首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exposure to elevated temperatures has a strong effect on cell functions, and is used in clinical practice. Hyperthermia may affect multiple regulatory mechanisms in cells. To understand better the response to hyperthermia of immortalized primary human breast epithelial cells, we performed a proteomics study of these cells cultured at 34°C or 39°C. Twenty-four proteins were shown to be differentially expressed due to hyperthermia. Analysis of these proteins showed the potential involvement of various biological processes in response to hyperthermia, e.g., cell adhesion, cell communication, and cell cycle. Transforming growth factor-β2 (TGF-β2) and heat shock protein 27 (HSP27) were found to be upregulated at 39°C. TGF-β2 was found to affect expression of HSP27, and to have a protective role in hyperthermia-induced cell death. Thus, the dataset described here of hyperthermia-related proteins in human primary breast epithelial cells predicts a number of cellular activities affected by exposure to high temperatures and provides a set of proteins for further studies.  相似文献   

2.
Keratinocytes migrating from a wound edge or initiating malignant invasion greatly increase their expression of the basement membrane protein Laminin-322 (Lam332). In culture, keratinocytes initiate sustained directional hypermotility when plated onto an incompletely processed form of Lam332 (Lam332′) or when treated with transforming growth factor beta (TGF-β), an inducer of Lam332 expression. The development and tissue architecture of stratified squamous and prostate epithelia are very different, yet the basal cells of both express p63, α6β4 integrin, and Lam332. Keratinocytes and prostate epithelial cells grow well in nutritionally optimized culture media with pituitary extract and certain mitogens. We report that prostate epithelial cells display hypermotility responses indistinguishable from those of keratinocytes. Several culture medium variables attenuated TGF-β-induced hypermotility, including Ca++, serum, and some pituitary extract preparations, without impairing growth, TGF-β growth inhibition, or hypermotility on Lam322′. Distinct from its role as a mitogen, EGF proved to be a required cofactor for TGF-β-induced hypermotility and could not be replaced by HGF or KGF. Prostate epithelial cells have a short replicative lifespan, restricted both by p16INK4A and telomere-related mechanisms. We immortalized the normal prostate epithelial cell line HPrE-1 by transduction to express bmi1 and TERT. Prostate epithelial cells lose expression of p63, β4 integrin, and Lam332 when they transform to invasive carcinoma. In contrast, HPrE-1/bmi1/TERT cells retained expression of these proteins and normal TGF-β signaling and hypermotility for >100 doublings. Thus, keratinocytes and prostate epithelial cells possess common hypermotility and senescence mechanisms and immortalized prostate cell lines can be engineered using defined methods to yield cells retaining normal properties.  相似文献   

3.
4.
5.
Summary Novel or modified serum-free media were developed for the anchorage-dependent growth of nontransformed murine mammary epithelial cells (MMEC) and Balb/MK murine keratinocytes respectively. Growth rates for both cell lines were similar in serum-containing and serum-free media. The serum-free media were used to evaluate potential mechanisms of epithelial cell growth regulation by type 1 transforming growth factor β(TGF-β1). The growth of MMEC and Balb/ MK cells was reversibly inhibited 40–65% in a time- and dose-dependent fashion by TGF-β1 under both serum-containing and serum-free conditions. Constitutive over-expression of a stranfected c-myc oncogene inMMEC did not result in loss of sensitivity to growth inhibition by TGF-β1. In addition, Balb/MK and MMEC growth inhibition by TGF-β1 was not potentiated by polynsaturated fatty acids or reversed by vitamin E. Expgenous type V collagen was able to mimic the inhibitory effects of TGF-β1 on the serum-free growth of Balb/MK and MMEC. In contrast, collagen type I and IV, fibronectin and laminin did not inhibit the growth of these cells. The type V collagen used was not contaminated with TGF-β, and subsaturating, but not saturating concentrations of type V collagen and TGF-β1 were additive with respect to Balb/MK and MMEC growth inhibition. These results demonstrate that nontransformed epithelial cell growth inhibition by TGF-β1 is mediated by mechanisms distinct from those observed with certain carcinoma and melanoma cells. Our results also suggest the possible involvement of type V collagen in Balb/MK and MMEC growth inhibition by TGF-β1. This work was supported, in part, by grant #R29 CA 44741 from the National Institutes of Health, Bethesda, MD to NTT.  相似文献   

