首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of the investigation was to prepare and characterize wheat germ agglutinin(WGA)-conjugated poly(d,l-lactic-co-glycolic) acid nanoparticles encapsulating mometasone furoate (MF) as a model drug and assess changes in its fate in terms of cellular interactions. MF loaded nanoparticles were prepared using emulsion–solvent evaporation technique. WGA-conjugation was done by carbodiimide coupling method. The nanoparticles were characterized for size, zeta potential, entrapment efficiency and in-vitro drug release. The intracellular uptake of nanoparticles, drug cellular levels, and anti-proliferative activity studies of wheat germ agglutinin-conjugated and unconjugated nanoparticles were assessed on alveolar epithelial (A549) cells to establish cellular interactions. Prepared nanoparticles were spherical with 10–15 μg/mg of WGA conjugated on nanoparticles. The size of nanoparticles increased after conjugation and drug entrapment and zeta potential reduced from 78 ± 5.5% to 60 ± 2.5% and −15.3 ± 1.9 to −2.59 ± 2.1 mV respectively after conjugation. From the cellular drug concentration–time plot, AUC was found to be 0.4745, 0.6791 and 1.24 for MF, MF-nanoparticles and wheat germ agglutinin-MF-nanoparticles respectively. The in-vitro antiproliferative activity was improved and prolonged significantly after wheat germ agglutinin-conjugation. The results conclusively demonstrate improved availability and efficacy of antiasthmatic drug in alveolar epithelial cell lines. Hence, a drug once formulated as mucoadhesive nanoparticles and incorporated in dry powder inhaler formulation may be used for targeting any segment of lungs for more improved therapeutic response in other lung disorders as well.  相似文献   

2.
Chitosan microspheres as drug delivery system have attained importance and attracted the attention of researchers in last few years. This study was aimed toward the elucidation of the effect of viscosity of external oil phase on the properties of microspheres prepared by emulsification method. Chitosan microspheres were prepared utilizing oil phase of different viscosity viz. castor oil, heavy liquid paraffin, light liquid paraffin and mixture of light paraffin, and petroleum ether (1:1 v/v ratio). Microspheres prepared in highly viscous castor oil exhibited an average size of 11.52 ± 0.57 μm with a percentage drug entrapment of 43.12 ± 2.14. On the other hand, very small microspheres of 3.15 ± 0.04 μm and 68.87 ± 1.03% drug entrapment were obtained when mixture of liquid paraffin and petroleum ether was utilized as oil phase. Effect of viscosity on percent mucoadhesion, percent drug entrapment, zeta potential, percent process yield, etc. of microspheres has been observed. In vitro drug release in phosphate buffer pH 7.4 was determined for different batch of microspheres. The results revealed a difference in the drug release pattern of the different microspheres prepared as a function of viscosity of different oil phase. Use of low viscose oil resulted in the formulation of spherical and small size microspheres. This work was a part of our ongoing thrust and project to develop microparticulate drug delivery system.  相似文献   

3.
Our objective was to test the hypothesis that a common polymorphism in the hepatic lipase (HL) gene (LIPC -514C>T, rs1800588) influences aerobic exercise training-induced changes in TG, very-low-density lipoprotein (VLDL), and high-density lipoprotein (HDL) through genotype-specific increases in lipoprotein lipase (LPL) activity and that sex may affect these responses. Seventy-six sedentary overweight to obese men and women aged 50-75 yr at risk for coronary heart disease (CHD) underwent a 24-wk prospective study of the LIPC -514 genotype-specific effects of exercise training on lipoproteins measured enzymatically and by nuclear magnetic resonance, postheparin LPL and HL activities, body composition by dual energy x-ray absorptiometry and computer tomography scan, and aerobic capacity. CT genotype subjects had higher baseline total cholesterol, HDL-C, HDL(2)-C, large HDL, HDL particle size, and large LDL than CC homozygotes. Exercise training elicited genotype-specific decreases in VLDL-TG (-22 vs. +7%; P < 0.05; CC vs. CT, respectively), total VLDL and medium VLDL, and increases in HDL-C (7 vs. 4%; P < 0.03) and HDL(3)-C with significant genotype×sex interactions for the changes in HDL-C and HDL(3)-C (P values = 0.01-0.02). There were also genotype-specific changes in LPL (+23 vs. -6%; P < 0.05) and HL (+7 vs. -24%; P < 0.01) activities, with LPL increasing only in CC subjects (P < 0.006) and HL decreasing only in CT subjects (P < 0.007). Reductions in TG, VLDL-TG, large VLDL, and medium VLDL and increases in HDL(3)-C and small HDL particles correlated significantly with changes in LPL, but not HL, activity only in CC subjects. This suggests that the LIPC -514C>T variant significantly affects training-induced anti-atherogenic changes in VLDL-TG, VLDL particles, and HDL through an association with increased LPL activity in CC subjects, which could guide therapeutic strategies to reduce CHD risk.  相似文献   

