首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Among substances which may prove useful in preventing or reducing the progression of glycooxidative modifications of proteins, heparin plays a unique role. To elucidate the mechanism whereby heparin may favourably influence the protein structure during glycation, human serum albumin (HSA) was glycated with both 25 and 50 mM glucose in the absence and presence of 12 microg.mL(-1) low-molecular-mass heparin. Glycation caused: (a) modifications of fluorescence emission and excitation spectra consistent with the covalent attachment of glucose to protein; (b) a significant increase in the esterase activity of HSA on p-nitrophenyl acetate; (c) a reduced susceptibility to tryptic digestion and (d) enhanced formation of high-molecular mass aggregates of HSA. These alterations were accompanied by oxidative reactions, as the EPR spectra showed a clear-cut radical signal, dependent on glucose concentration, further confirmed by measurement of the carbonyl content of HSA, as an indirect proof of oxidative damage. In the presence of heparin all the above alterations, especially at 25 mM glucose, turned out to be antagonized. The effects of heparin were dependent on its specific binding to HSA, which triggered an oxidative mechanism strikingly different from that caused by glucose. In the presence of heparin, only the radical species catalyzed by heparin was detected across all samples of glycated HSA, irrespective of glucose concentration. In addition, at 25 mM glucose, enhancement of the oxidative capacity of heparin was also observed. The results demonstrate that the oxidative mechanism sustained by heparin mediates biological effects that may be beneficial in reducing the extent of glycooxidative damage on HSA.  相似文献   

2.
(-)-Epigallocatechin-3-O-gallate (EGCG), the most abundant polyphenol in green tea, mediates the oxidative modification of proteins, generating protein carbonyls. However, the underlying molecular mechanism remains unclear. Here we analyzed the EGCG-derived intermediates generated upon incubation with the human serum albumin (HSA) and established that EGCG selectively oxidized the lysine residues via its oxidative deamination activity. In addition, we characterized the EGCG-oxidized proteins and discovered that the EGCG could be an endogenous source of the electrically-transformed proteins that could be recognized by the natural antibodies. When HSA was incubated with EGCG in the phosphate-buffered saline (pH 7.4) at 37°C, the protein carbonylation was associated with the formation of EGCG-derived products, such as the protein-bound EGCG, oxidized EGCG, and aminated EGCG. The aminated EGCG was also detected in the sera from the mice treated with EGCG in vivo. EGCG selectively oxidized lysine residues at the EGCG-binding domains in HSA to generate an oxidatively deaminated product, aminoadipic semialdehyde. In addition, EGCG treatment results in the increased negative charge of the protein due to the oxidative deamination of the lysine residues. More strikingly, the formation of protein carbonyls by EGCG markedly increased its cross-reactivity with the natural IgM antibodies. These findings suggest that many of the beneficial effects of EGCG may be partly attributed to its oxidative deamination activity, generating the oxidized proteins as a target of natural antibodies.  相似文献   

3.
Black foam films (BFF) from water solutions of the phospholipid dilauroyl lecithin (DLL) with admixtures of palmitoyl lysolecithin (Lyso) were formed. Microscopic BFF were studied by the method of Scheludko and Exerowa. The formation probability for BFF and the BFF lifetime in a black state before film rupture were measured as functions of the film composition. At a fixed overal lipid concentration it was shown that an increased percentage of Lyso exponentially increased the lifetime of the film up to the CMC of Lyso. This stabilizing Lyso effect nicely corresponds with its stabilizing action on the waiting time for fusion of two contacting black lipid membranes (BLM), as found by Chernomordik et al. In contrast, Lyso is known to destabilize a single BLM. In this way we have found experimental proof of our earlier prediction that Lyso should have opposite effects on the lifetimes of BLM and BFF. In addition, we have shown for the first time that foam films made of lipids are a convenient model for monlayer membrane fusion studies. This model is characterized by its simplicity and experimental reliability and provides a means for quick screening of the fusogenic capacity of various amphiphilic and hydrophilic admixtures.  相似文献   

