首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Intermittent hypoxia (IH) conditioning minimizes neurocognitive impairment and stabilizes brain mitochondrial integrity during ethanol withdrawal (EW) in rats, but the mitoprotective mechanism is unclear. We investigated whether IH conditioning protects a key mitochondrial enzyme, cytochrome c oxidase (COX), from EW stress by inhibiting mitochondrially directed apoptotic pathways involving cytochrome c, Bax, or phosphor-P38 (pP38). Male rats completed two cycles of a 4-wk ethanol diet (6.5%) and 3 wk of EW. An IH program consisting of 5-10 bouts of 5-8 min of mild hypoxia (9.5-10% inspired O(2)) and 4 min of reoxygenation for 20 consecutive days began 3 days before the first EW period. For some animals, vitamin E replaced IH conditioning to test the contributions of antioxidant mechanisms to IH's mitoprotection. During the second EW, cerebellar-related motor function was evaluated by measuring latency of fall from a rotating rod (Rotarod test). After the second EW, COX activity in cerebellar mitochondria was measured by spectrophotometry, and COX, cytochrome c, Bax, and pP38 content were analyzed by immunoblot. Mitochondrial protein oxidation was detected by measuring carbonyl contents and by immunochemistry. Earlier IH conditioning prevented motor impairment, COX inactivation, depletion of COX subunit 4, protein carbonylation, and P38 phosphorylation during EW. IH did not prevent cytochrome c depletion during EW, and Bax content was unaffected by EW ± IH. Vitamin E treatment recapitulated IH protection of COX, and P38 inhibition attenuated protein oxidation during EW. Thus IH protects COX and improves cerebellar function during EW by limiting P38-dependent oxidative damage.  相似文献   

2.
Sleep-disordered breathing with recurrent apnea produces chronic intermittent hypoxia (IH). We previously reported that IH leads to down-regulation of HIF-2α protein via a calpain-dependent signaling pathway resulting in oxidative stress. In the present study, we delineated the signaling pathways associated with calpain-dependent HIF-2α degradation in cell cultures and rats subjected to chronic IH. Reactive oxygen species (ROS) scavengers prevented HIF-2α degradation by IH and ROS mimetic decreased HIF-2α protein levels in rat pheochromocytoma PC12 cell cultures, suggesting that ROS mediate IH-induced HIF-2α degradation. IH activated xanthine oxidase (XO) by increased proteolytic conversion of xanthine dehydrogenase to XO. ROS generated by XO activated calpains, which contributed to HIF-2α degradation by IH. Calpain-induced HIF-2α degradation involves C-terminus but not the N-terminus of the HIF-2α protein. Pharmacological blockade as well as genetic knock down of XO prevented IH induced calpain activation and HIF-2α degradation in PC12 cells. Systemic administration of allopurinol to rats prevented IH-induced hypertension, oxidative stress and XO activation in adrenal medulla. These results demonstrate that ROS generated by XO activation mediates IH-induced HIF-2α degradation via activation of calpains.  相似文献   

3.
4.
Exposure to intermittent hypoxia (IH) is associated with cognitive impairments and oxidative stress in brain regions involved in learning and memory. In earlier studies, erythropoietin (EPO) showed a neuroprotective effect in large doses. The aim of the present study was to explore the effect of smaller doses of EPO, such as those used in the treatment of anemia, on IH-induced cognitive deficits and hippocampal oxidative stress in young rats. The effect of concurrent EPO treatment (500 and 1,000 IU/kg/day ip) on spatial learning and memory deficits induced by long-term exposure to IH for 6 weeks was tested using the Morris water maze (MWM) test and the elevated plus maze (EPM) test. Moreover, the effect on hippocampal glutamate and oxidative stress were assessed. Exposure to IH induced a significant impairment of spatial learning and cognition of animals in both MWM and EPM performance parameters. Moreover, hippocampal glutamate and thiobarbituric acid reactive substances (TBARS) increased while antioxidant defenses (GSH and GSH-Px) decreased. EPO in the tested doses significantly reduced the IH-induced spatial learning deficits in both MWM and EPM tests and dose-dependently antagonized the effects of IH on hippocampal glutamate, TBARS, GSH levels, and GSH-Px activity. Treatment with EPO in moderate doses that used for anemia, concurrently with IH exposure can antagonize IH-induced spatial learning deficits and protect hippocampal neurons from IH-induced lipid peroxidation and oxidative stress-induced damage in young rats, possibly through multiple mechanisms involving a potential antioxidative effect.  相似文献   