4.
This investigation was undertaken to evaluate practical feasibility of site specific pulmonary delivery of liposomal encapsulated Dapsone (DS) dry powder inhaler for prolonged drug retention in lungs as an effective alternative in prevention of Pneumocystis carinii pneumonia (PCP) associated with immunocompromised patients. DS encapsulated liposomes were prepared by thin film evaporation technique and resultant liposomal dispersion was passed through high pressure homogenizer. DS nano-liposomes (NLs) were separated by ultra centrifugation and characterized. NLs were dispersed in phosphate buffer saline (PBS) pH 7.4 containing different carriers like lactose, sucrose, and hydrolyzed gelatin, and 15% l-leucine as antiadherent. The resultant dispersion was spray dried and spray dried formulation were characterized to ascertain its performance. In vitro pulmonary deposition was assessed using Andersen Cascade Impactor as per USP. NLs were found to have average size of 137 ± 15 nm, 95.17 ± 3.43% drug entrapment, and zeta potential of 0.8314 ± 0.0827 mV. Hydrolyzed gelatin based formulation was found to have low density, good flowability, particle size of 7.9 ± 1.1 μm, maximum fine particle fraction (FPF) of 75.6 ± 1.6%, mean mass aerodynamic diameter (MMAD) 2.2 ± 0.1 μm, and geometric standard deviation (GSD) 2.3 ± 0.1. Developed formulations were found to have in vitro prolonged drug release up to 16 h, and obeys Higuchi's Controlled Release model. The investigation provides a practical approach for direct delivery of DS encapsulated in NLs for site specific controlled and prolonged release behavior at the site of action and hence, may play a promising role in prevention of PCP.  相似文献   

5.
Chronic alcohol intake is associated with an increase in fasting plasma high density lipoproteins (HDL). To study alcohol's acute effects on plasma lipoproteins, we measured plasma lipoprotein concentrations and activities of postheparin plasma lipases in nine normolipemic males after ingestion of 40 g of ethanol (as whiskey). After alcohol there was no change in lipoprotein lipase activity but hepatic lipase was decreased to 67% of baseline at 6 hr. There were associated increases in HDL phospholipids (12 mg/dl) and cholesterol (10 mg/dl) resulting in prominence of larger, lipid-enriched HDL particles. Changes were most pronounced in the HDL3 and HDL2a subclasses. Very low density lipoprotein (VLDL) phospholipids and cholesterol were also increased by 13 and 9 mg/dl, respectively, with no significant change in triglycerides. Changes in lipoproteins and lipase were largely reversed 10 hr after alcohol intake. The transient increases in VLDL and HDL lipids after alcohol may result in part from acute inhibition of hepatic lipase activity. The results suggest a role of hepatic lipase in the catabolism of phospholipids of VLDL and possibly HDL.  相似文献   

