首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sequences and structures in the mRNA can alter the accuracy of translation. In some cases, mRNA secondary structures like hairpin loops or pseudoknots can cause frequent errors of translational reading frame (programmed frameshifting) or misreading of termination codons as sense (nonsense readthrough). In other cases, the primary mRNA sequence stimulates the error probably by interacting with an element of the ribosome to interfere with error correction. One such primary mRNA sequence, the Ty3 stimulator, increases programmed +1 frameshifting 7.5 times in the yeast Saccharomyces cerevisiae. Here we show that this stimulator also increases the usage of non-AUG initiation codons in the bacterium Escherichia coli but not in S. cerevisiae. These data suggest that in E. coli, though not in yeast, an element of the ribosome's elongation accuracy mechanism ensures initiation accuracy.  相似文献   

2.
Helix 69 of 23S rRNA forms one of the major inter-subunit bridges of the 70S ribosome and interacts with A- and P-site tRNAs and translation factors. Despite the proximity of h69 to the decoding center and tRNAs, the contribution of h69 to the tRNA selection process is unclear: previous genetic analyses have shown that h69 mutations increase frameshifting and readthrough of stop codons. However, a complete deletion of h69 does not affect the selection of cognate tRNAs in vitro. To address these discrepancies, the in vivo effects of a range of single- and multi-base h69 mutations in Escherichia coli 23S rRNA on various translation errors have been determined. While a majority of the h69 mutations examined here affected readthrough of stop codons and frameshifting, the ΔA1916 single base deletion mutation uniquely influenced missense decoding. Different h69 mutants had either increased or decreased levels of stop codon readthrough. The h69 mutations that decreased UGA readthrough also decreased UGA reading by a mutant, near-cognate tRNATrp carrying a G24A substitution in the D arm, but had far less effect on UGA reading by a suppressor tRNA with a complementary anticodon. These results suggest that h69 interactions with release factors contribute significantly to termination efficiency and that interaction with the D arm of A-site tRNA is important for discrimination between cognate and near-cognate tRNAs.  相似文献   

3.
A base substitution of G to U was constructed at position 529 in Escherichia coli 16S rRNA. The U529 mutant ribosomes were functional and present on polysomes but were highly error prone and caused a progressive loss of cell viability. They displayed elevated levels of readthrough of stop codons and frameshifting, and an increase in thermal sensitivity of beta-galactosidase, suggestive of missense errors. These results demonstrate that the university conserved G529 is involved in tRNA selection at the A site during protein synthesis.  相似文献   

4.
A ribosomal ambiguity mutation in the 530 loop of E. coli 16S rRNA.   总被引:14,自引:8,他引:6       下载免费PDF全文
A series of base substitution and deletion mutations were constructed in the highly conserved 530 stem and loop region of E. coli 16S rRNA involved in binding of tRNA to the ribosomal A site. Base substitution and deletion of G517 produced significant effects on cell growth rate and translational fidelity, permitting readthrough of UGA, UAG and UAA stop codons as well as stimulating +1 and -1 frameshifting in vivo. By contrast, mutations at position 534 had little or no effect on growth rate or translational fidelity. The results demonstrate the importance of G517 in maintaining translational fidelity but do not support a base pairing interaction between G517 and U534.  相似文献   

5.
A method is described for depleting rabbit reticulocyte lysates and wheat germ extracts of endogenous tRNAs by affinity chromatography using a matrix generated by coupling ethanolamine to epoxy-activated Sepharose 6B. Greater than 90% depletion of tRNA is achieved with the result that translation becomes in effect absolutely dependent on added tRNA. This depletion procedure should prove very useful for studying the influence of tRNA concentration, and the spectrum of the tRNA population, on recoding events such as programmed frameshifting and readthrough of termination codons.  相似文献   