4.
Reactive oxygen intermediates (ROI) released during inflammation may act as important mediators of neutrophil effector functions. The objective of this investigation was to evaluate the influence of ROI generation on neutrophil adhesion molecule regulation and degranulation. Induction of the neutrophil oxidative burst via Fcgamma receptor cross-linking was accompanied by up-regulation of neutrophil surface CD11b, CD35, and CD66b only in the presence of selected serum proteins, such as purified human C4, C5, or human serum albumin (HSA). Scavenging of ROI attenuated protein-dependent receptor regulations. Moreover, exogenous hydrogen peroxide was effective to increase neutrophil CD11b expression in a protein-dependent way. HSA exposed to neutrophil-derived ROI displayed signs of oxidative modification in terms of carbonyl formation. Such modified HSA transferred to resting neutrophils bound readily to the cell surface and effected receptor modulation as well as cellular spreading. In contrast, neither native HSA nor HSA protected against oxidation by the tocopherol analog Trolox exhibited agonistic properties. In conclusion, we demonstrate that neutrophil-derived ROI modify selected serum proteins, which, in turn, act as proinflammatory mediators of neutrophil stimulation.  相似文献   

5.
It is well known that hydrogen peroxide (H2O2)-induced copper-catalyzed fragmentation of proteins follows a site-specific oxidative mechanism mediated by hydroxyl radical-like species (i.e. Cu(I)O, Cu(II)/*OH or Cu(III)) that ends in increased carbonyl formation and protein fragmentation. We have found that the nitrone spin trap DMPO (5,5-dimethyl-1-pyrroline N-oxide) prevented such processes by trapping human serum albumin (HSA)-centered radicals, in situ and in real time, before they reacted with oxygen. When (bi)carbonate (CO2, H2CO3, HCO3- and CO3(-2)) was added to the reaction mixture, it blocked fragmentation mediated by hydroxyl radical-like species but enhanced DMPO-trappable radical sites in HSA. In the past, this effect would have been explained by oxidation of (bi)carbonate to a carbonate radical anion (CO3*) by a bound hydroxyl radical-like species. We now propose that the CO3* radical is formed by the reduction of HOOCO2- (a complex of H2O2 with CO2) by the protein-Cu(I) complex. CO3* diffuses and produces more DMPO-trappable radical sites but does not fragment HSA. We were also able, for the first time, to detect discrete but highly specific H2O2-induced copper-catalyzed CO3*-mediated induction of DMPO-trappable protein radicals in functioning RAW 264.7 macrophages. We conclude that carbon dioxide modulates H2O2-induced copper-catalyzed oxidative damage to proteins by preventing site-specific fragmentation and enhancing DMPO-trappable protein radicals in functioning cells. The pathophysiological significance of our findings is discussed.  相似文献   

6.
The interaction between lomefloxacin (LMF) and two drug carrier proteins, human serum albumin (HSA) and serum transferrin (TF), were studied and compared by fluorescence quenching, resonance light scattering (RLS), and circular dichroism (CD) spectroscopic along with molecular modeling. Fluorescence data show that LMF has a stronger quenching effect on HSA than on TF. The binding constant and the number of binding sites were calculated as 6.00 x 10(5) M(-1) and 0.77 for HSA, and 4.66 x 10(5) M(-1) and 1.02, for TF, respectively. Also, these binding parameters were calculated by RLS data, as a novel approach and were compared to that obtained from fluorescence. The micro-environment changes of Trp residues were evident in both proteins. The quantitative analysis of the secondary structure in both proteins further confirmed the drug-induced conformational changes. The distance (r) between donors (HSA and TF) and acceptor (LMF) were obtained by fluorescence resonance energy transfer (FRET) theory and found to be 1.83 nm and 1.71 nm for HSA and TF respectively. Moreover, molecular modeling studies suggested the sub-domain IB in HSA and N-lobe in TF as the candidate place for the formation of the binding site of LMF on these proteins.  相似文献   

7.
Oxidized albumin is a reliable marker of oxidative stress in hemodialysis (HD) patients. However, oxidized albumin in vivo and its possible clinical significance has been rarely investigated. In the present study, the qualitative modification of albumin in HD patients (n = 20) was examined and their results were compared with healthy age-matched controls (n = 10). The increase in plasma protein carbonyl levels in HD patients was largely due to an increase in oxidized albumin. Human serum albumin (HSA) of HD patients, HSA of HD patients (HD-HSA) and normal subjects (Normal-HSA) were purified on a blue Sepharose CL-6B column. Spectroscopic analysis confirmed that the HD-HSA samples contained higher levels of carbonyls than Normal-HSA. An HPLC analysis also suggested that the state of the purified HSA used throughout the experiments accurately reflects the redox state of albumin in blood. HD-HSA was found to have a decreased the antioxidant activity, and was able to trigger the oxidative burst of human neutrophils, compared to Normal-HSA. HD-HSA was conformationally altered, with its hydrophobic regions more exposed and to have a negative charge. In binding experiments, HD-HSA showed impaired Site II-ligand binding capabilities. Collectively, the oxidation of plasma proteins, especially HSA, might enhance oxidative stress in HD patients.  相似文献   