6.
Effects of pH profiles on nisin fermentation coupling with foam separation   总被引:1,自引:0,他引:1  
Online foam separation was proposed to recover nisin during fermentation of Lactococcus lactis subsp. lactis ATCC 11454. Firstly, the optimal pH profile of nisin fermentation was investigated including different realkalization set values and pH drop gradients. Then the selected pH profiles of 5.75 ± 0.05 and 6.25–5.75 (±0.02) were used to perform nisin fermentation coupling with foam separation. The results showed that pH profile of 5.75 ± 0.05 was better than that of 6.25–5.75 (±0.02) for online foam separation. With the optimal pH profile, an aeration of 20 ml min−1 that started at 8 h of incubation and lasted for 2 h resulted in 6.6 times higher specific productivity than that of the fermentation without aeration. Nisin synthesis was therefore prolonged with low sucrose concentration in the culture broth, which indicated that the feedback inhibition of nisin is more influential than the substrate limitation of sucrose in the late phase of nisin fermentation. Total nisin production (4,870 ± 180 IU ml−1) was increased by 30.3% with online foam separation. This effective online recovery method for nisin production could be easily scaled up due to the facile operation of foaming process.  相似文献   

7.
Rao Y  Zheng F  Zhang X  Gao J  Liang W 《AAPS PharmSciTech》2008,9(3):860-865
In order to develop a novel transdermal drug delivery system that facilitates the skin permeation of finasteride encapsulated in novel lipid-based vesicular carriers (ethosomes)finasteride ethosomes were constructed and the morphological characteristics were studied by transmission electron microscopy. The particle size, zeta potential and the entrapment capacity of ethosome were also determined. In contrast to liposomes ethosomes were of more condensed vesicular structure and they were found to be oppositely charged. Ethosomes were found to be more efficient delivery carriers with high encapsulation capacities. In vitro percutaneous permeation experiments demonstrated that the permeation of finasteride through human cadaver skin was significantly increased when ethosomes were used. The finasteride transdermal fluxes from ethosomes containing formulation (1.34 ± 0.11 μg/cm2/h) were 7.4, 3.2 and 2.6 times higher than that of finasteride from aqueous solution, conventional liposomes and hydroethanolic solution respectively (P < 0.01).Furthermore, ethosomes produced a significant (P < 0.01) finasteride accumulation in the skin, especially in deeper layers, for instance in dermis it reached to 18.2 ± 1.8 μg/cm2. In contrast, the accumulation of finasteride in the dermis was only 2.8 ± 1.3 μg/cm2 with liposome formulation. The study demonstrated that ethosomes are promising vesicular carriers for enhancing percutaneous absorption of finasteride.  相似文献   

8.
To explore the interactions of triacylglycerol and phospholipid hydrolysis in lipoprotein conversions and remodeling, we compared the activities of lipoprotein and hepatic lipases on human VLDL, IDL, LDL, and HDL2. Triacylglycerol and phospholipid hydrolysis by each enzyme were measured concomitantly in each lipoprotein class by measuring hydrolysis of [14C]triolein and [3H]dipalmitoylphosphatidylcholine incorporated into each lipoprotein by lipid transfer processes. Hepatic lipase was 2-3 times more efficient than lipoprotein lipase at hydrolyzing phospholipid both in absolute terms and in relation to triacylglycerol hydrolysis in all lipoproteins. The relationship between phospholipid hydrolysis and triacylglycerol hydrolysis was generally linear until half of particle triacylglycerol was hydrolyzed. For either enzyme acting on a single lipoprotein fraction, the degree of phosphohydrolysis closely correlated with triacylglycerol hydrolysis and was largely independent of the kinetics of hydrolysis, suggesting that triacylglycerol removed from a lipoprotein core is an important determinant of phospholipid removal via hydrolysis by the lipase. Phospholipid hydrolysis relative to triacylglycerol hydrolysis was most efficient in VLDL followed in descending order by IDL, HDL, and LDL. Even with hepatic lipase, phospholipid hydrolysis could not deplete VLDL and IDL of sufficient phospholipid molecules to account for the loss of surface phospholipid that accompanies triacylglycerol hydrolysis and decreasing core volume as LDL is formed (or for conversion of HDL2 to HDL3). Thus, shedding of whole phospholipid molecules, presumably in liposomal-like particles, must be a major mechanism for losing excess surface lipid as large lipoprotein particles are converted to smaller particles. Also, this shedding phenomenon, like phospholipid hydrolysis, is closely related to the hydrolysis of lipoprotein triacylglycerol.  相似文献   

