首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
GH4C1 cells, a clonal strain of rat pituitary tumor cells, have high-affinity, functional receptors for the inhibitory hypothalamic peptide somatostatin (SRIF) and for epidermal growth factor (EGF). In this study we have examined the events that follow the initial binding of SRIF to its specific plasma membrane receptors in GH4C1 cells and have compared the processing of receptor-bound SRIF with that of EGF. When cells were incubated with [125I-Tyr1]SRIF at temperatures ranging from 4 to 37 degrees C, greater than 80% of the specifically bound peptide was removed by extraction with 0.2 M acetic acid, 0.5 M NaCl, pH 2.5. In contrast, the subcellular distribution of receptor-bound 125I-EGF was temperature dependent. Whereas greater than 95% of specifically bound 125I-EGF was removed by acid treatment after a 4 degrees C binding incubation, less than 10% was removed when the binding reaction was performed at 22 or 37 degrees C. In pulse-chase experiments, receptor-bound 125I-EGF was transferred from an acid-sensitive to an acid-resistant compartment with a half-time of 2 min at 37 degrees C. In contrast, the small amount of [125I-Tyr1]SRIF that was resistant to acid treatment did not increase during a 2-h chase incubation at 37 degrees C. Chromatographic analysis of the radioactivity released from cells during dissociation incubations at 37 degrees C showed that greater than 90% of prebound 125I-EGF was released as 125I-tyrosine, whereas prebound [125I-Tyr1]SRIF was released as a mixture of intact peptide (55%) and 125I-tyrosine (45%). Neither chloroquine (0.1 mM), ammonium chloride (20 mM), nor leupeptin (0.1 mg/ml) increased the amount of [125I-Tyr1]SRIF bound to cells at 37 degrees C. Furthermore, chloroquine and leupeptin did not alter the rate of dissociation or degradation of prebound [125I-Tyr1]SRIF. In contrast, these inhibitors increased the amount of cell-associated 125I-EGF during 37 degrees C binding incubations and decreased the subsequent rate of release of 125I-tyrosine. The results presented indicate that, as in other cell types, EGF underwent rapid receptor-mediated endocytosis in GH4C1 cells and was subsequently degraded in lysosomes. In contrast, SRIF remained at the cell surface for several hours although it elicits its biological effects within minutes. Furthermore, a constant fraction of the receptor-bound [125I-Tyr1]SRIF was degraded at the cell surface before dissociation. Therefore, after initial binding of [125I-Tyr1]SRIF and 125I-EGF to their specific membrane receptors, these peptides are processed very differently in GH4C1 cells.  相似文献   

