共查询到20条相似文献,搜索用时 0 毫秒
1.
N-terminal amino acid sequence of wheat proteins that lack phenylalanine and histidine residues. 总被引:1,自引:1,他引:0 下载免费PDF全文
D G Redman 《The Biochemical journal》1976,155(1):193-195
The 24 residues of the N-terminal CNBr peptide from a wheat albumin, that lacks phenylalanine and histidine, have been sequenced. Three of the assignments were made partly by analogy with two other proteins, as evidence is presented that all three proteins are probably identical in this region. Extra evidence for the sequences of the alpha-chymotryptic peptides derived from the N-terminal CNBr peptides of the three proteins, and also for their assembly, has been deposited as Supplementary Publication SUP 50063 (11 pages) at the British Library Lending Division, Boston Spa, Wetherby, West Yorkshire LS23 7BQ, U.K., from whom copies may be obtained on the terms given in Biochem J. (1976) 153, 5. The nature of such evidence is stated in the text of this present communication. 相似文献
2.
Allelopathy in wheat (Triticum aestivum) 总被引:1,自引:0,他引:1
Wheat (Triticum aestivum) allelopathy has potential for the management of weeds, pests and diseases. Both wheat residue allelopathy and wheat seedling allelopathy can be exploited for managing weeds, including resistant biotypes. Wheat varieties differ in allelopathic potential against weeds, indicating that selection of allelopathic varieties might be a useful strategy in integrated weed management. Several categories of allelochemicals for wheat allelopathy have been identified, namely, phenolic acids, hydroxamic acids and short‐chain fatty acids. Wheat allelopathic activity is genetically controlled and a multigenic model has been proposed. Research is underway to identify genetic markers associated with wheat allelopathy. Once allelopathic genes have been located, a breeding programme could be initiated to transfer the genes into modern varieties for weed suppression. The negative impacts of wheat autotoxicity on agricultural production systems have also been identified when wheat straws are retained on the soil surface for conservation farming purposes. A management package to avoid such deleterious effects is discussed. Wheat allelopathy requires further study in order to maximise its allelopathic potential for the control of weeds, pests and diseases, and to minimise its detrimental effects on the growth of wheat and other crops. 相似文献
3.
Background and Aims
Gluten proteins are the major storage protein fraction in the mature wheat grain. They are restricted to the starchy endosperm, which forms white flour on milling, and interact during grain development to form large polymers which form a continuous proteinaceous network when flour is mixed with water to give dough. This network confers viscosity and elasticity to the dough, enabling the production of leavened products. The starchy endosperm is not a homogeneous tissue and quantitative and qualitative gradients exist for the major components: protein, starch and cell wall polysaccharides. Gradients in protein content and composition are the most evident and are of particular interest because of the major role played by the gluten proteins in determining grain processing quality.Methods
Protein gradients in the starchy endosperm were investigated using antibodies for specific gluten protein types for immunolocalization in developing grains and for western blot analysis of protein extracts from flour fractions obtained by sequential abrasion (pearling) to prepare tissue layers.Key Results
Differential patterns of distribution were found for the high-molecular-weight subunits of glutenin (HMW-GS) and γ-gliadins when compared with the low-molecular-weight subunits of glutenin (LMW-GS), ω- and α-gliadins. The first two types of gluten protein are more abundant in the inner endosperm layers and the latter more abundant in the subaleurone. Immunolocalization also showed that segregation of gluten proteins occurs both between and within protein bodies during protein deposition and may still be retained in the mature grain.Conclusions
Quantitative and qualitative gradients in gluten protein composition are established during grain development. These gradients may be due to the origin of subaleurone cells, which unlike other starchy endosperm cells derive from the re-differentiation of aleurone cells, but could also result from the action of specific regulatory signals produced by the maternal tissue on specific domains of the gluten protein gene promoters. 相似文献4.