6.
Summary We have developed an in vitro system to examine the influence of adipocytes, a major mammary stromal cell type, on the growth of a murine mammary carcinoma, SP1. Previously, we have shown that 3T3-L1 adipocytes release a mitogenic factor, hepatocyte growth factor, which strongly stimulates proliferation of SP1 cells. We now show that 3T3-L1 pre-adipocytes secrete active inhibitory molecules which inhibit DNA synthesis in SP1 cells. In addition, latent inhibitory activity is present in conditioned media (CM) from both pre-adipocytes and adipocytes, and is activated following acid treatment. CM also inhibited DNA synthesis in Mv1Lu wild type epithelial cells, but not DR27 mutant epithelial cells which lack TGF-β type II receptor. Inhibitory activity of CMs was partially abrogated by neutralizing anti-TGF-β1 and anti-TGF-β2 antibodies, and was removed following ultrafiltration through membranes of 10 000 Mr but not 30 000 Mr pore size. These results show that the inhibitory effect on DNA synthesis is mediated by TGF-β1-like and TGF-β2-like molecules. In addition, acid-treated CM as well as purified TGF-β inhibited differentiation of pre-adipocytes. Untreated pre-adipocyte CM, but not mature adipocyte CM, spontaneously inhibited adipocyte differentiation. Together, these findings indicate that pre-adipocytes spontaneously activate their own secreted TGF-β, whereas mature adipocytes do not, and suggest that activation of TGF-β has a potent negative regulatory effect on adipocyte differentiation and tumor growth. Thus, TGF-β may be an important modulator of tumor growth and adipocyte differentiation via both paracrine and autocrine mechanisms. These findings emphasize the importance of adipocyte-tumor interactions in the regulation of tumor microenvironment.  相似文献   

7.
The gonadal development of chicken embryo is regulated by hormones and growth factors. Transforming growth factor beta (TGF-β) isoforms may play a critical role in the regulation of growth in chicken gonads. We have investigated the effect of the TGF-β isoforms on the number of germ and somatic cells in the ovary of the chicken embryo. Ovaries were obtained from chicken embryos at 9 days of incubation. They were organ-cultured for 72 h in groups treated with TGF-β1, TGF-β2, soluble betaglycan, TGF-β1 plus soluble betaglycan, or TGF-β2 plus soluble betaglycan, and untreated (control). TGF-β1 and TGF-β2 diminished the somatic cell number in the ovary of the chicken embryo at this age by inhibiting the proliferation of the somatic cells without increasing apoptosis. On the other hand, TGF-β1 and TGF-β2 did not affect the number of germ cells in the cultured ovary. The capacity of TGF-β1 and TGF-β2 to diminish the number of somatic cells in the ovary was blocked with soluble betaglycan, a natural TGF-β antagonist. However, changes in the location of germ cells within the ovary suggested that TGF-β promoted the migration of the germ cells from the ovarian cortex to the medulla. Thus, TGF-β affects germ and somatic cells in the ovary of the 9-day-old chicken embryo and inhibits the proliferation of somatic cells.This work was supported by DGAPA-UNAM (IN214403) and CONACYT (45030).  相似文献   

8.
Massive apoptosis of pubertal male germ cells is important for the development of functional spermatogenesis in the adult testis. Although the trigger(s) for male germ cell loss at puberty remain undefined, we have hypothesized that transforming growth factor-betas (TGF-βs) play an active role. Here we demonstrate that the three mammalian TGF-β isoforms, TGF-β1, TGF-β2 and TGF-β3, induce distinct apoptosis of pubertal spermatogonia and spermatocytes in a dose-dependent manner. Induction of male germ cell death by activation of caspase-3 was most pronounced with TGF-β2 compared to TGF-β1 and TGF-β3. Furthermore, we found colocalization of activated caspase-3 with apoptotic protease-activating factor-1 (Apaf-1) in apoptotic germ cells, thus indicating the importance of the intrinsic mitochondrial pathway in TGF-β-induced apoptosis. The specificity of the TGF-β effects was proven by addition of recombinant latency-associated peptide against TGF-β1 (rLAP-TGF-β1) which completely abolished TGF-β1-induced and TGF-β3-induced germ cell apoptosis. Although TGF-β2-triggered germ cell death also was significantly reduced by rLAP-TGF-β1, inhibition was not maximal. Our results suggest that the three TGF-β isoforms induce apoptosis of pubertal male germ cells via the mitochondrial pathway in vitro and are thus likely candidates involved in the excessive first wave of apoptosis of male germ cells during puberty. Lutz Konrad and Marcel Munir Keilani contributed equally to this work.  相似文献   

