首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
In mouse cells, the major inducible heat shock protein is a protein of 68,000 daltons (hsp68). We have previously shown that mouse plasmacytomas do not express hsp68. We have now made use of these natural mutants to assess the contribution of hsp68 to acquired thermotolerance. An endpoint limiting dilution assay was used to quantify cell survival to lethal stresses. Two test plasmacytoma cell lines (C1.18.1 and J558) and an hsp68-positive myeloma, XC1.1/51, used as a control, were examined. All showed recovery when pretreated for 10 min at 44 degrees C 2 h before exposure to otherwise lethal stresses of 1 to 4 h at 43 degrees C. Similar results were obtained with the Friend erythroleukemia line D1B, which we have also shown not to express hsp68. These results indicate that hsp68 is not required for protection against thermal stresses in mouse cells.  相似文献   

2.
3.
4.
We have compared the effects of a mild heat shock and febrile temperatures on heat-shock protein (hsp) synthesis and development of stress tolerance in T lymphocytes. Our previous studies demonstrated that febrile temperatures (less than or equal to 41 degrees C) induced the synthesis of hsp110, hsp90, and the constitutive or cognate form of hsp70 (hscp70; a weak induction of the strongly stress-induced hsp70 was also observed. In the studies reported herein, we demonstrate that a mild heat shock (42.5 degrees C) reverses this ratio; that is, hsp70 and not hscp70 is the predominate member of this family synthesized at this temperature. Modest heat shock also enhanced the synthesis of hsp110 and hsp90. In order to assess the relationship between hsp synthesis and the acquisition of thermotolerance, purified T cells were first incubated at 42.5 degrees C (induction temperature) and then subsequently subjected to a severe heat-shock challenge (45 degrees C, 30 min). T cells first incubated at a mild heat-shock temperature were capable of total protein synthesis at a more rapid rate following a severe heat shock than control cells (induction temperature 37 degrees C). This phenomenon, which has been previously termed translational tolerance, did not develop in cells incubated at the febrile temperature (induction temperature 41 degrees C). Protection of translation also extended to immunologically relevant proteins such as interleukin-2 and the interleukin-2 receptor. Because clonal expansion is a critical event during an immune response, the effects of hyperthermic stress on DNA replication (mitogen-induced T cell proliferation) was also evaluated in thermotolerant T cells. DNA synthesis in control cells (induction temperature 37 degrees C) was severely inhibited following heat-shock challenge at 44 degrees C or 45 degrees C; in contrast, T cells preincubated at 42.5 degrees C rapidly recovered their DNA synthetic capacity. T cells preincubated at a febrile temperature were moderately protected against hyperthermic stress. The acquisition of thermotolerance was also associated with enhanced resistance to chemical (ethanol)-induced stress but not to heavy metal toxicity (cadmium) or dexamethasone-induced immunosuppression. These studies suggest that prior hsp synthesis may protect immune function against some forms of stress (e.g., febrile episode) but would be ineffective against others such as elevated glucocorticoid levels which normally occur during an immune response.  相似文献   

5.
The analysis of proteins synthesized in rat thymocytes and mouse teratocarcinoma PCC-4 Aza 1 and myeloma Sp2/0 cells after 1 h of treatment at 42 or 44 degrees C was carried out. Shock at 42 degrees C reduced the total synthetic rate of proteins in all three cell lines and induced "classical" heat-shock protein with a mass of 70 kDa (hsp 70). Heat shock at 44 degrees C resulted in almost complete inhibition of protein synthesis; only a small amount of hsp 70 was synthesized. Meanwhile a new 48-kDa polypeptide (pI = 7.5) was found in the cells exposed to severe heat shock. This protein was compared by peptide mapping with other known polypeptides of the same size: heat-shock protein from chicken embryo cells and mitogen-stimulated polypeptide from human lymphoid cells. The peptide maps were not identical. It was also shown that after a shock at 44 degrees C teratocarcinoma cells were able to accumulate anomalous amounts of hsp 70 despite hsp 70 synthesis inhibition. The data show that reaction of various cells to extreme heat shock depends heavily on cell type.  相似文献   