The identification of foam-forming soluble proteins from wheat (Triticum aestivum) dough 总被引:2,自引:0,他引:2
Proteomic methods have been used to identify foam-forming soluble proteins from dough that may play an important role in stabilising gas bubbles in dough, and hence influence the crumb structure of bread. Proteins from a soluble fraction of dough (dough liquor) or dough liquor foam have been separated by two-dimensional gel electrophoresis, and 42 identified using a combination of matrix-assisted laser desorption/ionization-time of flight and quadrupole-time of flight analyses. Major polypeptide components included beta-amylase, tritin and serpins, with members of the alpha-amylase/trypsin inhibitor family being particularly abundant. Neither prolamin seed storage proteins nor the surface-active protein puroindoline were found. Commonly used dough ingredients (NaCl, Na L-ascorbate) had only a minor effect on the 2-DE protein profiles of dough liquor, of which one of the more significant was the loss of 9 kDa nonspecific lipid transfer protein. Many proteins were lost in dough liquor foam, particularly tritin, whilst a number of alpha-amylase inhibitors were more dominant, suggesting that these are amongst the most strongly surface-active proteins in dough liquor. Such proteins may play a role determining the ability of the aqueous phase of doughs, as represented by dough liquor, to form an elastic interface lining the bubbles, and hence maintain their integrity during dough proving. 相似文献
5.
A wheat (Triticum aestivum L.) cell line, derived from anther culture of an F1 hybrid, has exogenous Ca2+, to that of calcium-dependent cells grown on complete medium. The calcium-independent cell line has been grown in the absence of Ca2+ for more than 1.5 years. The cell line grew at a rate similar to that on complete medium for up to 12 weeks, if supplied with any one of the divalent cations, Ca2+, Mg2+, Mn2+, Zn2+, Cu2+ or Co2+, but declined and appeared necrotic when all 6 of these were removed from the medium. The calcium-independence trait, while identified in tissue culture, was also observed in germinated immature embryos of the same hybrid and one of its parental inbred lines. 相似文献
6.
小麦化感作用研究进展 总被引:29,自引:2,他引:29
小麦是世界第一大粮食作物,在农业生产中占有重要地位.然而,由于人们为保证小麦产量往往施用大量的除草剂和杀菌剂,对环境造成了极大的危害.小麦化感作用是利用小麦活体或残体向环境中释放次生代谢物质对自身或其他生物产生作用,它克服了除草剂和杀菌剂等引起的环境污染问题,具有抑制杂草控制病害的潜力.本文对已有的小麦化感作用的研究进展情况进行了综合评述.其中小麦对杂草、虫害及病害产生防御功能的主要化感物质为异羟肟酸和酚酸类物质.小麦化感物质活性的发挥除了取决于化感物质的种类外,还由小麦自身的遗传因素、环境因素和生物因素的共同作用所决定.小麦化感物质在根际土壤中的滞留、迁移和转化过程、小麦化感作用与土壤生物的关系以及相关的作用机理是小麦化感作用研究的薄弱环节。其研究方法还需进一步探索改进.小麦化感作用在植物保护、环境保护以及作物育种等方面具有广泛的应用前景,促进了小麦抗逆性的增强以及产量和品质的提高. 相似文献
7.
小麦是世界第一大粮食作物,在农业生产中占有重要地位.然而,由于人们为保证小麦产量往往施用大量的除草剂和杀菌剂,对环境造成了极大的危害.小麦化感作用是利用小麦活体或残体向环境中释放次生代谢物质对自身或其他生物产生作用,它克服了除草剂和杀菌剂等引起的环境污染问题,具有抑制杂草控制病害的潜力.本文对已有的小麦化感作用的研究进展情况进行了综合评述.其中小麦对杂草、虫害及病害产生防御功能的主要化感物质为异羟肟酸和酚酸类物质.小麦化感物质活性的发挥除了取决于化感物质的种类外,还由小麦自身的遗传因素、环境因素和生物因素的共同作用所决定.小麦化感物质在根际土壤中的滞留、迁移和转化过程、小麦化感作用与土壤生物的关系以及相关的作用机理是小麦化感作用研究的薄弱环节,其研究方法还需进一步探索改进.小麦化感作用在植物保护、环境保护以及作物育种等方面具有广泛的应用前景,促进了小麦抗逆性的增强以及产量和品质的提高. 相似文献
8.