9.
The current research work investigates the potential of solid lipid nanoparticles (SLNs) in improving the oral bioavailability of paclitaxel. Paclitaxel-loaded SLNs (PTX-SLNs) were prepared by modified solvent injection method using stearylamine as lipid, soya lecithin and poloxamer 188 as emulsifiers. SLNs were characterized in terms of surface morphology, size and size distribution, surface chemistry and encapsulation efficiency. Pharmacokinetics and bioavailability studies were conducted in male Swiss albino mice after oral administration of PTX-SLNs. SLNs exhibited spherical shape with smooth surface as analyzed by transmission electron microscopy (TEM). The mean particle size of SLNs was 96 ± 4.4 nm with a low polydispersity index of 0.162 ± 0.04 and zeta potential of 39.1 ± 0.8 mV. The drug entrapment efficiency was found to be 75.42 ± 1.5% with a loading capacity of 31.5 ± 2.1% (w/w). Paclitaxel showed a slow and sustained in vitro release profile and followed Higuchi kinetic equations. After oral administration of the PTX-SLNs, drug exposure in plasma and tissues was ten- and twofold higher, respectively, when compared with free paclitaxel solution. PTX-SLNs produced a high mean C max (10,274 ng/ml) compared with that of free paclitaxel solution (3,087 ng/ml). The absorbed drug was found to be distributed in liver, lungs, kidneys, spleen, and brain. The results suggested that PTX-SLNs dispersed in an aqueous environment are promising novel formulations that enhanced the oral bioavailability of hydrophobic drugs, like paclitaxel and were quite safe for oral delivery of paclitaxel as observed by in vivo toxicity studies.  相似文献   

10.
Very low density lipoprotein (VLDL)-remnants, prepared by extrahepatic circulation of VLDL, labeled biosynthetically in the cholesterol (ester) moiety, were injected intravenously into rats in order to determine the relative contribution of parenchymal and non-parenchymal liver cells to the hepatic uptake of VLDL-remnant cholesterol (esters). 82.7% of the injected radioactivity is present in liver, measured 30 min after injection. The non-parenchymal liver cells contain 3.1±0.1 times the amount of radioactivity per mg cell protein as compared to parenchymal cells. The hepatic uptake of biosynthetically labeled (screened) low density lipoprotein (LDL) and high density lipoprotein (HDL) cholesterolesters amounts to 26.8% and 24.4% of the injected dose, measured 6 h after injection. The non-parenchymal cells contain 4.3±0.8 and 4.1±0.7 times the amount of radioactivity per mg cell protein as compared to parenchymal cells for LDL and HDL, respectively. It is concluded that in addition to parenchymal cells, the non-parenchymal cells play an important role in the hepatic uptake of cholesterolesters from VLDL-remnants, LDL and HDL.  相似文献   

11.
A mixed microbial culture was immobilized by entrapment into silica gel (SG) and entrapment/ adsorption on polyurethane foam (PU) and ceramic foam. The phenol degradation performance of the SG biocatalyst was studied in a packed-bed reactor (PBR), packed-bed reactor with ceramic foam (PBRC) and fluidized-bed reactor (FBR). In continuous experiments the maximum degradation rate of phenol (q s max) decreased in the order: PBRC (598 mg l−1 h−1) > PBR (PU, 471 mg l−1 h−1) > PBR (SG, 394 mg l−1 h−1) > FBR (PU, 161 mg l−1 h−1) > FBR (SG, 91 mg l−1 h−1). The long-term use of the SG biocatalyst in continuous phenol degradation resulted in the formation of a 100–200 μm thick layer with a high cell density on the surface of the gel particles. The abrasion of the surface layer in the FBR contributed to the poor degradation performance of this reactor configuration. Coating the ceramic foam with a layer of cells immobilized in colloidal SiO2 enhanced the phenol degradation efficiency during the first 3 days of the PBRC operation, in comparison with untreated ceramic packing. Received: 2 December 1999 / Revision received: 2 February 2000 / Accepted: 4 February 2000  相似文献   

