein kinase A are stimulated by the modulators. The stimulation of purified protein kinase C occurs only when the enzyme has been initially activated by calcium, phosphatidylserine, and diacylglycerol, indicating that the modulators do not simply substitute for one of the enzyme cofactors. In addition, the modulators appear to interact directly with protein kinase C, perhaps with the regulatory domain of the enzyme, since these biomolecules inhibit the binding of phorbol ester to purified protein kinase C. Finally, time-course studies of protein kinase C-catalyzed histone phosphorylation indicate that the velocity of the enzyme reaction is increased by the modulators. Taken together, these results suggest that the modulators are a new class of regulators of protein kinase C.  相似文献   

11.
The widely expressed adhesion receptor CEACAM1 is a member of the carcinoembryonic antigen (CEA) family within the immunoglobulin (Ig) superfamily of glycoproteins. While the expression of transmembrane isoforms has been described in detail, only little is known about soluble isoforms. By RT-PCR characterization of rat pheochromocytoma PC12 and mammary adenocarcinoma MTC cell lines, two novel splice variants, designated CEACAM1-4C1 and CEACAM1-4C2, lacking the transmembrane region, were identified. In addition, we demonstrate the expression of transmembrane CEACAM1-4L and CEACAM1-4S with a truncated cytoplasmic domain. The C-termini of CEACAM1-4C2 and CEACAM1-L are identical, which allowed the specific in vitro and in vivo detection of the soluble CEACAM1-4C2 protein by an antiserum generated against the CEACAM1-L cytoplasmic part. Functionally, soluble CEACAM1 could inhibit CEACAM1-mediated aggregation of CHO cells. In conclusion, our data define a new mechanism for the appearance of functionally active rat CEACAM1 protein in body fluids.  相似文献   

12.
Two rapid and high yield purification methods for the rat liver glucocorticoid receptor based on differential DNA affinity (method A) and ligand affinity (method B) chromatography are described. In method A, the amount of receptor in rat liver cytosol that can be activated and subsequently eluted from a DNA-cellulose column has been increased to 80% by introducing a second heat activation step. Using this method, 1.5 nmol of 25% pure glucocorticoid receptor can be routinely obtained per day from 15-20 rat livers. Method B yields about 2.2 nmol of 60% pure receptor with an overall yield of congruent to 60%. The quality of these purifications has been controlled by affinity labeling. In each case, more than 95% of purified binding activity represented the intact 92,000 +/- 400-Da glucocorticoid receptor polypeptide as shown by sodium dodecyl sulfate-gel electrophoresis and fluorography. No difference in the labeling pattern was observed using either [3H]triamcinolone acetonide (photoaffinity labeling) or [3H]dexamethasone 21-mesylate (electrophilic labeling). The electrophilic labeling step was performed in the cytosol prior to purification by method A to compare the labeled components thus purified with those obtained when the photoaffinity labeling was performed after the purification. Using this approach, distinct breakdown products of the glucocorticoid receptor were revealed, co-purifying during DNA affinity chromatography. Cross-linked receptor obtained by method A has been further purified to homogeneity by preparative sodium dodecyl sulfate-gel electrophoresis and successfully used as immunogen to raise glucocorticoid receptor antibodies in rabbits. These antibodies raised against glucocorticoid receptor, as well as those previously obtained using affinity chromatography-purified receptor, react with the receptor molecules irrespective of their method of purification. Glucocorticoid receptors purified by methods A and B have been analyzed for specific DNA-binding properties by the nitrocellulose filter binding assay.  相似文献   

13.
Previous studies have shown that the purified rat liver glucocorticoid receptor (GR) has a protein kinase activity. In this report we show that the GR-associated kinase can be partially separated from the 94-kDa steroid-binding protein by DEAE-Sepharose chromatography. The kinase elutes from the column at a higher salt concentration than the 94-kDa GR protein. This GR copurifying protein kinase phosphorylates basic substrates such as various histone fractions and protamine. The phosphorylation occurs in the presence of Mg2+ ions, and is not supported by Ca2+ ions. The amino acid residues phosphorylated by the kinase are threonine and serine. This kinase also phosphorylates the 94-kDa GR protein and thus might be of physiological relevance for the GR function.  相似文献   