Oxidative damage to thylakoid proteins in water-stressed leaves of wheat (Triticum aestivum) 总被引:8,自引:0,他引:8
Eduardo A. Tambussi Carlos G. Bartoli José Beltrano Juan J. Guiamet José L. Araus 《Physiologia plantarum》2000,108(4):398-404
The production of reactive oxygen species in the chloroplast may increase under water deficit. To determine if this causes oxidative damage to the photosynthetic apparatus, we analyzed the accumulation of oxidatively damaged proteins in thylakoids of water-stressed wheat ( Triticum aestivum L.) leaves. Water stress was imposed on 4-week-old plants by withholding watering for 10 days to reach a soil water potential of about −2.0 MPa. In thylakoids of water-stressed leaves there was an increase in oxidative damage, particularly in polypeptides of 68, 54, 41 and 24 kDa. High molecular mass oxidized (probably cross-linked) proteins accumulated in chloroplasts of droughted leaves. Oxidative damage was associated with a substantial decrease in photosynthetic electron transport activity and photosystem II (PSII) efficiency (Fv /Fm ). Treatment of stressed leaves with l -galactono-1,4-lactone (GL) increased their ascorbic acid content and enhanced photochemical and non-photochemical quenching of chlorophyll fluorescence. GL reduced oxidative damage to photosynthetic proteins of droughted plants, but it reverted the decrease in electron transport activity and PSII efficiency only partially, suggesting that other factors also contributed to loss of photosystem activity in droughted plants. Increasing the ascorbic acid content of leaves might be an effective strategy to protect thylakoid membranes from oxidative damage in water-stressed leaves. 相似文献
9.
Nullisomic analysis of waxy (Wx) protein of hexaploid wheat (Triticum aestivum L.) cv. “Chinese Spring” using two-dimensional polyacrylamide gel electrophoresis revealed that threeWx loci,Wx-A1, Wx-B1, andWx-D1, located on chromosome arms 7AS, 4AL, and 7DS, produce three distinct Wx subunit groups, subunit group-A (SGA), SGB, and
SGD, respectively. SGA has a higher molecular weight and a more basic isoelectric point (pI) than the other two. SGB and SGD
have the same molecular weight but a slightly different pI range. Owing to the detection of these three subunit groups, we were able to identify the expression of three waxy genes
in wheat endosperm and to find two types of mutants among Japanese wheat cultivars, one lacking SGA and the others SGB. These
results suggest the possibility of breeding a waxy wheat. 相似文献
10.
MicroRNAs (miRNAs) are small, endogenous RNAs that regulate gene expression in both plants and animals. A large number of
miRNAs has been identified from various animals and model plant species such as Arabidopsis thaliana and rice (Oryza sativa); however, characteristics of wheat (Triticum aestivum) miRNAs are poorly understood. Here, computational identification of miRNAs from wheat EST sequences was preformed by using
the in-house program GenomicSVM, a prediction model for miRNAs. This study resulted in the discovery of 79 miRNA candidates.
Nine out of 22 miRNA representatives randomly selected from the 79 candidates were experimentally validated with Northern
blotting, indicating that prediction accuracy is about 40%. For the 9 validated miRNAs, 59 wheat ESTs were predicted as their
putative targets.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.
Weibo Jin and Nannan Li contributed equally to the work. 相似文献
11.