6.
Helix 34 of 16 S rRNA is located in the head of the 30 S ribosomal subunit close to the decoding center and has been invoked in a number of ribosome functions. In the present work, we have studied the effects of mutations in helix 34 both in vivo and in vitro. Several nucleotides in helix 34 that are either highly conserved or form important tertiary contacts in 16 S rRNA (U961, C1109, A1191, and A1201) were mutated, and the mutant ribosomes were expressed in the Escherichia coli MC250 Delta7 strain that lacks all seven chromosomal rRNA operons. Mutations at positions A1191 and U961 reduced the efficiency of subunit association and resulted in structural rearrangements in helix 27 (position 908) and helix 31 (position 974) of 16 S rRNA. All mutants exhibited increased levels of frameshifting and nonsense readthrough. The effects on frameshifting were specific in that -1 frameshifting was enhanced with mutant A1191G and +1 frameshifting with the other mutants. Mutations of A1191 moderately (approximately 2-fold) inhibited tRNA translocation. No significant effects were found on efficiency and rate of initiation, misreading of sense codons, or binding of tRNA to the E site. The data indicate that helix 34 is involved in controlling the maintenance of the reading frame and in tRNA translocation.  相似文献   

7.
Quality control systems monitor and stop translation at some ribosomal stalls, but it is unknown if halting translation at such stalls actually prevents synthesis of abnormal polypeptides. In yeast, ribosome stalling occurs at Arg CGA codon repeats, with even two consecutive CGA codons able to reduce translation by up to 50%. The conserved eukaryotic Asc1 protein limits translation through internal Arg CGA codon repeats. We show that, in the absence of Asc1 protein, ribosomes continue translating at CGA codons, but undergo substantial frameshifting with dramatically higher levels of frameshifting occurring with additional repeats of CGA codons. Frameshifting depends upon the slow or inefficient decoding of these codons, since frameshifting is suppressed by increased expression of the native tRNAArg(ICG) that decodes CGA codons by wobble decoding. Moreover, the extent of frameshifting is modulated by the position of the CGA codon repeat relative to the translation start site. Thus, translation fidelity depends upon Asc1-mediated quality control.  相似文献   

8.
Many different modified nucleotides are found in naturally occurring tRNA, especially in the anticodon region. Their importance for the efficiency of the translational process begins to be well documented. Here we have analyzed the in vivo effect of deleting genes coding for yeast tRNA-modifying enzymes, namely Pus1p, Pus3p, Pus4p, or Trm4p, on termination readthrough and +1 frameshift events. To this end, we have transformed each of the yeast deletion strains with a lacZ-luc dual-reporter vector harboring selected programmed recoding sites. We have found that only deletion of the PUS3 gene, encoding the enzyme that introduces pseudouridines at position 38 or 39 in tRNA, has an effect on the efficiency of the translation process. In this mutant, we have observed a reduced readthrough efficiency of each stop codon by natural nonsense suppressor tRNAs. This effect is solely due to the absence of pseudouridine 38 or 39 in tRNA because the inactive mutant protein Pus3[D151A]p did not restore the level of natural readthrough. Our results also show that absence of pseudouridine 39 in the slippery tRNA(UAG)(Leu) reduces +1 frameshift efficiency. Therefore, the presence of pseudouridine 38 or 39 in the tRNA anticodon arm enhances misreading of certain codons by natural nonsense tRNAs as well as promotes frameshifting on slippery sequences in yeast.  相似文献   

9.
The Upf proteins are essential for nonsense-mediated mRNA decay (NMD). They have also been implicated in the modulation of translational fidelity at viral frameshift signals and premature termination codons. How these factors function in both mRNA turnover and translational control remains unclear. In this study, mono- and bicistronic reporter systems were used in the yeast Saccharomyces cerevisae to differentiate between effects at the levels of mRNA turnover and those at the level of translation. We confirm that upfDelta mutants do not affect programmed frameshifting, and show that this is also true for mutant forms of eIF1/Sui1p. Further, bicistronic reporters did not detect defects in translational readthrough due to deletion of the UPF genes, suggesting that their function in termination is not as general a phenomenon as was previously believed. The demonstration that upf sui1 double mutants are synthetically lethal demonstrates an important functional interaction between the NMD and translation initiation pathway.  相似文献   

10.
Ciliated protozoa of the genus Euplotes have undergone genetic code reassignment, redefining the termination codon UGA to encode cysteine. In addition, Euplotes spp. genes very frequently employ shifty stop frameshifting. Both of these phenomena involve noncanonical events at a termination codon, suggesting they might have a common cause. We recently demonstrated that Euplotes octocarinatus peptide release factor eRF1 ignores UGA termination codons while continuing to recognize UAA and UAG. Here we show that both the Tetrahymena thermophila and E. octocarinatus eRF1 factors allow efficient frameshifting at all three termination codons, suggesting that UGA redefinition also impaired UAA/UAG recognition. Mutations of the Euplotes factor restoring a phylogenetically conserved motif in eRF1 (TASNIKS) reduced programmed frameshifting at all three termination codons. Mutation of another conserved residue, Cys124, strongly reduces frameshifting at UGA while actually increasing frameshifting at UAA/UAG. We will discuss these results in light of recent biochemical characterization of these mutations.  相似文献   