5.
We investigated whether ethanol withdrawal (EW) oxidizes mitochondrial proteins and provokes mitochondrial membrane swelling and whether estrogen deprivation contributes to this problem. Ovariectomized female rats with or without 17β-estradiol (E2)-implantation received a control diet or a liquid ethanol diet (6.5%) for 5 weeks and were sacrificed during EW. Protein oxidation was assessed by measuring carbonyl contents and was visualized by immunochemistry. Mitochondrial membrane swelling as an indicator of mitochondrial membrane fragility was assessed by monitoring absorbance at 540 nm and was compared with that of male rats. Compared to the control diet group and ovariectomized rats with E2-implantation, ovariectomized rats without E2-implantation showed higher carbonylation of mitochondrial proteins and more rapid mitochondrial membrane swelling during EW. Such rapid mitochondrial membrane swelling was comparable to that of male rats undergoing EW. These findings demonstrate that EW provokes oxidative injury to mitochondrial membranes in a manner that is exacerbated by estrogen deprivation.  相似文献   

6.
Hypoxia-inducible factor 1 (HIF-1) mediates many of the systemic and cellular responses to intermittent hypoxia (IH), which is an experimental model that simulates O2 saturation profiles occurring with recurrent apnea. IH-evoked HIF-1α synthesis and stability are due to increased reactive oxygen species (ROS) generated by NADPH oxidases, especially Nox2. However, the mechanisms by which IH activates Nox2 are not known. We recently reported that IH activates xanthine oxidase (XO) and the resulting increase in ROS elevates intracellular calcium levels. Since Nox2 activation requires increased intracellular calcium levels, we hypothesized XO-mediated calcium signaling contributes to Nox activation by IH. We tested this possibility in rat pheochromocytoma PC12 cells subjected to IH consisting alternating cycles of hypoxia (1.5% O2 for 30 sec) and normoxia (21% O2 for 5 min). Kinetic analysis revealed that IH-induced XO preceded Nox activation. Inhibition of XO activity either by allopurinol or by siRNA prevented IH-induced Nox activation, translocation of the cytosolic subunits p47phox and p67phox to the plasma membrane and their interaction with gp91phox. ROS generated by XO also contribute to IH-evoked Nox activation via calcium-dependent protein kinase C stimulation. More importantly, silencing XO blocked IH-induced upregulation of HIF-1α demonstrating that HIF-1α activation by IH requires Nox2 activation by XO.  相似文献   

7.
Intermittent hypoxia (IH) is a hallmark feature in obstructive sleep apnea (OSA) which is increasingly recognized as an independent risk factor for atherosclerosis. Oxidative stress, inflammation, and cell apoptosis are major pathological events initiating or accelerating atherogenesis. This study addressed whether IH would affect these proatherogenic factors in endothelial cells and the mechanistic pathways involved. EA.hy926 cells were exposed to intermittent normoxia or IH for different numbers of cycles (32, 64, or 96). IH exposure time-dependently raised cellular GSSG/GSH ratio, increased production of IL-6 and IL-8, and accelerated cell apoptosis and death, concurrent with activation of NF-κB and inhibition of Nrf2/HO-1 pathways. At 64 cycles, inhibition of NF-κB attenuated IH-induced cellular oxidative stress and accumulation of inflammatory cytokines in cell culture medium but aggravated IH-induced cell apoptosis, while stimulation of HO-1 suppressed IH-induced cellular oxidative stress and cell apoptosis without affecting accumulation of inflammatory cytokines in cell culture medium. We demonstrated that early stage of exposure to IH-induced oxidative and inflammatory stresses leading to acceleration of cell apoptosis via NF-κB and Nrf2/HO-1 pathways in endothelial cells, suggesting the potential mechanisms for IH-induced vascular pathogenesis, in resemblance to OSA.  相似文献   