8.
The electrophilic lipid oxidation product 4-hydroxy-2-nonenal (HNE) reacts with proteins to form covalent adducts, and this damage has been implicated in pathologies associated with oxidative stress. HNE adduction of blood proteins, such as human serum albumin (HSA), yields adducts that may serve as markers of oxidative stress in vivo. We used liquid chromatography-tandem mass spectrometry (LC-MS-MS) and the P-Mod algorithm to map the sites of 10 adducts formed by reaction of HNE with HSA in vitro. The detected adducts included Michael adducts formed at histidine and lysine residues. The selectivity of HNE in competing adduction reactions was evaluated by analysis of kinetics for HNE Michael adduction at six targeted HSA histidine residues. Reaction kinetics were analyzed by selected reaction monitoring in LC-MS-MS using stable isotope tagging with phenyl isocyanate. Rate constants ranged over 4 orders of magnitude, with the order of reactivity being H242 > H510 > H67 > H367 > H247 approximately K233. The most reactive target, H242, is located in a fatty acid- and drug binding cavity in subdomain IIa of HSA and appears to be a hot-spot for HNE modification. Analysis of adduction kinetics together with HSA structure and target residue pK(a) values suggest that location in the hydrophobic binding cavity and low predicted pK(a) of H242 account for its high reactivity toward HNE. H242 adducts may be preferred products of adduction by lipophilic electrophiles and may comprise a family of biomarkers for oxidative stress.  相似文献   

9.
Human serum albumin (HSA) has one free thiol residue at Cys-34 that is likely oxidized by various reactive oxygen species (ROS). We attempted to identify the oxidation product of Cys-34 of HSA following exposure of plasma to ROS. Oxidation induced by tert-butyl hydroperoxide (t-BuOOH) of this free cysteine residue in HSA was observed in detail. Analysis of oxidized albumin in a partially purified fraction obtained by affinity column chromatography clearly revealed the formation of albumin disulfide dimers following t-BuOOH exposure. Albumin disulfide dimer formation was observed in normal plasma following treatment with various peroxides, as well as in untreated plasma from patients on hemodialysis using SDS-PAGE and Western blot analysis. The present results indicate that albumin dimers are oxidative products derived from peroxides, and that their presence in plasma might be a marker of oxidative stress as secondary metabolites of peroxidation.  相似文献   

10.
Down syndrome (DS) is a developmental disorder associated with mental retardation (MR) and early onset Alzheimer's disease (AD). These CNS phenotypes are attributed to ongoing neuronal degeneration due to constitutive overexpression of chromosome 21 (HSA21) genes. We have previously shown that HSA21 associated S100B contributes to oxidative stress and apoptosis in DS human neural progenitors (HNPs). Here we show that DS HNPs isolated from fetal frontal cortex demonstrate not only disturbances in redox states within the mitochondria and increased levels of progenitor cell death but also transition to more gliocentric progenitor phenotypes with a consequent reduction in neuronogenesis. HSA21 associated S100B and amyloid precursor protein (APP) levels are simultaneously increased within DS HNPs, their secretions are synergistically enhanced in a paracrine fashion, and overexpressions of these proteins disrupt mitochondrial membrane potentials and redox states. HNPs show greater susceptibility to these proteins as compared to neurons, leading to cell death. Ongoing inflammation through APP and S100B overexpression further promotes a gliocentric HNPs phenotype. Thus, the loss in neuronal numbers seen in DS is not merely due to increased HNPs cell death and neurodegeneration, but also a fundamental gliocentric shift in the progenitor pool that impairs neuronal production.  相似文献   