9.
10.
11.
The fate of the palatal medial edge epithelial (MEE) cells undergoes programming cell death, migration, and epithelial-mesenchymal transdifferentiation (EMT) coincident with the process of palatal fusion and disappearance of MEE. Mesenchymal cells in the palate have both cranial neural crest (CNC) and non-CNC origins. The objectives of this study were to identify the populations of palatal mesenchymal cells using β-galactosidase (β-gal) and DiI cell lineage markers, and to determine whether MEE-derived cells continued to express transforming growth factor-β3 (TGF-β3) and transforming growth factor-β type III receptor (TβR-III), which were specific for MEE. A model has been developed using Wnt1 tissue specific expression of Cre-recombinase to activate β-gal solely in the CNC. The expressions of TGF-β3 and TβR-III in MEE were temporally correlated with critical events in palatogenesis. Three cell populations could be distinguished in the palatal mesenchymal CNC-derived, non-CNC derived and MEE-derived. After fusion, β-gal (−) and DiI (+) mesenchymal cells continued to express TGF-β3, however TβR-III was expressed only in the epithelial MEE, as well as keratin expression. In addition, we performed laser capture microdissection to identify mRNA expression of isolated DiI (+) MEE cells. Both epithelial and transdifferentiated MEE have expressed TGF-β3, however, TβR-III was only expressed in epithelium. Extracellular matrix, especially MMP13 has been expressed coincident with fused stage which can be strongly associated with TGF-β3. These results demonstrate that combining a heritable marker and a cell lineage dye can distinguish different populations of mesenchymal cells in the developing palate. Furthermore, TGF-β3 and MMP13 could be strongly associated with EMT in palatogenesis.  相似文献   

12.
Transforming growth factor-β1 (TGF-β1) can activate mitogen-activated protein kinases (MAPKs) in many types of cells. The mechanism of this activation is not well elucidated. Here, we explore the role of TGF-β/Smads signaling compounds in TGF-β1-mediated activation of extracellular signal-regulated kinase (ERK) MAPK in human papillomavirus (HPV)-18 immortalized human bronchial epithelial cell line BEP2D and the role of TGF-β1-induced phosphorylation of ERK in proliferation and apoptosis of BEP2D. The cell models of siRNA-mediated silencing of TGF-β receptor type II (TβRII), Smad2, Smad3, Smad4, and Smad7 were employed in this study. Our results demonstrate that TGF-β1 activates ERK in a time-dependent manner with a maximum effect at 60 min; overexpression of Smad7 increased this TGF-β1-mediated phosphorylation of the ERK; and siRNA-mediated silencing of TβRII, Smad3, Smad4, and Smad7 abrogated this effect. Moreover, we observed that overexpression of Smad7 restored TGF-β1-mediated ERK phosphorylation in Smad4 knockdown cells but not in TβRII knockdown cells. In BEP2D cells, TGF-β1 treatment effectively inhibited cells’ proliferation and induced their apoptosis. Pretreatment with U0126, an inhibitor of ERK1/2, significantly enhanced the TGF-β1-mediated antiproliferative and apoptosis induction effects in BEP2D cells. These data revealed that TβRII and Smad7 play the critical roles in TGF-β1-mediated activation of ERK; Smad3 and Smad4 can play an indirect role through up-regulating Smad7 expression; and TGF-β1-induced phosphorylation of ERK may participate in BEP2D cell proliferation and apoptosis regulation.  相似文献   

13.
The expression of 14-3-3 proteins is dysregulated in various types of cancer. This study was undertaken to investigate the effects of 14-3-3 ζ and 14-3-3 σ on cell growth inhibition mediated by transforming growth factor-beta 1 (TGF-β1). Mouse mammary epithelial cells (Eph4) that are transformed with oncogenic c-H-Ras (EpRas) and no longer sensitive to TGF-β1-mediated growth inhibition displayed increased expression of 14-3-3 ζ and decreased expression of 14-3-3 σ compared with parental Eph4 cells. Using small interfering RNA-mediated knockdown and overexpression of 14-3-3 σ or 14-3-3 ζ, we showed that 14-3-3 σ is required for TGF-β1-mediated growth inhibition whereas 14-3-3 ζ negatively modulates this growth inhibitory response. Notably, overexpression of 14-3-3 ζ increased the level of Smad3 protein that is phosphorylated at linker regions and cannot mediate the TGF-β1 growth inhibitory response. Consistent with this finding, mutation of the 14-3-3 ζ phosphorylation sites in Smad3 markedly reduced the 14-3-3 ζ-mediated inhibition of TGF-β1-induced p15 promoter-reporter activity and cell cycle arrest, suggesting that these residues are critical targets of 14-3-3 ζ in the suppression of TGF-β1-mediated growth. Taken together, our findings indicate that dysregulation of 14-3-3 σ or 14-3-3 ζ contributes to TGF-β1 resistance in cancer cells.  相似文献   

14.