6.
The effect of heat on IL-1 beta biosynthesis was investigated in both THP-1 cells, a myelomonocytic cell line which can be induced to make IL-1 alpha and beta, and human peripheral blood adherent monocytes (PBMC). Induction of THP-1 cells with LPS at 39 to 41 degrees C for 2 to 4 h resulted in the expected increased synthesis of the heat-shock proteins hsp 70 and hsp 90 but decreased synthesis of the IL-1 beta precursor protein, p35 (and its mRNA), compared with control cells at 37 degrees C. This appeared to be a direct effect on p35 synthesis rather than a block in LPS induction because heat also acted on preinduced cells. PBMC similarly incubated for 4 h with LPS required a temperature of 41 to 42 degrees C to induce hsp and show a decrease in p35 synthesis. Chemical inducers of the heat-shock response (heavy metals, sulphydryl reagents) were also effective inhibitors of IL-1 beta biosynthesis. A correlation was seen between the extent of IL-1 beta reduction and the level of hsp induction by chemical inducers in both THP-1 cells and PBMC which suggests that the two responses are linked. In addition, a gold salt currently used for therapy of chronic inflammation, auranofin, induced hsp and inhibited IL-1 beta biosynthesis, whereas a second salt, sodium aurothiomalate, did neither. These results support the hypothesis that elevated temperature is one of the physiologic signals for down-regulation of IL-1 beta biosynthesis through a mechanism related to the induction of hsp.  相似文献   

7.
Lack of heat-shock response in preovulatory mouse oocytes   总被引:5,自引:0,他引:5  
The response to heat (hs response) of preovulatory mouse oocytes was compared with that of mouse granulosa cells and characterized in regard to in vitro resumption of meiosis, amino acid incorporation into total protein, and qualitative analysis of protein synthesized before and after the shock. Granulosa cells displayed a hs response typical of other mammalian systems. When incubated at 43 degrees C for 20-40 min, these cells maintained a normal level of amino acid incorporation into total protein, responded to stress by new synthesis of 33- and 68-kDa heat-shock proteins (hsps), and enhanced synthesis of 70-kDa heat-shock cognate protein (hsc70) and of 89- and 110-kDa hsps. In contrast to granulosa cells, preovulatory mouse oocytes were very sensitive to hyperthermia. Incubation at 43 degrees C for 20-40 min strongly inhibited oocyte resumption of meiosis and protein synthesis and did not induce a new or enhanced synthesis of hsps. Unstressed preovulatory mouse oocytes constitutively synthesized 70- and 89-kDa polypeptides resembling hsc70 and hsp89 of granulosa cells.  相似文献   

8.
We have reported on the effect of heat in C127 cells having various basal levels of the Ca(2+)-binding proteins calmodulin (CaM) or parvalbumin [Evans, Simonette, Rasmussen, Means, and Tomasovic, J. Cell. Physiol. 142, 615-627 (1990)]. These studies suggested that induction of the synthesis of 26-kDa heat-shock protein (hsp-26) depended on increased intracellular free Ca2+ [Ca2+]i and that induction was abrogated by increased Ca(2+)-binding capacity. To evaluate further the role of [Ca2+]i in mediating the response to hyperthermia and the potential for Ca(2+)-buffering to affect these processes, we loaded C127 parental cells with the Ca2+ chelators BAPTA or quin-2 (5 microM for 60 min) and then immediately heated the cells (30 min at 43 degrees C) and labeled them (3 h at 37 degrees C) with [3H]leucine. Measurements of [Ca2+]i with quin-2 and fura-2 showed that an increase in [Ca2+]i occurred with this heat dose, but that the quin-2 buffered that increase. Two-dimensional gels showed that cells loaded with BAPTA and quin-2 had a reduced rate of synthesis of the most basic (nonphosphorylated) hsp-26a isoform. The apparent synthesis of the more acidic isoforms (hsp-26b, hsp-26c) was less affected, but labeling studies with 32P showed this reflected continued accumulation of these phosphorylated isoforms, especially the most highly phosphorylated hsp-26c. Although it reduced hsp-26a synthesis, the temporary buffering of [Ca2+]i did not alter the subsequent expression of heat killing or the extent of thermotolerance significantly, possibly because phosphorylated hsp-26 was still generated. These data support the hypothesis that perturbations of [Ca2+]i directly modulate induction of hsp-26a synthesis.  相似文献   