12.
Apolipoprotein C-I (apoC-I) has been proposed to act primarily via interference with apoE-mediated lipoprotein uptake. To define actions of apoC-I that are independent of apoE, we crossed a moderately overexpressing human apoC-I transgenic, which possesses a minimal phenotype in the WT background, with the apoE-null mouse. Surprisingly, apoE-null/C-I mice showed much more severe hyperlipidemia than apoE-null littermates in both the fasting and non-fasting states, with an almost doubling of cholesterol, primarily in IDL+LDL, and a marked increase in triglycerides; 3-fold in females to 260 +/- 80 mg/dl and 14-fold in males to 1409 +/- 594 mg/dl. HDL lipids were not significantly altered but HDL were apoC-I-enriched and apoA-II-depleted. Production rates of VLDL triglyceride were unchanged as was the clearance of post-lipolysis remnant particles. Plasma post-heparin hepatic lipase and lipoprotein lipase levels were undiminished as was the in vitro hydrolysis of apoC-I transgenic VLDL. However, HDL from apoC-I transgenic mice had a marked inhibitory effect on hepatic lipase activity, as did purified apoC-I. LPL activity was minimally affected. Atherosclerosis assay revealed significantly increased atherosclerosis in apoE-null/C-I mice assessed via the en face assay. Inhibition of hepatic lipase may be an important mechanism of the decrease in lipoprotein clearance mediated by apoC-I.  相似文献   

13.
The aim of the present study is to evaluate the effects of diet enriched with dietary fiber of barley variety “Rihane” and azoxymethane on serum and liver lipid variables in male rats. Forty male rats were divided into four groups and fed on control diet or experimental diet that contained control enriched with dietary fiber of barley variety “Rihane”. Animals were injected with saline (controls) or azoxymethane (20 mg/kg body weight s.c.) at 7 and 8 weeks of age. The experimental diet significantly decreased cholesterol level compared with the control diet. Rats fed with BR diet significantly increased the serum high-density lipoprotein (HDL) cholesterol and significantly decreased low-density lipoprotein (LDL) cholesterol concentrations. The experimental diet decreased the atherogenic index (p < 0.05) compared with the control diet. Whereas the azoxymethane induced a significant increase of liver lipid, serum LDL and triglyceride concentrations, but it caused a significant reduction of HDL. Consequently, the ratio of HDL/TC decreased significantly compared with the control (p < 0.05). Accordingly, these results indicated that the diet enriched with dietary fiber of barley variety “Rihane” could be effective in decreasing the atherogenic risk factors in rats whereas the use of the azoxymethane as colon-specific carcinogen substance altered the lipid metabolism.  相似文献   

14.
The lipA gene, a structural gene encoding for protein of molecular mass 48 kDa, and lipB gene, encoding for a lipase-specific chaperone with molecular mass of 35 kDa, of Pseudomonas aeruginosa B2264 were co-expressed in heterologous host Escherichia coli BL21 (DE3) to obtain in vivo expression of functional lipase. The recombinant lipase was expressed with histidine tag at its N terminus and was purified to homogeneity using nickel affinity chromatography. The amino acid sequence of LipA and LipB of P. aeruginosa B2264 was 99–100% identical with the corresponding sequence of LipA and LipB of P. aeruginosa LST-03 and P. aeruginosa PA01, but it has less identity with Pseudomonas cepacia (Burkholderia cepacia) as it showed only 37.6% and 23.3% identity with the B. cepacia LipA and LipB sequence, respectively. The molecular mass of the recombinant lipase was found to be 48 kDa. The recombinant lipase exhibited optimal activity at pH 8.0 and 37°C, though it was active between pH 5.0 and pH 9.0 and up to 45°C. K m and V max values for recombinant P. aeruginosa lipase were found to be 151.5 ± 29 μM and 217 ± 22.5 μmol min−1 mg−1 protein, respectively.  相似文献   