Background  

We have previously set up an in vitro mesenchymal-epithelial cell co-culture model which mimics the intestinal crypt villus axis biology in terms of epithelial cell differentiation. In this model the fibroblast-induced epithelial cell differentiation from secretory crypt cells to absorptive enterocytes is mediated via transforming growth factor-β (TGF-β), the major inhibitory regulator of epithelial cell proliferation known to induce differentiation in intestinal epithelial cells. The aim of this study was to identify novel genes whose products would play a role in this TGF-β-induced differentiation.  相似文献   

15.
Growth factor impact on articular cartilage subpopulations   总被引:6,自引:0,他引:6  
We have examined the effects of growth factor stimulation on superficial and growth zone chondrocyte populations. Zonal articular chondrocytes from 8-month-old Spanish goat distal femurs were plated in monolayer cultures and stimulated by using insulin-like growth factor I (IGF-I), basic fibroblast growth factor (bFGF), and transforming growth factor-β1 (TGF-β1). Gene expression for collagen I and II, aggrecan, and superficial zone protein were evaluated every week for 3 weeks. Finally, proteoglycan and collagen deposition were measured for each experimental group. Major differences existed in the behavior of superficial and growth zone chondrocytes, the most apparent being the higher capacity for protein synthesis by the growth zone population. Variations also existed regarding growth factor treatment. TGF-β1 had the greatest effect on proliferation over 8 days. With respect to differentiation, IGF-I increased average collagen II gene expression in the growth zone populations in comparison with growth zone controls. IGF-I increased aggrecan gene expression for the same groups. Superficial zone populations exhibited lower collagen II, collagen I, and aggrecan gene expression than the growth zone populations under all conditions. However, superficial zone protein expression was dramatically elevated in superficial zone populations by TGF-β1. Collagen I expression showed a general increase under all conditions compared with initial values. Combined biosynthesis results showed that the superficial populations secreted little to no collagen, especially collagen II, in comparison with their growth zone counterparts. Glycosaminoglycan production was also much lower than for the growth zone groups. TGF-β1 and IGF-I increased collagen II production in the growth zone populations. TGF-β1 increased glycosaminoglycan secretions in the superficial zone populations and in the growth zone populations, whereas IGF-I produced an increase in glycosaminoglycan secretion only in the growth zone populations. Thus, growth factors elicit different proliferation, gene expression, and biosynthesis responses from zonal chondrocyte subpopulations.  相似文献   

16.
The transforming growth factor-beta (TGF-β) 1 is a mediator of extracellular matrix (ECM) gene expression in mesangial cells and the development of diabetic glomerulopathy. Here, we investigate the effects of TGF-β1 on laminin γ1 and fibronectin polypeptide expression and cell survival in mouse mesangial cells (MES-13). TGF-β1 (10 ng/ml) stimulates laminin-γ1 and fibronectin expression ~two-fold in a time-dependent manner (0–48 h). TGF-β1 treatment also retards laminin-γ1 mobility on SDS-gels, and tunicamycin, an inhibitor of the N-linked glycosylation, blocks the mobility shift. TGF-β1 increases the binding of laminin γ1 to WGA-agarose and the binding is abolished by tunicamycin suggesting that laminin γ1 is modified by N-linked glycosylation. TGF-β1 also elevates fibronectin glycosylation but its mobility is not altered. The degradation of laminin γ1 and fibronectin proteins is reduced by their glycosylation. In addition, TGF-β1 enhances mesangial cell viability and metabolic activities initially (0–24 h); however, eventually leads to cell death (24–48 h). TGF-β1 elevates pro-apoptotic caspase-3 activity and decrease cell cycle progression factor cyclin D1 expression, which parallels cell death. These results indicate that TGF-β1 plays an important role in ECM expression, protein glycosylation and demise of mesangial cells in the diabetic glomerular mesangium. (Mol Cell Biochem 278: 165–175, 2005)  相似文献   