8.
Intermittent hypoxia (IH) during sleep is a hallmark of sleep apnea, causing significant neuronal apoptosis, and cognitive and behavioral deficits in CNS regions underlying memory processing and executive functions. IH-induced neuroinflammation is thought to contribute to cognitive deficits after IH. In the present studies, we tested the hypothesis that IH would differentially induce inflammatory factor gene expression in microglia in a CNS region-dependent manner, and that the effects of IH would differ temporally. To test this hypothesis, adult rats were exposed to intermittent hypoxia (2 min intervals of 10.5% O2) for 8 hours/day during their respective sleep cycles for 1, 3 or 14 days. Cortex, medulla and spinal cord tissues were dissected, microglia were immunomagnetically isolated and mRNA levels of the inflammatory genes iNOS, COX-2, TNFα, IL-1β and IL-6 and the innate immune receptor TLR4 were compared to levels in normoxia. Inflammatory gene expression was also assessed in tissue homogenates (containing all CNS cells). We found that microglia from different CNS regions responded to IH differently. Cortical microglia had longer lasting inflammatory gene expression whereas spinal microglial gene expression was rapid and transient. We also observed that inflammatory gene expression in microglia frequently differed from that in tissue homogenates from the same region, indicating that cells other than microglia also contribute to IH-induced neuroinflammation. Lastly, microglial TLR4 mRNA levels were strongly upregulated by IH in a region- and time-dependent manner, and the increase in TLR4 expression appeared to coincide with timing of peak inflammatory gene expression, suggesting that TLR4 may play a role in IH-induced neuroinflammation. Together, these data indicate that microglial-specific neuroinflammation may play distinct roles in the effects of intermittent hypoxia in different CNS regions.  相似文献   

9.
Expression of brain-derived neurotrophic factor (BDNF) is sensitive to changes in oxygen availability, suggesting that BDNF may be involved in adaptive responses to oxidative stress. However, it is unknown whether or not oxidative stress actually increases availability of BDNF by stimulating BDNF secretion. To approach this issue we examined BDNF release from PC12 cells, a well-established model of neurosecretion, in response to hypoxic stimuli. BDNF secretion from neuronally differentiated PC12 cells was strongly stimulated by exposure to intermittent hypoxia (IH). This response was inhibited by N-acetyl-l-cysteine, a potent scavenger of reactive oxygen species (ROS) and mimicked by exogenous ROS. IH-induced BDNF release requires activation of tetrodotoxin sensitive Na+ channels and Ca2+ influx through N- and L-type channels, as well as mobilization of internal Ca2+ stores. These results demonstrate that oxidative stress can stimulate BDNF release and that underlying mechanisms are similar to those previously described for activity-dependent BDNF secretion from neurons. Surprisingly, we also found that IH-induced secretion of BDNF was blocked by dopamine D2 receptor antagonists or by inhibition of dopamine synthesis with alpha-methyl-p-tyrosine. These data indicate that oxidative stress can stimulate BDNF release through an autocrine or paracrine loop that requires dopamine receptor activation.  相似文献   

10.
Exposure of mitochondria to oxidative stress and elevated Ca2+ promotes opening of the mitochondrial permeability transition pore (PTP), resulting in membrane depolarization, uncoupling of oxidative phosphorylation, and potentially cell death. This study tested the hypothesis that treatment of rats with sulforaphane (SFP), an activator of the Nrf2 pathway of antioxidant gene expression, increases the resistance of liver mitochondria to redox-regulated PTP opening and elevates mitochondrial levels of antioxidants. Rats were injected with SFP or drug vehicle and liver mitochondria were isolated 40 h later. Respiring mitochondria actively accumulated added Ca2+, which was then released through PTP opening induced by agents that either cause an oxidized shift in the mitochondrial redox state or directly oxidize protein thiol groups. SFP treatment of rats inhibited the rate of pro-oxidant-induced mitochondrial Ca2+ release and increased expression of the glutathione peroxidase/reductase system, thioredoxin, and malic enzyme. These results are the first to demonstrate that SFP treatment of animals increases liver mitochondrial antioxidant defenses and inhibits redox-sensitive PTP opening. This novel form of preconditioning could protect against a variety of pathologies that include oxidative stress and mitochondrial dysfunction in their etiologies.  相似文献   

11.

Background

Intermittent hypoxia (IH) plays a critical role in sleep breathing disorder-associated hippocampus impairments, including neurocognitive deficits, irreversible memory and learning impairments. IH-induced neuronal injury in the hippocampus may result from reduced precursor cell proliferation and the relative numbers of postmitotic differentiated neurons. However, the mechanisms underlying IH-induced reactive oxygen species (ROS) generation effects on cell proliferation and neuronal differentiation remain largely unknown.