15.
The rabbit as an animal model of hepatic lipase deficiency   总被引:3,自引:0,他引:3  
A natural deficiency of hepatic lipase in rabbits has been exploited to gain insights into the physiological role of this enzyme in the metabolism of plasma lipoproteins. A comparison of human and rabbit lipoproteins revealed obvious species differences in both low-density lipoproteins (LDL) and high-density lipoproteins (HDL), with the rabbit lipoproteins being relatively enlarged, enriched in triacylglycerol and depleted of cholesteryl ester. To test whether these differences related to the low level of hepatic lipase in rabbits, whole plasma or the total lipoprotein fraction from rabbits was either kept at 4 degrees C or incubated at 37 degrees C for 7 h in (i) the absence of lipase, (ii) the presence of hepatic lipase and (iii) the presence of lipoprotein lipase. Following incubation, the lipoproteins were recovered and subjected to gel permeation chromatography to determine the distribution of lipoprotein components across the entire lipoprotein spectrum. An aliquot of the lipoproteins was subjected also to gradient gel electrophoresis to determine the particle size distribution of the LDL and HDL. Both hepatic lipase and lipoprotein lipase hydrolysed lipoprotein triacylglycerol and to a much lesser extent, also phospholipid. There were, however, obvious differences between the enzymes in terms of substrate specificity. In incubations containing hepatic lipase, there was a preferential hydrolysis of HDL triacylglycerol and a lesser hydrolysis of VLDL triacylglycerol. By contrast, lipoprotein lipase acted primarily on VLDL triacylglycerol. When more enzyme was added, both lipases also acted on LDL triacylglycerol, but in no experiment did lipoprotein lipase hydrolyse the triacylglycerol in HDL. Coincident with the hepatic lipase-induced hydrolysis of LDL and HDL triacylglycerol, there were marked reductions in the particle size of both lipoprotein fractions, which were now comparable to those of human LDL and HDL3, respectively.  相似文献   

16.
Acinetobacter sp. XMZ-26 (ACCC 05422) was isolated from soil samples obtained from glaciers in Xinjiang Province, China. The partial nucleotide sequence of a lipase gene was obtained by touchdown PCR using degenerate primers designed based on the conserved domains of cold-adapted lipases. Subsequently, a complete gene sequence encoding a 317 amino acid polypeptide was identified. Our novel lipase gene, lipA, was overexpressed in Escherichia coli. The recombinant protein (LipA) was purified by Ni-affinity chromatography, and then deeply characterised. The LipA resulted to hydrolyse pNP esters of fatty acids with acyl chain length from C2 to C16, and the preferred substrate was pNP octanoate showing a k cat = 560.52 ± 28.32 s−1, K m = 0.075 ± 0.008 mM, and a k cat/K m = 7,377.29 ± 118.88 s−1 mM−1. Maximal LipA activity was observed at a temperature of 15°C and pH 10.0 using pNP decanoate as substrate. That LipA peaked at such a low temperature and remained most activity between 5°C and 35°C indicated that it was a cold-adapted enzyme. Remarkably, this lipase retained much of its activity in the presence of commercial detergents and organic solvents, including Ninol, Triton X-100, methanol, PEG-600, and DMSO. This cold-adapted lipase may find applications in the detergent industry and organic synthesis.  相似文献   

17.
Two lines of transgenic mice, hAIItg-delta and hAIItg-lambda, expressing human apolipoprotein (apo)A-II at 2 and 4 times the normal concentration, respectively, displayed on standard chow postprandial chylomicronemia, large quantities of very low density lipoprotein (VLDL) and low density lipoprotein (LDL) but greatly reduced high density lipoprotein (HDL). Hypertriglyceridemia may result from increased VLDL production, decreased VLDL catabolism, or both. Post-Triton VLDL production was comparable in transgenic and control mice. Postheparin lipoprotein lipase (LPL) and hepatic lipase activities decreased at most by 30% in transgenic mice, whereas adipose tissue and muscle LPL activities were unaffected, indicating normal LPL synthesis. However, VLDL-triglyceride hydrolysis by exogenous LPL was considerably slower in transgenic compared with control mice, with the apparent Vmax of the reaction decreasing proportionately to human apoA-II expression. Human apoA-II was present in appreciable amounts in the VLDL of transgenic mice, which also carried apoC-II. The addition of purified apoA-II in postheparin plasma from control mice induced a dose-dependent decrease in LPL and hepatic lipase activities. In conclusion, overexpression of human apoA-II in transgenic mice induced the proatherogenic lipoprotein profile of low plasma HDL and postprandial hypertriglyceridemia because of decreased VLDL catabolism by LPL.  相似文献   