11.
Translation termination in eukaryotes is mediated by the release factors eRF1 and eRF3, but mechanisms of the interplay between these factors are not fully understood, due partly to the difficulty of measuring termination on eukaryotic mRNAs. Here, we describe an in vitro system for the assay of termination using competition with programmed frameshifting at the recoding signal of mammalian antizyme. The efficiency of antizyme frameshifting in rabbit reticulocyte lysates was reduced by addition of recombinant rabbit eRF1 and eRF3 in a synergistic manner. Addition of suppressor tRNA to this assay system revealed competition with a third event, stop codon readthrough. Using these assays, we demonstrated that an eRF3 mutation at the GTPase domain repressed termination in a dominant negative fashion probably by binding to eRF1. The effect of the release factors and the suppressor tRNA showed that the stop codon at the antizyme frameshift site is relatively inefficient compared to either the natural termination signals at the end of protein coding sequences or the readthrough signal from a plant virus. The system affords a convenient assay for release factor activity and has provided some novel views of the mechanism of antizyme frameshifting.  相似文献   

12.
The rare codons AGG and AGA comprise 2% and 4%, respectively, of the arginine codons of Escherichia coli K-12, and their cognate tRNAs are sparse. At tandem occurrences of either rare codon, the paucity of cognate aminoacyl tRNAs for the second codon of the pair facilitates peptidyl-tRNA shifting to the +1 frame. However, AGG_AGG and AGA_AGA are not underrepresented and occur 4 and 42 times, respectively, in E. coli genes. Searches for corresponding occurrences in other bacteria provide no strong support for the functional utilization of frameshifting at these sequences. All sequences tested in their native context showed 1.5 to 11% frameshifting when expressed from multicopy plasmids. A cassette with one of these sequences singly integrated into the chromosome in stringent cells gave 0.9% frameshifting in contrast to two- to four-times-higher values obtained from multicopy plasmids in stringent cells and eight-times-higher values in relaxed cells. Thus, +1 frameshifting efficiency at AGG_AGG and AGA_AGA is influenced by the mRNA expression level. These tandem rare codons do not occur in highly expressed mRNAs.  相似文献   

13.
M F Belcourt  P J Farabaugh 《Cell》1990,62(2):339-352
Ribosomal frameshifting regulates expression of the TYB gene of yeast Ty retrotransposons. We previously demonstrated that a 14 nucleotide sequence conserved between two families of Ty elements was necessary and sufficient to support ribosomal frameshifting. This work demonstrates that only 7 of these 14 nucleotides are needed for normal levels of frameshifting. Any change to the sequence CUU-AGG-C drastically reduces frameshifting; this suggests that two specific tRNAs, tRNA(UAGLeu) and tRNA(CCUArg), are involved in the event. Our tRNA overproduction data suggest that a leucyl-tRNA, probably tRNA(UAGLeu), an unusual leucine isoacceptor that recognizes all six leucine codons, slips from CUU-Leu onto UUA-Leu (in the +1 reading frame) during a translational pause at the AGG-Arg codon induced by the low availability of tRNA(CCUArg), encoded by a single-copy essential gene. Frameshifting is also directional and reading frame specific. Interestingly, frameshifting is inhibited when the "slip" CUU codon is located three codons downstream, but not four or more codons downstream, of the translational initiation codon.  相似文献   

14.
Translational recoding includes a group of events occurring during gene translation, namely stop codon readthrough, programmed ±1 frameshifting, and ribosome bypassing, which have been found in organisms from all domains of life. They serve to regulate protein expression at translational level and represent a relatively less known exception to the traditional central ‘dogma’ of biology that information flows as DNA→RNA→protein and that it is stored in a co-linear way between the 5′→3′ of nucleic acids and N→C-terminal of polypeptides. In archaea, in which translational recoding regulates the decoding of the 21st and the 22nd amino acids selenocysteine and pyrrolysine, respectively, only one case of programmed ?1 frameshifting has been reported so far and further examples, although promising, have not been confirmed yet. We here summarize the current state-of-the-art of this field that, especially in archaea, has relevant implications for the physiology of life in extreme environments and for the origin of life.  相似文献   