Results

ROS generation significantly increased after 1–4 days of IH without increased pheochromocytoma-12 (PC12) cell death, which resulted in increased protein phosphatase 2A (PP2A) mRNA and protein levels. After 3–4 days of IH, extracellular signal-regulated kinases 1/2 (ERK1/2) protein phosphorylation decreased, which could be reversed by superoxide dismutase (SOD), 1,10-phenanthroline (Phe), the PP2A phosphorylation inhibitors, okadaic acid (OKA) and cantharidin, and the ERK phosphorylation activator nicotine (p < 0.05). In particular, the significantly reduced cell proliferation and increased proportions of cells in the G0/G1 phase after 1–4 days of IH (p < 0.05), which resulted in decreased numbers of PC12 cells, could be reversed by treatment with SOD, Phe, PP2A inhibitors and an ERK activator. In addition, the numbers of nerve growth factor (NGF)-induced PC12 cells with neurite outgrowths after 3–4 days of IH were less than those after 4 days of RA, which was also reversed by SOD, Phe, PP2A inhibitors and an ERK activator.

Conclusions

Our results suggest that IH-induced ROS generation increases PP2A activation and subsequently downregulates ERK1/2 activation, which results in inhibition of PC12 cell proliferation through G0/G1 phase arrest and NGF-induced neuronal differentiation.  相似文献   

12.
The objectives of the present study were to examine the effects of intermittent hypoxia (IH) on arterial baroreflex function and assess the underlying mechanism(s). Experiments were performed on adult male rats treated with 14 days of IH (15 s of hypoxia, 5 min of normoxia; 8 h/day) or normoxia (control). Arterial blood pressures were elevated in IH-treated rats, and this effect was associated with attenuated heart rate and splanchnic sympathetic nerve responses to arterial baroreflex activation. In IH-treated rats, carotid baroreceptor responses to elevated sinus pressures were attenuated. Endothelin-1 (ET-1) levels were elevated in the carotid sinus region of IH-treated rats, and this effect was associated with increased endothelin converting enzyme (ECE) activity, which generates biologically active ET-1. ET(A) receptor antagonist prevented the effects of IH on carotid baroreceptor activity. In IH-treated rats, reactive oxygen species (ROS) levels were elevated in the carotid sinus region, and antioxidant treatment prevented the effects of IH on ET-1 levels, ECE activity, carotid baroreceptor activity, and baroreflex function. These results demonstrate that 1) IH attenuates arterial baroreflex function, which is in part due to reduced carotid baroreceptor responses to elevated carotid sinus pressure, and 2) IH-induced carotid baroreceptor dysfunction involves reactive oxygen species-dependent upregulation of ET-1 signaling in the carotid sinus region.  相似文献   

13.
Regulation of tyrosine hydroxylase (TH) by intermittent hypoxia (IH) was investigated in rat pheochromocytoma 12 (PC-12) cells by exposing them to alternating cycles of hypoxia (1% O2, 15 s) and normoxia (21% O2, 3 min) for up to 60 cycles; controls were exposed to normoxia for a similar duration. IH exposure increased dopamine content and TH activity by approximately 42 and approximately 56%, respectively. Immunoblot analysis revealed that comparable levels of TH protein were expressed in normoxic and IH cells. Removal of TH-bound catecholamines and in vitro phosphorylation of TH in cell-free extracts by the catalytic subunit of protein kinase A (PKA) increased TH activity in normoxic but not in IH cells, suggesting possible induction of TH phosphorylation and removal of endogenous inhibition of TH by IH. To assess the role of serine phosphorylation in IH-induced TH activation, TH immunoprecipitates and extracts derived from normoxic and IH cells were probed with anti-phosphoserine and anti-phospho-TH (Ser-40) antibody, respectively. Compared with normoxic cells, total serine and Ser-40-specific phosphorylation of TH were increased in IH cells. IH-induced activation of TH and the increase in total serine and Ser-40-specific phosphorylation of TH were inhibited by Ca2+/calmodulin-dependent protein kinase (CaMK) and PKA-specific inhibitors but not by inhibitors of the extracellular signal-regulated protein kinase pathway, suggesting that IH activates TH in PC-12 cells via phosphorylation of serine residues including Ser-40, in part, by CaMK and PKA. Our results also suggest that IH-induced phosphorylation of TH facilitates the removal of endogenous inhibition of TH, leading to increased synthesis of dopamine.  相似文献   