14.
Glucocorticoid receptor was purified from rat liver cytosol using a dexamethasone affinity column. The receptor thus purified displayed a single protein band when subjected to SDS-polyacrylamide gel electrophoresis. It had a molecular weight of 90,000 which was consistent with the reported value for other glucocorticoid receptor preparations. Incubation of the purified preparation with [gamma 32P] ATP and Mg2+ resulted in transfer of [32P] to the receptor protein indicating the presence of an endogeneous protein kinase activity capable of phosphorylating the receptor molecule. Phosphorylation of the glucocorticoid receptor by the endogenous protein kinase might serve as a direct mechanism for the activation of the receptor.  相似文献   

15.
16.
Thermal "activation" or "transformation" of rat hepatic [6,7-3H]triamcinolone acetonide (TA)-receptor complexes purified in the unactivated state to near homogeneity (Grandics, P., Miller, A., Schmidt, T. J., Mittman, D., and Litwack, G. (1984) J. Biol. Chem. 259, 3173-3180) has been further investigated. The data generated in reconstitution experiments demonstrate that warming (25 degrees C for 30 min) of the purified unactivated complexes promotes their activation as judged by an increase in DNA-cellulose binding, but to a lower extent than that observed after warming of glucocorticoid-receptor complexes in crude cytosols. However, maximal DNA-cellulose binding capacity can be detected in reconstituted systems (also heated at 25 degrees C for 30 min) consisting of purified unactivated [3H]TA-receptor complexes and a cytoplasmic "stimulator(s)." This cytoplasmic factor(s), which does not copurify with the receptor, is heat-stable (90 degrees C for 30 min), excluded from Sephadex G-25, and trypsin-sensitive and stimulates DNA-cellulose binding in a dose-dependent manner. The ability of Na2MoO4 to block thermal activation of the highly purified receptor complexes suggests that this transition metal anion interacts directly with the receptor protein itself. The fact that the cytoplasmic stimulator(s) enhances DNA-cellulose binding of the [3H]TA-receptor complexes without increasing the proportion of those complexes eluted in the activated (low salt) position from DEAE-cellulose is consistent with a proposed two-step model of in vitro activation. During the Na2MoO4-sensitive Step 1, elevated temperature (25 degrees C for 30 min) may directly alter the conformation of the purified receptor complexes (i.e. subunit dissociation or disaggregation), resulting in the appropriate shift in the elution profile of the [3H]TA-receptor complexes on DEAE-cellulose but only in a minimal (approximately 2-3-fold) increase in the binding of these complexes to DNA-cellulose. During the Na2MoO4-insensitive and temperature-independent Step 2, a heat-stable cytoplasmic protein(s) may interact with these thermally activated [3H]TA-receptor complexes and enhance their ability to bind to DNA-cellulose without further increasing the percentage of those complexes which elute from DEAE-cellulose in the activated position. In crude cytosols these two steps would presumably occur simultaneously, and addition of Na2MoO4 prior to warming would block Step 1 and hence Step 2 would not occur.  相似文献   

17.
G-protein-coupled receptors (GPCRs) form one of the largest superfamilies of membrane proteins. Obtaining high yields of GPCRs remains one of the major factors limiting a detailed understanding of their structure and function. Photoreceptor cells (PRCs) contain extensive stacks of specialized membranes where high levels of rhodopsins are naturally present, which makes them ideal for the overexpression of GPCRs. We have generated transgenic flies expressing a number of GPCRs in the PRCs. Drosophila melanogaster metabotropic glutamate receptor (DmGluRA) expressed by this novel strategy was purified to homogeneity, giving at least 3-fold higher yields than conventional baculovirus expression systems due to the higher membrane content of the PRCs. Pure DmGluRA was then reconstituted into liposomes of varying composition. Interestingly, glutamate binding was strictly dependent on the presence of ergosterol.  相似文献   

18.
Glucocorticoids are widely used to treat inflammatory diseases but have a number of side effects that partly are connected to inhibition of cell proliferation. Glucocorticoids mediated their action by binding to the glucocorticoid receptor. In the present study, we have identified by two-hybrid screens the germinal center-associated protein (GANP) and MCM3-associated protein (MCM3AP), a splicing variant of GANP, as glucocorticoid receptor interacting proteins. GANP and MCM3AP can bind to the MCM3 protein involved in initiation of DNA replication. Glutathione-S-transferase-pull-down and co-immunoprecipitation assays showed that the C-terminal domain of GANP, encompassing MCM3AP, interacts with the ligand-binding domain of the glucocorticoid receptor. Characterization of the intracellular localization of GANP revealed that GANP is shuttling between the nucleus and the cytoplasm. Furthermore, we show that glucocorticoids are unable to inhibit DNA replication in HeLa cells overexpressing MCM3AP suggesting a role for both glucocorticoid receptor and GANP/MCM3AP in regulating cell proliferation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号