9.
10.
The interaction of calmodulin (CaM) with heat-shock and other binding proteins was studied in rat adenocarcinoma cells. Cells were equilibrium-labeled for 48 h prior to heating for 1 h at 43 degrees C, or pulse-labeled for 2 h at 37 degrees C after heating, to monitor the effect of heat on the affinity of CaM-binding proteins synthesized under these conditions. A CaM antagonist shown to sensitize to heat killing, W-7 [N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide], was used in competition assays to help monitor any changes in affinity. We found that heating tended to reduce the CaM-binding of proteins synthesized before heating relative to their 37 degrees C controls and proteins synthesized after heating tended to have increased binding relative to their respective controls. Members of the heat-shock protein (hsp) 90-, 70-, and 26-kDa families were among the proteins that bound to CaM and were eluted by W-7. The peak elution fractions for the hsp's and other cellular proteins varied, but hsp-70 eluted in the early fractions. The hsp-70 family was also found to be among a number of W-7-binding proteins. We conclude that the assumption that CaM antagonists potentiate killing of heated cells solely by competing nonspecifically for CaM-binding protein sites on CaM does not explain the process completely. These antagonists could also act by competing for CaM-binding sites with specific proteins whose interaction with CaM is important for survival following heating, or by directly binding to other proteins whose function is important for survival and inhibiting their activity. We do not have sufficient data to discern the predominant mechanism among these possibilities, but we believe all are likely to occur in heated cells and speculate that inhibition of the functions of the hsp-70 family is important in several of these antagonist actions.  相似文献   

11.
Heat-stress protein (hsp) kinetics and clonogenic survival were studied at 33, 37 and 42 degrees C in a continuous Drosophila cell line, WR69-DM-1. Induction and repression of hsp were temperature-dependent and independently modulated. The subsequent cell-survival curves were complex; however, survival generally decreased in a time- and temperature-dependent manner during continuous heating at 33, 37 or 42 degrees C. Constant 33 degrees C heating induced five hsp at 90, 72, 70, 24 and 19 kilodaltons (kDa). A 30 min 33 degrees C heat dose led to thermotolerance after 1, 3 or 6 h incubations at 28 degrees C. The hsp synthesized after this dose were quickly repressed, suggesting the cells were able to respond to this stress. Increasing the challenge temperature to 37 degrees C induced three additional hsp at 34, 22 and 14 kDa, but hsp synthesis did not lead to thermotolerance over the 6 h interval. The number and intensity of hsp synthesized was higher and repression was much slower than at 33 degrees C. Heating at 42 degrees C inhibited all protein synthesis, and thermotolerance was not observed. Direct survival data are critical to understanding the role and function of hsp in Drosophila thermotolerance since the relevance of information on number and kinetics of hsp synthesis and their subsequent localization is dubious without it.  相似文献   

12.
Rat embryonic fibroblasts growing exponentially at either 35, 37, or 39 degrees C were exposed to 42 degrees C for times up to 6 hr. Cell survival was unaffected by this heat shock in cultures growing at 39 degrees C but survival was decreased in a temperature dependent manner in cells growing at 37 or 35 degrees C. Exposure to 42 degrees C of cells previously adapted to 35 or 37 degrees C resulted in the induction of heat shock proteins (hsps) with apparent molecular weights of 68,000 (hsp 68), 70,000 (hsp 70), and 89,000 (hsp 89); cells previously adapted to 39 degrees C expressed all hsps except hsp 68. Inasmuch as the synthesis of certain hsps may function to protect cells from thermal damage, these data indicate that hsp 68 may not be required for this adaptation-related thermotolerant survival response. Hsp 68 may only be expressed in cells destined to die.  相似文献   