11.
We previously described the presence of advanced oxidation protein products (AOPP), a novel marker of oxidative stress in the plasma of hemodialyzed patients (HD). The present study was carried out to further investigate how myeloperoxidase (MPO)-catalyzed reactions could contribute to AOPP generation in the plasma. First, patterns of plasma protein oxidation obtained after in vitro incubation of control plasma with hypochlorous acid (HOCl) were compared to those from HD patients and control plasma. The use of various analytical techniques enabled localising and identifying the main oxidized proteins with albumin (HSA) after protein separation by size-exclusion chromatography and SDS-PAGE electrophoresis. The characterization of the oxidation level of the individual plasma proteins in terms of carbonyl groups and 3-nitrotyrosine formations was performed by immunoblotting. Secondly, to highlight the significance of AOPP index monitored by spectrophotometry, spectra were established for plasma fractions from HD patients and compared to data for control plasma and HOCl-treated plasma. The corresponding absorbance difference spectra were matched with external standards such as dityrosine, nitrotyrosine and pentosidine and elaborated chromophoric probe models. Indeed, HSA was chlorinated by HOCl reagent or HOCl generated via the MPO/H(2)O(2)/Cl(-) system and was nitrated by tetranitromethane. Increased absorbances at the range of 340 nm were observed both with chlorinated and nitrated HSA. Finally, our results indicate that HOCl, and not NO(2)(*), generated via MPO activity, could represent one of the pathways for AOPP production in plasma proteins exposed to activated phagocytes.  相似文献   

12.
The interaction of carbonylcyanide p‐(trifluoromethoxy) phenylhydrazone (FCCP) with human serum albumin (HSA) and human transferrin (HTF) was investigated using multiple spectroscopy, molecular modeling, zeta‐potential and conductometry measurements of aqueous solutions at pH 7.4. The fluorescence, UV/vis and polarization fluorescence spectroscopy data disclosed that the drug–protein complex formation occurred through a remarkable static quenching. Based on the fluorescence quenching, two sets of binding sites with distinct affinities for FCCP existed in the two proteins. Steady‐state and polarization fluorescence analysis showed that there were more affinities between FCCP and HSA than HTF. Far UV‐CD and synchronous fluorescence studies indicated that FCCP induced more structural changes on HSA. The resonance light scattering (RLS) and zeta‐potential measurements suggested that HTF had a greater resistance to drug aggregation, whereas conductometry measurements expressed the presence of free ions improving the resistance of HSA to aggregation. Thermodynamic measurements implied that a combination of electrostatic and hydrophobic forces was involved in the interaction between FCCP with both proteins. The phase diagram plots indicated that the presence of second binding site on HSA and HTF was due to the existence of intermediate structures. Site marker competitive experiments demonstrated that FCCP had two distinct binding sites in HSA which were located in sub‐domains IIA and IIIA and one binding site in the C‐lobe of HTF as confirmed by molecular modeling. The obtained results suggested that both proteins could act as drug carriers, but that the HSA potentially had a higher capacity for delivering FCCP to cancerous tissues. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
Methylglyoxal (MGO) and glyoxal (GO) are attracting considerable attention because of their role in the onset of diabetes symptoms. Therefore, to comprehend the molecular fundamentals of their pathological actions is of the utmost importance. In this study, the molecular interactions between resveratrol (RES) and human serum albumin (HSA) and the ability of the stilbene to counteract the oxidative damage caused by pathological concentrations of MGO and GO to the human plasma protein, was assessed. The oxidation of Cys34 in HSA as well as the formation of specific protein semialdehydes AAS (α-aminoadipic), GGS (γ-glutamic) and the accumulation of Advanced Glycation End-products (AGEs) was investigated. Resveratrol was found to neutralize both α-dicarbonyls by forming adducts detected by HESI-Orbitrap-MS. This antioxidant action was manifested in a significant reduction of AGEs. However, RES-α-dicarbonyl conjugates oxidized Cys34 and lysine, arginine and/or proline by a nucleophilic attack on SH and ε-NH groups in HSA. The formation of specific semialdehydes in HSA after incubation with GO and MGO at pathological concentrations was reported for the first time in this study, and may be used as early and specific biomarkers of the oxidative stress undergone by diabetic patients. The pro-oxidative role of the RES-α-dicarbonyl conjugates should be further investigated to clarify whether this action leads to positive or harmful clinical consequences. The biological relevance of human protein carbonylation as a redox signaling mechanism and/or as a reflection of oxidative damage and disease should also be studied in future works.  相似文献   