Hans Lambers Richard J. Simpson Vyrna C. Beilharz Michael J. Dalling 《Physiologia plantarum》1982,56(1):18-22
Wheat ( Triticum aestivum L. cv. SUN 9E) was grown in a growth chamber under conditions of low soil nitrogen. Translocation of carbon to the roots and the subsequent utilization of these carbohydrates was determined. In vegetative plants (22 days old), 21.5 mg C day−1 were translocated to the roots. 29% of this was incorporated into dry matter, 32% was respired (28% via the cytochrome and 4% via a SHAM-sensitive, presumably the alternative nonphosphorylating, pathway) and 39% was translocated back to the shoots, mainly in the form of amino acids. – The rote of root maintenance respiration during the vegetative phase was estimated to be 0.7 mg O2 h−1 (g dry weight of roots)−1 and the root growth respiration to be 0.41 g O2 (g dry weight of roots)−1 . Total carbohydrate utilization due to root respiration via the alternative, nonphosphorylating pathway during the major part of the growth period was calculated to be only ca 6% of carbohydrate utilization for grain growth. The rate of specific mass transfer (SMT) of sugars in the sieve tubes was estimated from the data on C-translocation and data on the total area occupied by sieve tubes in a cross section of the root system. SMT was calculated to be 0.8 mg sucrose s−1 cm−2 , which is very similar to the published value on SMT for other organs, except roots. 相似文献
12.
Spring wheat was grown in the field under deficient and sufficient levels of soil K and with high and low supplies of fertiliser nitrogen. Measurements were made of K uptake, soil nutrient supply parameters, root growth and, in solution culture, root influx parameters. Mechanistic models predicted uptake reasonably well under K-deficient conditions, but over-predicted uptake, by as much as 4 times, under K-sufficient conditions. The over-prediction was apparently due to poor characterisation of plant demand. 相似文献
13.
H. S. Dhaliwal S. K. Sharma D. S. Multani A. S. Randhawa 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1986,72(4):548-550
Summary The inheritance of yellow berry, a grain disorder in durum and bread wheats, was studied in six intervarietal crosses in bread wheat. The trait was found to be controlled by either two or three dominant genes. Monosomic analysis using Chinese Spring monosomic series showed the presence of two major dominant genes on chromosomes 1A and 7A, and four modifiers on 4A, 4B, 6A and 6D, which influence the expression of yellow berry in bread wheat. 相似文献
14.
Konstantinos C. Makris Rupali Datta Dibyendu Sarkar Kabindra M. Shakya Devanand Pachanoor Padmini Das 《Plant and Soil》2007,295(1-2):229-237
Previous research in our laboratory investigated the effectiveness of a common agrochemical, urea used as a chaotropic agent
to facilitate 2,4,6-trinitrotoluene (TNT) removal by vetiver grass (Vetiveria zizanioides L.). Chaotropic agents disrupt water structure, increasing solubilization of hydrophobic compounds (TNT), and enhancing plant
TNT uptake. Our findings showed that urea significantly enhanced TNT uptake kinetics by vetiver. We hypothesized that the
beneficial effect of urea on the overall TNT uptake by vetiver grass was not plant-specific. We explored this hypothesis by
testing the ability of wheat (Triticum aestivum L.) in removing TNT from aqueous media in the presence of urea. Results showed that untreated (no urea) wheat exhibited a
slow, kinetically limited TNT uptake that was nearly half of the urea-treated wheat TNT capacity (250 mg kg−1). Chaotropic effects of urea were illustrated by the significant (P < 0.001) increase in the TNT second-order reaction rate constants over those of the untreated (no urea) controls. Plant TNT
speciation showed that TNT and several of its metabolites were detected in both root and shoot compartments of the plant,
allowing for 110 and 36% recovery for the untreated and 0.1% urea treated plants. The lower % recovery of the urea-treated
plants was attributed to a number of unknown polar TNT metabolites.
Responsible Editor: Hans Lambers. 相似文献
15.