13.
14.
The time course and magnitude of the heat-shock response in relation to severity of thermal stress are important, yet poorly understood, aspects of thermotolerance. We examined patterns of protein synthesis in congeneric marine snails (genus Tegula) that occur at different heights along the subtidal to intertidal gradient after a thermal exposure (30 degrees C for 2.5 h, followed by 50 h recovery at 13 degrees C) that induced the heat-shock response. We monitored the kinetics and magnitudes of protein synthesis by quantifying incorporation of 35S-labeled methionine and cysteine into newly synthesized proteins and observed synthesis of putative heat-shock proteins (hsp's) of size classes 90, 77, 70, and 38 kDa. In the low- to mid-intertidal species, Tegula funebralis, whose body temperature frequently exceeds 30 degrees C during emersion, synthesis of hsp's commenced immediately after heat stress, reached maximal levels 1-3 h into recovery, and returned to prestress levels by 6 h, except for hsp90 (14 h). In contrast, in the low-intertidal to subtidal species, Tegula brunnea, for which 2.5 h at 30 degrees C represents a near lethal heat stress, synthesis of hsp's commenced 2-14 h after heat stress; reached maximal levels after 15-30 h, which exceeded magnitudes of synthesis in T. funebralis; and returned to prestress levels in the case of hsp90 (50 h) and hsp77 (30 h) but not in the case of hsp70 and hsp38. Exposures to 30 degrees C under aerial (emersion) and aquatic (immersion) conditions resulted in differences in hsp synthesis in T. brunnea but not in T. funebralis. The different time courses and magnitudes of hsp synthesis in these congeners suggest that the vertical limits of their distributions may be set in part by thermal stress.  相似文献   

15.
Mammalian cells incubated at 42 degrees C synthesize a specific heat-shock protein at 42 degrees C (42 degrees C-hsp) that is not induced by heat-shock at 45 degrees C or by other stresses that induce major heat shock proteins (Hatayama et al. (1986) Biochem. Biophys. Res. Commun. 137, 957-963). Antibody raised against a heat-shock protein with molecular weight of 105,000 (hsp 105) purified from mouse FM 3A cells cross-reacted to the 42 degrees C-hsp of the same cells. The antibody reacted only weakly to hsp 105 and 42 degrees C-hsp of human HeLa cells. These results suggested that hsp 105 and 42 degrees C-hsp have the same antigenic determinant, and that 42 degrees C-hsp may have a structure similar to that of hsp 105.  相似文献   

16.
This study compares the expression after heat shock of the two major variants of the mammalian 70 kilodalton heat shock family in three separate systems. The ability of wild type and temperature sensitive mutant (ts85) FM3A cells to elicit a heat shock response following a 45 degrees C, 12 min exposure was examined. The ts85 cells were found to be both significantly more thermosensitive than parent FM3A cells and to induce a 66kDa heat shock protein (hsp66) not visibly synthesized in the parent line by this exposure. However, a constitutive (synthesized at 37 degrees C) 68kDa heat shock protein (hsp68) is comparably induced in both cell lines after heat. A relationship between the severity of the heat exposure as seen by the cell and hsp66 expression is suggested and tested in Chinese hamster ovary cells. In CHO cells a brief 45 degrees C heat shock induces the constitutive hsp68 (but not hsp66), while longer and more severe exposures are required for the expression of hsp66. The induction of these two proteins is also examined in situ in mouse skeletal muscle. In this case both hsp66 and hsp68 are induced following comparatively mild heat treatments, and the 'threshold' for hsp66 induction observed in cultured cells either does not occur or is greatly reduced. However, once again, hsp68 is naturally synthesized at 37 degrees C while hsp66 appears to be de novo synthesized after heat shock.  相似文献   

17.
Exposure of primary mouse kidney cell cultures to acidic medium (pH 5.5) induced the expression of a 70 kilodalton (kDa) protein. This protein was identified as the major inducible heat-shock protein 70 (hsp70) by immunoprecipitation with anti-hsp70 serum and Northern blot analysis with a hsp70 cDNA probe. Maximum induction of the 70-kDa protein at pH 5.5 after 240 min was about 30% of that observed after 60 min of thermal treatment at 43 degrees C. In addition, there was an apparent induction of the glucose-regulated proteins (GRPs) of 76-78 and 98-100 kDa, but not of the other hsps. This subset induction of the heat-shock response by acidic medium suggests that different mechanisms are responsible for the induction of the various families of hsps.  相似文献   