18.
In vitro metabolism of apolipoprotein E   总被引:1,自引:0,他引:1  
Apolipoprotein E plays a major role in the uptake of chylomicrons and of very-low-density lipoprotein (VLDL) remnants by the liver. It has also been clearly demonstrated that apolipoprotein E rapidly and spontaneously exchanges between lipoproteins. To assess whether all lipoprotein-bound apolipoprotein E is available to participate in spontaneous transfer and/or exchange, the present study followed the fate of radiolabeled apolipoprotein E in an in vitro system. The results show that in vitro, apolipoprotein E can be considered as having both a spontaneously exchangeable pool and a nonexchangeable pool. Based upon specific radioactivity data, only a limited amount of apolipoprotein E originating in VLDL or in high-density lipoproteins (HDL) was capable of in vitro exchange with that in other lipoprotein fractions. Lipolysis of VLDL triacylglycerol by milk lipoprotein lipase, however, resulted in complete transfer of VLDL apolipoprotein E mass and radioactivity to HDL, supporting the potential for transformation of exchangeable apolipoprotein to a transferable pool in vivo. The results of these studies indicate that during the course of lipoprotein metabolism, conformational changes occur which alter the accessibility of apolipoprotein E. Such dynamic heterogeneity may have implications for the regulation of lipoprotein metabolism.  相似文献   

19.
The present investigation was aimed at developing cytarabine-loaded poly(lactide-coglycolide) (PLGA)-based biodegradable nanoparticles by a modified nanoprecipitation which would have sustained release of the drug. Nine batches were prepared as per 32 factorial design to optimize volume of the co-solvent (0.22–0.37 ml) and volume of non-solvent (1.7–3.0 ml). A second 32 factorial design was used for optimization of drug: polymer ratio (1:5) and stirring time (30 min) based on the two responses, mean particle size (125 ± 2.5 nm), and percentage entrapment efficiency (21.8 ± 2.0%) of the Cyt-PLGA nanoparticles. Optimized formulation showed a zeta potential of −29.7 mV indicating good stability; 50% w/w of sucrose in Cyt-PLGA NP was added successfully as cryoprotectant during lyophilization for freeze-dried NPs and showed good dispersibility with minimum increase in their mean particle sizes. The DSC thermograms concluded that in the prepared PLGA NP, the drug was present in the amorphous phase and may have been homogeneously dispersed in the PLGA matrix. In vitro drug release from the pure drug was complete within 2 h, but was sustained up to 24 h from PLGA nanoparticles with Fickian diffusion. Stability studies showed that the developed PLGA NPs should be stored in the freeze-dried state at 2–8°C where they would remain stable in terms of both mean particle size and drug content for 2 months.  相似文献   

20.
We have previously shown that cultured rat alveolar macrophages synthesize and secrete lipoprotein lipase into the medium. The purpose of the present experiments is to examine whether cholesterol-enriched lipoproteins from cholesterol-fed animals have any effects on the lipoprotein lipase secretion and the lipid accumulation in macrophages. Macrophages incubated with the VLDL obtained from rats fed a normal diet secreted 2-fold higher amounts of lipoprotein lipase than those without lipoproteins. Intermediate-, low- and very-low-density lipoproteins from rats fed a high-cholesterol diet also enhanced the lipoprotein lipase secretion. Normal high- and low-density lipoproteins, and high-density lipoproteins from hypercholesterolemic animals did not cause any increase in the lipoprotein lipase secretion. The lipoproteins which stimulated the lipoprotein lipase secretion caused intracellular accumulation of both triacylglycerol and cholesterol. It is speculated that macrophages residing in the environment rich in lipoproteins, especially hypercholesterolemic lipoproteins, take them up and accumulate lipids intracellularly, and that this process links with the lipoprotein lipase secretion. The secreted lipoprotein lipase could facilitate, by degrading lipoproteins, the uptake of lipoprotein lipase-modified lipoproteins. Probably such a series of events is of importance in the foam cell formation of macrophages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号