14.
Exercise provides cardioprotection against ischemia-reperfusion injury, a process involving mitochondrial reactive oxygen species (ROS) generation and calcium overload. This study tested the hypotheses that isolated mitochondria from hearts of endurance-trained rats have decreased ROS production and improved tolerance against Ca(2+)-induced dysfunction. Male Fischer 344 rats were either sedentary (Sed, n = 8) or endurance exercise trained (ET, n = 11) by running on a treadmill for 16 wk (5 days/wk, 60 min/day, 25 m/min, 6 degrees grade). Mitochondrial oxidative phosphorylation measures were determined with glutamate-malate or succinate as substrates, and H(2)O(2) production and permeability transition pore (PTP) opening were determined with succinate. All assays were carried out in the absence and presence of calcium. In response to 25 and 50 microM CaCl(2), Sed and ET displayed similar decreases in state 3 respiration, respiratory control ratio, and ADP:O ratio. Ca(2+)-induced PTP opening was also similar. However, H(2)O(2) production by ET was lower than Sed (P < 0.05) in the absence of calcium (323 +/- 12 vs. 362 +/- 11 pmol.min(-1).mg protein(-1)) and the presence of 50 microM CaCl(2) (154 +/- 3 vs. 197 +/- 7 pmol.min(-1).mg protein(-1)). Rotenone, which blocks electron flow from succinate to complex 1, reduced H(2)O(2) production and eliminated differences between ET and Sed. Mitochondrial superoxide dismutase and glutathione peroxidase were not affected by exercise. Catalase activity was extremely low but increased 49% in ET (P < 0.05). In conclusion, exercise reduces ROS production in myocardial mitochondria through adaptations specific to complex 1 but does not improve mitochondrial tolerance to calcium overload.  相似文献   

15.
Obstructive sleep apnea (OSA), characterized by intermittent hypoxia (IH) during sleep, is increasingly recognized as an independent risk factor of cardiovascular diseases. OSA is associated with changes in the levels of circulating oxidative stress/inflammatory markers and dyslipidemia, supporting their mediating roles in cardiovascular pathogenesis. Our aims were to investigate the effect of IH on heart tissue using an IH-exposed rat model and to explore the potential mechanisms involved in the occurrence of cardiac damage. Male Sprague–Dawley rats were exposed to IH and intermittent normoxia as control and sacrificed after 2 or 4 weeks. IH for 4 weeks caused elevation in serum malondialdehyde and cytokine-induced neutrophil chemoattractant-1 and reduction in serum adiponectin levels. In contrast, cardiac oxidative stress and pro-inflammatory markers were suppressed while cardiac adiponectin and cholesterol levels were elevated after IH exposure for 4 weeks. In parallel, there was an increase in apoptosis in the heart of IH-exposed rats, demonstrated by elevations of Bax and cleaved caspase-3 protein and TUNEL staining. Cardiac damage was further evident with decreased arterial vessel and capillary densities, increased cardiac fibrosis, and the loss of troponin I. Our data demonstrated that IH exposure paradoxically caused systemic oxidative and inflammatory responses and cardioprotective responses, i.e., anti-oxidative and anti-inflammatory responses. Despite such a local compensatory protective mechanism, cardiac damage was observed that might be due to IH-induced cholesterol accumulation in the heart and caspase-dependent apoptosis.  相似文献   

16.
Obstructive sleep apnea (OSA) is a frequent medical condition characterized by intermittent hypoxia (IH) during sleep, and is associated with neurodegenerative changes in several brain regions along with learning deficits. We hypothesized that aging rats exposed to IH during sleep would be particularly susceptible. Young (3-4 months) and aging (20-22 months) Sprague-Dawley rats were therefore exposed to either room air or IH for 14 days. Learning and memory was assessed with a standard place-training version of the Morris water maze. Aging rats exposed to room air (RA) or IH displayed significant spatial learning impairments compared with similarly exposed young rats; furthermore, the decrements in performance between RA and IH were markedly greater in aging compared with young rats (p < 0.01), and coincided with the magnitude of IH-induced decreases in cyclic AMP response element binding (CREB) phosphorylation. Furthermore, decreases in proteasomal activity occurred in both young and aging rats exposed to IH, but were substantially greater in the latter (p < 0.001). Neuronal apoptosis, as shown by cleaved caspase 3 expression, was particularly increased in aging rats exposed to IH (p < 0.01 versus young rats exposed to IH). Collectively, these findings indicate unique vulnerability of the aging rodent brain to IH, which is reflected at least in part, by the more prominent decreases in CREB phosphorylation and a marked inability of the ubiquitin-proteasomal pathway to adequately clear degraded proteins.  相似文献   