15.
16.
5 S Rrna Is Involved in Fidelity of Translational Reading Frame   总被引:9,自引:0,他引:9       下载免费PDF全文
Chromosomal mutants (maintenance of frame = mof) in which the efficiency of -1 ribosomal frame-shifting is increased can be isolated using constructs in which lacZ expression is dependent upon a -1 shift of reading frame. We isolate a new mof mutation, mof9, in Saccharomyces cerevisiae and show that it is complemented by both single and multi-copy 5 S rDNA clones. Two independent insertion mutations in the rDNA locus (rDNA::LEU2 and rDNA::URA3) also display the Mof(-) phenotype and are also complemented by single and multi-copy 5 S rDNA clones. Mutant 5 S rRNAs expressed from a plasmid as 20-50% of total 5 S rRNA in a wild-type host also induced the Mof(-) phenotype. The increase in frameshifting is greatest when the lacZ reporter gene is expressed on a high copy, episomal vector. No differences were found in 5 S rRNA copy number or electrophoretic mobilities in mof9 strains. Both mof9 and rDNA::LEU2 increase the efficiency of +1 frameshifting as well but have no effect on readthrough of UAG or UAA termination codons, indicating that not all translational specificity is affected. These data suggest a role for 5 S rRNA in the maintenance of frame in translation.  相似文献   

17.
18.
The ribosomal proteins L4 and L22 form part of the peptide exit tunnel in the large ribosomal subunit. In Escherichia coli, alterations in either of these proteins can confer resistance to the macrolide antibiotic, erythromycin. The structures of the 30S as well as the 50S subunits from each antibiotic resistant mutant differ from wild type in distinct ways and L4 mutant ribosomes have decreased peptide bond-forming activity. Our analyses of the decoding properties of both mutants show that ribosomes carrying the altered L4 protein support increased levels of frameshifting, missense decoding and readthrough of stop codons during the elongation phase of protein synthesis and stimulate utilization of non-AUG codons and mutant initiator tRNAs at initiation. L4 mutant ribosomes are also altered in their interactions with a range of 30S-targeted antibiotics. In contrast, the L22 mutant is relatively unaffected in both decoding activities and antibiotic interactions. These results suggest that mutations in the large subunit protein L4 not only alter the structure of the 50S subunit, but upon subunit association, also affect the structure and function of the 30S subunit.  相似文献   

19.
Polyamine sensing during antizyme mRNA programmed frameshifting   总被引:8,自引:0,他引:8  
A key regulator of cellular polyamine levels from yeasts to mammals is the protein antizyme. The antizyme gene consists of two overlapping reading frames with ORF2 in the +1 frame relative to ORF1. A programmed +1 ribosomal frameshift occurs at the last codon of ORF1 and results in the production of full-length antizyme protein. The efficiency of frameshifting is proportional to the concentration of polyamines, thus creating an autoregulatory circuit for controlling polyamine levels. The mRNA recoding signals for frameshifting include an element 5' and a pseudoknot 3' of the shift site. The present work illustrates that the ORF1 stop codon and the 5' element are critical for polyamine sensing, whereas the 3' pseudoknot acts to stimulate frameshifting in a polyamine independent manner. We also demonstrate that polyamines are required to stimulate stop codon readthrough at the MuLV redefinition site required for normal expression of the GagPol precursor protein.  相似文献   

20.
Programmed -1 ribosomal frameshifting, involving tRNA re-pairing from an AAG codon to an AAA codon, has been reported to occur at the sequences CGA AAG and CAA AAG. In this study, using the recoding region of insertion sequence IS3, we have investigated the influence on frameshifting in Escherichia coli of the first codon of this type of motif by changing it to all other NNA codons. Two classes of NNA codons were distinguished, depending on whether they favor or limit frameshifting. Their degree of shiftiness is correlated with wobble propensity, and base 34 modification, of their decoding tRNAs. A more flexible anticodon loop very likely makes the tRNAs with extended wobble more prone to liberate the third codon base, A, for re-pairing of tRNALys in the -1 frame.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号