17.
Transforming growth factor beta (TGF-β) has been recognized as an important mediator in the genesis of chronic kidney diseases (CKD), which are characterized by the accumulation of extracellular matrix (ECM) components in the glomeruli (glomerular fibrosis, glomerulosclerosis) and the tubular interstitium (tubulointerstitial fibrosis). Glomerulosclerosis is a major cause of glomerular filtration rate reduction in CKD and all three major glomerular cell types (podocytes or visceral epithelial cells, mesangial cells and endothelial cells) participate in the fibrotic process. TGF-β induces (1) podocytopenia caused by podocyte apoptosis and detachment from the glomerular basement membrane; (2) mesangial expansion caused by mesangial cell hypertrophy, proliferation (and eventually apoptosis) and ECM synthesis; (3) endothelial to mesenchymal transition giving rise to glomerular myofibroblasts, a major source of ECM. TGF-β has been shown to mediate several key tubular pathological events during CKD progression, namely fibroblast proliferation, epithelial to mesenchymal transition, tubular and fibroblast ECM production and epithelial cell death leading to tubular cell deletion and interstitial fibrosis. In this review, we re-examine the mechanisms involved in glomerulosclerosis and tubulointerstitial fibrosis and the way that TGF-β participates in renal fibrosis, renal parenchyma degeneration and loss of function associated with CKD.  相似文献   

18.

Background  

Functional antagonism between transforming growth factor beta (TGF-β) and hyaluronidase has been demonstrated. For example, testicular hyaluronidase PH-20 counteracts TGF-β1-mediated growth inhibition of epithelial cells. PH-20 sensitizes various cancer cells to tumor necrosis factor (TNF) cytotoxicity by upregulating proapoptotic p53 and WW domain-containing oxidoreductase (WOX1). TGF-β1 blocks PH-20-increased TNF cytotoxicity. In the present study, the functional antagonism between TGF-β1 and lysosomal hyaluronidases Hyal-1 and Hyal-2 was examined.  相似文献   

19.
Dendritic cells (DCs) are highly potent initiators of the immune response, but DC effector functions are often inhibited by immunosuppressants such as transforming growth factor beta (TGF-β). The present study was conducted to develop a treatment strategy for prostate cancer using a TGF-β-insensitive DC vaccine. Tumor lysate-pulsed DCs were rendered TGF-β insensitive by dominant-negative TGF-β type II receptor (TβRIIDN), leading to the blockade of TGF-β signals to members of the Smad family, which are the principal cytoplasmic intermediates involved in the transduction of signals from TGF-β receptors to the nucleus. Expression of TβRIIDN did not affect the phenotype of transduced DCs. Phosphorylated Smad-2 was undetectable and expression of surface co-stimulatory molecules (CD80/CD86) were upregulated in TβRIIDN DCs after antigen and TGF-β1 stimulation. Vaccination of C57BL/6 tumor-bearing mice with the TβRIIDN DC vaccine induced potent tumor-specific cytotoxic T lymphocyte responses against TRAMP-C2 tumors, increased serum IFN-γ and IL-12 level, inhibited tumor growth and increased mouse survival. Furthermore, complete tumor regression occurred in two vaccinated mice. These results demonstrate that blocking TGF-β signals in DC enhances the efficacy of DC-based vaccines. Fu -Li Wang, Wei-Jun Qin contributed equally to this report.  相似文献   

20.
The neurotrophins nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3) are important for the regulation of survival and differentiation of distinct, largely non-overlapping populations of embryonic sensory neurons. We show here that the multifunctional cytokine transforming growth factor-β (TGF-β) fails to maintain sensory neurons cultured from embryonic day (E) 8 chick dorsal root ganglia (DRG), although DRG neurons are immunoreactive for the TGF-β receptor type II, which is essential for TGF-β signaling. However, in combination with various concentrations of NT-3 and NT-4, but not NGF, TGF-β3 causes a further significant increase in neuron survival. In DRG cell cultures treated with NGF, NT-3, and NT-4, a neutralizing antibody to TGF-β decreases neuron survival suggesting that endogenous TGF-β in these cultures affects the efficacies of neurotrophins. Consistent with this notion and a modulatory role of TGF-β in neurotrophin functions is the observation that TGF-β2 and-β3 immunoreactivities and TGF-β3 mRNA are located in embryonic chick DRG in close association with neurons from E5 onwards. We also show that leukemia inhibitory factor (LIF) significantly decreases NGF-mediated DRG neuron survival. Together, these data indicate that actions and efficacies of neurotrophins are under distinct control by TGF-β and LIF in vitro, and possibly also in vivo. Special issue dedicated to Dr. Hans Thoenen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号