17.
18.
Obstructive sleep apnea is characterized by upper airway collapse, leading to intermittent hypoxia (IH). It has been postulated that IH-induced oxidative stress may contribute to several chronic diseases associated with obstructive sleep apnea. We hypothesize that IH induces systemic oxidative stress by upregulating NADPH oxidase, a superoxide-generating enzyme. NADPH oxidase is regulated by a cytosolic p47(phox) subunit, which becomes phosphorylated during enzyme activation. Male C57BL/6J mice were exposed to IH with an inspired O(2) fraction nadir of 5% 60 times/h during the 12-h light phase (9 AM-9 PM) for 1 or 4 wk. In the aorta and heart, IH did not affect lipid peroxidation [malondialdehyde (MDA) level], nitrotyrosine level, or p47(phox) expression and phosphorylation. In contrast, in the liver, exposure to IH for 1 wk resulted in a trend to an increase in MDA levels, whereas IH for 4 wk resulted in a 38% increase in MDA levels accompanied by upregulation of p47(phox) expression and phosphorylation. Administration of an NADPH oxidase inhibitor, apocynin, during IH exposure attenuated IH-induced increases in hepatic MDA. In p47(phox)-deficient mice, MDA levels were higher at baseline and, unexpectedly, decreased during IH. In conclusion, oxidative stress levels and pathways under IH conditions are organ and duration specific.  相似文献   

19.
Oxidative stress promotes Ca2+-dependent opening of the mitochondrial inner membrane permeability transition pore (PTP), causing bioenergetic failure and subsequent cell death in many paradigms, including those related to acute brain injury. One approach to pre-conditioning against oxidative stress is pharmacologic activation of the Nrf2/ARE pathway of antioxidant gene expression by agents such as sulforaphane (SFP). This study tested the hypothesis that administration of SFP to normal rats increases resistance of isolated brain mitochondria to redox-sensitive PTP opening. SFP or DMSO vehicle was administered intraperitoneally to adult male rats at 10 mg/kg 40 h prior to isolation of non-synaptic brain mitochondria. Mitochondria were suspended in medium containing a respiratory substrate and were exposed to an addition of Ca2+ below the threshold for PTP opening. Subsequent addition of tert-butyl hydroperoxide (tBOOH) resulted in a cyclosporin A-inhibitable release of accumulated Ca2+ into the medium, as monitored by an increase in fluorescence of Calcium Green 5N within the medium, and was preceded by a decrease in the autofluorescence of mitochondrial NAD(P)H. SFP treatment significantly reduced the rate of tBOOH-induced Ca2+ release but did not affect NAD(P)H oxidation or inhibit PTP opening induced by the addition of phenylarsine oxide, a direct sulfhydryl oxidizing agent. SFP treatment had no effect on respiration by brain mitochondria and had no effect on PTP opening or respiration when added directly to isolated mitochondria. We conclude that SFP confers resistance of brain mitochondria to redox-regulated PTP opening, which could contribute to neuroprotection observed with SFP.  相似文献   

20.
The purpose of this study was to compare the influence of two regimes of intermittent hypoxia (IH) [repetitive 5 cycles of 5 min hypoxia (7% O2 or 12% O2 in N2) followed by 15 min normoxia, daily for three weeks] on oxidative stress protective systems in liver mitochondria. To estimate the effectiveness of hypoxia adaptation at the early and late preconditioning period, we exposed rats to acute 6-h immobilization at the 1st and 45th days after cessation of IH. We showed that severity of hypoxic episodes during IH might initiate different adaptive programs. Moderate hypoxia during IH prevents mitochondrial glutathione pool depletion induced by immobilization stress, maintains GSH-redox cycle via activation of glutathione peroxidase, glutathione-S-transferase, glutathione reductase, NADP+-dependent isocitrate dehydrogenase, and increases Mn-SOD activity. Such regimen of hypoxic preconditioning caused the decrease of mitochondrial superoxide anion generation as well as of basal and stimulated in vitro lipid peroxidation and this protective effect remained for 45 days under renormoxic conditions. Hypoxic adaptation in a more severe regimen exerted beneficial effects on the mitochondrial antioxidant defense system only at its later phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号