Morphologically normal green plants have reproducibly been regenerated from protoplasts of an Australian wheat (Triticum aestivum cv. Hartog). The protoplasts were isolated from fine embryogenic suspension cultures which were initiated from embryogenic callus. Protoplasts were incubated in a modified liquid MS medium containing half strength of the macroelements, 5 m 2,4-D and 0.6 M glucose. Colonies were formed at frequencies ranging from 0.1% to 5%. The frequency of colonies forming fully developed plants varied between 1% and 25%. More than eighty green plants with morphologically normal shoots and roots have been obtained and there was no difficulty in establishing these plants in soil. A cytological study of several randomly selected regenerated plants showed the normal chromosome complement for wheat (2n = 42). 相似文献
16.
Common wheat is one of the most important cereal crops in the world. The improvement of its yield and quality by the introduction of heterologous gene(s) is very significant. Avena sativa L. (2n = 42), belonging to the Avena tribe, possesses resistance to drought, coldness and many dis-eases. Its contents of proteins and fat in seed, especially lysine and unsaturated fatty acid are highest in crops, therefore it is regarded as healthy food. Sexual hybridization between wheat and Avena sativa… 相似文献
17.
小麦T型细胞质雄性不育系、保持系蛋白质双向电泳比较研究 总被引:12,自引:0,他引:12
以小麦T型细胞质雄性不育系为材料,利用双向电泳技术,对苗期、分蘖期、拔节期和孕穗期叶片和花粉母细胞减数分裂期、单核小孢子期、二—三核小孢子期蛋白质变化作了分析。在细胞质雄性不育系小麦拔节期、孕穗期叶片中,有一个33KD/P16.3蛋白组分存在,保持系中没有发现这个蛋白组分。在花粉败育的关键时期二—三核小孢子期,小麦细胞质雄性不育系有53KD/P15.5、50KD/P15.7、48KD/P15.6和20KD/P17.5四种蛋白组分存在,而保持系中也没有存在。小麦细胞质雄性不育系叶片和小孢子发育过程中存在的这五种特异蛋白可能参与育性调控,与细胞质雄性不育特性的形成有关。 相似文献
18.
This work reports changes in sucrose synthase and invertase activities throughout endosperm development in wheat, together with the associated substrates and metabolites, sucrose, UDP, glucose, fructose and UDP-glucose. Throughout endosperm development, sucrose synthase had consistently higher activity than invertase and indeed invertase activity did not change appreciably. The observed variation in pattern and amounts of glucose and fructose present during the mid- and late stages of endosperm development confirmed the suggestion that invertase was not the preferred pathway of sucrose catabolism. Kinetic parameters for sucrose synthase were determined in crude extracts. Estimates of UDP and sucrose concentrations suggest that sucrose synthase is unlikely to achieve its potential maximum velocity. This limitation may however be overcome in part by the apparent excess catalytic activity measured during endosperm development. 相似文献
19.
L. A. Sitch J. W. Snape S. J. Firman 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1985,70(3):309-314
Summary Intrachromosomal mapping studies were used to locate the positions of the genes Kr1 and Kr2, which control the crossability of wheat with Hordeum bulbosum, on chromosomes 5B and 5A, respectively. The location of Kr1 was established using the telocentric mapping technique and found to be on the long arm of chromosome 5B, distal to the centromere with a mean recombination frequency of 44.8±3.28%. Kr2 was located on the long arm of chromosome 5A by linkage with the major gene markers Vrn1, controlling vernalization requirement, and q, controlling ear morphology. Kr2 is closely linked to Vrn1, with a mean recombination frequency of 4.8±4.66%, and is distal to q with a mean recombination frequency of 38.1±10.60%. The similar locations of Kr1 and Kr2 on homoeologous chromosomes suggest that these two loci are homoeoallelic. Significant correlations between Hordeum bulbosum and rye crossability confirmed that Kr1 and Kr2 control the crossability of wheat with both species. 相似文献