18.
M-14 human melanoma cells, following severe hyperthermic exposures, synthesized a heat-shock protein of 66 kDa (hsp 66), in addition to the major “classic” heat-shock proteins. This hsp 66 was not expressed following mild hyperthermic exposures sufficient to trigger the synthesis of the other heat-shock proteins. The induction of hsp 66 was observed also in Li human glioma cells treated at 45°C for 20 min. By contrast, hsp 66 was not induced in seven other human cell lines (both melanoma and nonmelanoma) when they were subjected to the same hyperthermic treatment. Immunological recognition experiments showed that hsp 66 cross-reacted with the inducible hsp 72, but not with the constitutive hsp 73. The possibility that hsp 66 is a breakdown product of hsp 72 was ruled out by the fact that Poly(A)+ RNA extracted from cells treated at 45°C for 20 min was able to direct the synthesis of hsp 66 (together with hsp 72) in a message-dependent rabbit reticulocyte lysate, as well as in microinjected Xenopus oocytes. By contrast, only the hsp 72 was expressed using Poly(A)+ RNA extracted from cells heated at 42°C for 1 h. Affinity chromatography experiments on ATP-agarose showed that hsp 66 did not bind ATP in vitro, hsp 66 was localized both in the cytoplasm (cytosol, mitochondria, and microsome fraction) and in the nuclei of cells recovered from a severe heat shock: this intracellular distribution closely corresponded to that of hsp 72. The nuclear-associated hsp 66 was found to be tightly bound to nuclear structures and could not be extracted by incubation in ATP-containing buffer. © 1996 Wiley-Liss, Inc.  相似文献   

19.
R Cavicchioli  K Watson 《FEBS letters》1986,207(1):149-152
Yeast cells when subjected to a primary heat shock, defined as a temperature shift from 23 to 37 degrees C for 30 min, acquired tolerance to heat stress (52 degrees C/5 min). Primary heat shocked cells incubated at 23 degrees C for up to 3 h, progressively lost thermotolerance but retained high levels of the major heat-shock proteins as observed on polyacrylamide gels. On the other hand, a temperature shift back up to 37 degrees C for 30 min fully restored thermotolerance. The major high-molecular-mass heat-shock proteins (hsp) identified were of approximate molecular mass 100 kDa (hsp 100), 80 kDa (hsp 80) and 70 kDa (hsp 70). The results indicate that loss of heat-shock acquisition of thermotolerance is not correlated with loss of heat-shock proteins.  相似文献   

20.
Dynamic intracellular ATP and Pi levels were measured non-invasively for Chinese hamster V79 cells by 31P-NMR under conditions of thermotolerance and heat-shock protein induction. High densities of cells were embedded in agarose strands, placed within a standard NMR sample tube, and perfused with medium maintained either at 37 or 43 degrees C at pH 7.35. Cell survival and heat-shock protein synthesis were assessed either from parallel monolayer cultures or cells dislodged from the agarose strands post-treatment. Thermotolerance (heat resistance) and heat-shock protein synthesis was induced by a 1 h exposure to 43 degrees C followed by incubation for 5 h at 37 degrees C. After the 5 h incubation at 37 degrees C, marked thermal resistance was observed in regard to survival with concomitant synthesis of two major heat-shock proteins at 70 and 103 kDa. Studies were also conducted where tolerance and heat-shock protein synthesis were partially inhibited by depletion of cellular glutathione (GSH) prior to and during heat treatment. Dynamic measurement of intracellular ATP of cells heated with or without GSH depletion revealed no change in steady-state levels immediately after heating or during the 5 h post-heating incubation at 37 degrees C where thermotolerance and heat-shock proteins develop. These data are consistent with other reported data for mammalian cells and indicate that the steady-state ATP levels in mammalian cells remain unchanged during and after the acquisition of the thermotolerant state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号