14.
Pro-Inflammatory non-pancreatic phospholipase A(2) (sPLA(2)) is markedly over-expressed in acute systemic and chronic local inflammatory processes. Since in acute phase reaction sPLA(2) is often over-expressed simultaneously with acute phase proteins (APP), it is important to determine whether APP interacts with sPLA(2). We tested ten APPs for interaction with sPLA(2) using as a substrate multilamellar Hposomes composed either of PC:Lyso PC or PE:Lyso PE. Using PC:Lyso PC substrate, CRP, lactoferrin and SAP were found to inhibit sPLA(2) activity with an IC(50) of 25 mug/ml, 7.5 mug/ml and 50 mug/ml, respectively, corresponding to 0.21 muM, 0.1 muM and 0.21 muM respectively. Using PE:Lyso PE substrate only SAP was inhibitory, with an IC(50) of 10 mug/ml (0.04 muM). Phosphorylcholine abolished the inhibitory activity of CRP but not of SAP or lactoferrin. Addition of phosphorylethanolamine or of excess calcium had no effect on the inhibitory activity of APP. Limulin, lysozyme, transferrin, beta(2)-microglobulin, alpha(2)-macroglobulin, human and bovine albumins had no effect on sPLA2 activity. Therefore neither the structure of pentraxins, or ironbinding, bacteriostatic property or amyloidogenic property preclude whether APP modulates sPLA(2) activity. Inhibition of pro-inflammatory sPLA(2) by APP may be one of the protective mechanisms of the acute phase reaction.  相似文献   

15.
Thioredoxins (Trxs) are small ubiquitous disulphide proteins widely known to enhance expression and solubility of recombinant proteins in microbial expression systems. Given the common evolutionary heritage of chloroplasts and bacteria, we attempted to analyse whether plastid Trxs could also act as modulators of recombinant protein expression in transgenic chloroplasts. For that purpose, two tobacco Trxs (m and f) with different phylogenetic origins were assessed. Using plastid transformation, we assayed two strategies: the fusion and the co-expression of Trxs with human serum albumin (HSA), which was previously observed to form large protein bodies in tobacco chloroplasts. Our results indicate that both Trxs behave similarly as regards HSA accumulation, although they act differently when fused or co-expressed with HSA. Trxs-HSA fusions markedly increased the final yield of HSA (up to 26% of total protein) when compared with control lines that only expressed HSA; this increase was mainly caused by higher HSA stability of the fused proteins. However, the fusion strategy failed to prevent the formation of protein bodies within chloroplasts. On the other hand, the co-expression constructs gave rise to an absence of large protein bodies although no more soluble HSA was accumulated. In these plants, electron micrographs showed HSA and Trxs co-localization in small protein bodies with fibrillar texture, suggesting a possible influence of Trxs on HSA solubilization. Moreover, the in vitro chaperone activity of Trx m and f was demonstrated, which supports the hypothesis of a direct relationship between Trx presence and HSA aggregates solubilization in plants co-expressing both proteins.  相似文献   

16.
Halogenated lipids, proteins, and lipoproteins formed in reactions with myeloperoxidase (MPO)-derived hypochlorous acid (HOCl) and hypobromous acid (HOBr) can contribute to the regulation of functional activity of cells and serve as mediators of inflammation. Human serum albumin (HSA) is the major plasma protein target of hypohalous acids. This study was performed to assess the potency of HSA modified by HOCl (HSA–Cl) and HOBr (HSA–Br) to elicit selected neutrophil responses. HSA–Cl/Br were found to induce neutrophil degranulation, generation of reactive oxygen intermediates, shape change, and actin cytoskeleton reorganization. Thus HSA–Cl/Br can initially act as a switch and then as a feeder of the “inflammatory loop” under oxidative stress. In HSA–Cl/Br-treated neutrophils, monoclonal antibodies against CD18, the β subunit of β2 integrins, reduced the production of superoxide anion radicals and hydrogen peroxide as well as MPO exocytosis, suggesting that CD18 contributed to neutrophil activation. HSA–Cl/Br-induced neutrophil responses were also inhibited by genistein, a broad-specificity tyrosine kinase inhibitor, and wortmannin, a phosphoinositide 3-kinase (PI3K) inhibitor, supporting the notion that activation of both tyrosine kinase and PI3K may play a role in neutrophil activation by HSA modified in MPO-dependent reactions. These results confirm the hypothesis that halogenated molecules formed in vivo via MPO-dependent reactions can be considered as a new class of biologically active substances potentially able to contribute to activation of myeloid cells in sites of inflammation and serve as inflammatory response modulators.  相似文献   

17.
The production of pharmaceutical proteins in plants provides a valuable alternative to other traditional eukaryotic expression systems from economic and safety perspectives. The moss Physcomitrella patens allows the expression and secretion of complex target proteins into a simple aqueous maintenance medium, which facilitates downstream processing by rendering it less complex. To address the question of whether the addition of protein-stabilizing substances enhances the recovery of a target protein secreted into the culture medium, several additives at different concentrations were tested in a small-scale screening system. Although polyvinylpyrrolidone (PVP) and human serum albumin (HSA) showed a significant impact on protein levels, supplementation of the medium with these substances was accompanied by certain limitations in upstream processes, such as foam formation (HSA), and in downstream processes, such as reduced binding efficiency on chromatography columns (PVP), respectively. In order to reap the benefit of the enhancing effect and to avoid the given negative aspects, we developed a new strategy based on the recombinant expression of HSA in plants that are already capable of expressing a target protein. First, we analysed the expression and secretion of recombinant HSA in transiently and stably transformed wild-type (WT) plants. HSA was then co-expressed in Physcomitrella plants transgenic for human vascular endothelial growth factor (VEGF). Even with high expression levels of recombinant human VEGF (rhVEGF), the co-expression of recombinant HSA (rHSA) resulted in 48%-102% higher recovery of the target protein without concomitant negative effects on the upstream process. This strategy enables the enhanced recovery of target protein and does not require the addition of foreign components directly to the culture medium.  相似文献   

18.
Structural changes associated with the exposure of human serum albumin (HSA) to glucose with or without the presence of Cu (II) have been characterized using a bank of methods for structural analysis including circular dichroism (CD), amino acid analysis (AAA), fluorescence measurements, SDS-PAGE, and boronate binding (which is a measure of Amadori product formation). We show that in the short-term (10 d) incubation mixtures, HSA is resistant to Cu (II)-mediated oxidative damage and that the early products of glycation of HSA had minimal effects on the folded structure. Amino acid analysis showed that there was no formation of advanced glycation endproducts (AGE), which can be measured by loss of lysine. This remained the case in longer term incubation of HSA (56 d) in the hyperglycemic concentration range (5–25 mM glucose) despite increased levels of Amadori product (60% boronate binding) and the formation of glycophore (Excitation 350, Emission 425). At high, nonphysiological concentrations (100 mM and 500 mM) of glucose, glycophore formation increased and 3 and 11 mol Lysine-glucose adduct/mol HSA were converted to AGE, respectively. This was accompanied by increased damage to tryptophan and protein-protein crosslinking but only minor tertiary structural change. In the presence of Cu (II), however, AGE formation was accompanied by extensive damage to histidine and tryptophan side chains, main chain fragmentation, and loss of both secondary and tertiary structure. Thus, changes in structure appear to be the result of oxidation as opposed to glycation, per se. © 1997 Elsevier Science Inc.  相似文献   

19.
A terminal pasteurization step has been used for some plasma-derived protein products such as human serum albumin (HSA), which consists of heating the protein in solution at 60 °C for 10 h. Native and denaturing SDS-PAGE and dynamic light scattering were used to follow the stability of HSA during this process. It appears that a thermally unstable fraction, comprised primarily of haptoglobin, is involved in the formation of soluble aggregates of HSA. Therefore, it appears that aggregation during heat treatment is not due to conformational instability of HSA itself, but arises from unfolding of a thermally labile protein impurity. As haptoglobin aggregates, it entraps some HSA, which is present at much higher concentrations. This study emphasizes that, in a complex mixture of naturally occurring proteins, one thermally labile species can trigger aggregation of more stable proteins.  相似文献   

20.
The antioxidant activities of three polysaccharide components (TLH-1, TLH-2, TLH-3) extracted from Tricholoma lobayense were evaluated by three different in vitro methods, namely superoxide radical (O(2)(-)) scavenging activity, inhibition of mice erythrocyte hemolysis (MEH) and malondialdehyde (MDA) mediated by hydrogen peroxide (H(2)O(2)) and investigation of oxidative modification of human serum albumin (HSA) induced by 2,2-azobis(2-amidinopropane)dihydrochloride (AAPH) through fluorescence spectroscopy. The antioxidant experiments showed that the polysaccharides had a notable activity in scavenging O(2)(-) in a concentration-dependent manner; H(2)O(2)-induced MEH and formation of MDA were effectively inhibited; by fluorescence spectroscopy, it was demonstrated that the polysaccharides could obviously inhibit AAPH-induced oxidative modification of HSA. The experimental data obtained from the in vitro models clearly revealed that TLH-3 had stronger antioxidant potency than TLH-1 and TLH-2, which indicated that TLH-3 might be exploited as effective natural antioxidant to alleviate oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号