2.
Bombesin is a tetradecapeptide which stimulates insulin secretion in vivo by isolated islets and by HIT-T15 cells, a clonal line of hamster pancreatic-islet cells. In the present study we have used [125I-Tyr4]bombesin to characterize bombesin receptors in HIT-T15 cells. [125I-Tyr4]Bombesin binding was time- and temperature-dependent: maximum binding occurred after 45 min, 90 min and 10 h at 37, 22 and 4 degrees C respectively. Thereafter, cell-associated radioactivity declined at 37 degrees C and 22 degrees C but not at 4 degrees C. Scatchard analysis of [125I-Tyr4]bombesin binding measured at 4 degrees C showed that HIT-T15 cells contain a single class of binding sites (approximately equal to 85000/cell) with an apparent Kd of 0.9 +/- 0.11 nM. Structurally unrelated neuropeptides did not compete for [125I-Tyr4]bombesin binding. However, the relative potencies of bombesin and four bombesin analogues in inhibiting the binding of [125I-Tyr4]bombesin correlated with their ability to stimulate insulin release. Receptor-mediated processing of [125I-Tyr4]bombesin was examined by using an acid wash (0.2 M-acetic acid/0.5 M-NaCl, pH 2.5) to dissociate surface-bound peptide from the cells. Following [125I-Tyr4]bombesin binding at 4 degrees C, more than 85% of the cell-associated radioactivity could be released by acid. When the temperature was then increased to 37 degrees C, the bound radioactivity was rapidly (t1/2 less than 3 min) converted into an acid-resistant state. These results indicate that receptor-bound [125I-Tyr4]bombesin is internalized in a temperature-dependent manner. In fact, the entire ligand-receptor complex appeared to be internalized, since pretreatment of cells with 100 nM-bombesin for 90 min at 37 degrees C decreased the subsequent binding of [125I-Tyr4]bombesin by 90%. The chemical nature of the cell-associated radioactivity was determined by reverse-phase chromatography of the material extracted from cells after a 30 min binding incubation at 37 degrees C. Although 70% of the saturably bound radioactivity was co-eluted with intact [125I-Tyr4]bombesin 90% of the radioactivity subsequently dissociated from cells chromatographed as free iodide. At least some of the degradation of receptor-bound [125I-Tyr4]bombesin appeared to occur in lysosomes, since chloroquine increased the cellular accumulation of [125I-Tyr4]bombesin at 37 degrees C and slowed the release of radioactivity.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Characterization of bombesin receptors in a rat pituitary cell line   总被引:6,自引:0,他引:6  
Bombesin is a tetradecapeptide which stimulates prolactin secretion in rats and man and in cultures of GH4C1 cells, a clonal strain of rat pituitary tumor cells. We have utilized [125I-Tyr4]bombesin to identify and characterize specific high affinity receptors in GH4C1 cells. Scatchard analysis of equilibrium binding data at 4 degrees C indicated the presence of a single class of non-interacting binding sites for bombesin (RT = 3600 +/- 500 sites/cell). The value for the equilibrium dissociation constant (Kd = 1.2 +/- 0.4 nM) agreed closely with the ED50 (0.5 nM) for bombesin stimulation of prolactin release. [125I-Tyr4]Bombesin binding at steady state at 37 degrees C was inhibited by increasing concentrations of unlabeled bombesin in a dose-dependent manner, with an ID50 = 1.4 +/- 0.2 nM. However, binding of [125I-Tyr4] bombesin was not inhibited by 100 nM thyrotropin-releasing hormone, vasoactive intestinal peptide, epidermal growth factor, or somatostatin. Therefore, [125I-Tyr4]bombesin binds to a receptor distinct from the receptors for other peptides which regulate hormone secretion by GH4C1 cells. The analog specificity for high affinity binding showed that the receptors for bombesin recognize the COOH-terminal octapeptide sequence in the molecule. Among five pituitary cell strains tested, two which contained saturable binding sites for [125I-Tyr4]bombesin (GH4C1 and GH3) had previously been shown to respond to bombesin with increased hormone secretion, whereas three which lacked receptors (GC, F4C1, and AtT20/D16v) were unresponsive. Therefore, the [125I-Tyr4]bombesin binding sites appear to be necessary for the biological actions of bombesin. Examination of the processing and metabolism of receptor-bound peptide demonstrated that at 4 degrees C [125I-Tyr4]bombesin binds to receptors on the surface of GH4C1 cells. At 37 degrees C, receptor-bound peptide is rapidly internalized and subsequently degraded in lysosomes. In summary, we have characterized for the first time specific, high affinity pituitary bombesin receptors which are necessary for the biological action of bombesin.  相似文献   

4.
The presence of a membrane receptor for C-reactive protein (CRP-R) on the human monocytic cell line U-937 was the basis for determining the metabolic fate of the receptor-bound ligand and the functional response of the cells to CRP. Internalized [125I]CRP was measured by removing cell surface-bound [125I]CRP with pronase. Warming cells to 37 degrees C resulted in the internalization of approx. 50% of the receptor-bound [125I]CRP or receptor-bound [125I]CRP-PC-KLH complexes. U-937 cells degraded about 25% of the internalized [125I]CRP into TCA-soluble radiolabeled products. The lysosomotrophic agents (chloroquine, NH4Cl) greatly decreased the extent of CRP degradation without altering binding or internalization. In addition, a pH less than 4.0 resulted in dissociation of receptor-bound [125I]CRP. Treatment of U-937 cell with monensin, a carboxylic ionophore which prevents receptor recycling, resulted in accumulation of internalized [125I]CRP. Therefore, it appears that the CRP-R complex is internalized into an endosomal compartment where the CRP is uncoupled from its receptor and subsequently degraded. CRP initiated the differentiation of the U-937 cells so that they acquired the ability to produce H2O2 and also display in vitro tumoricidal activity. The results support the concept that internalization and degradation of CRP leads to the activation of monocytes during inflammation.  相似文献   

5.
6.
We have synthesized two photoreactive derivatives of somatostatin, namely [125I-Tyr11,azidonitrobenzoyl (ANB)-Lys4]somatostatin and [125I-Tyr11,ANB-Lys9]somatostatin, and used them to characterize somatostatin receptors biochemically in several cell types. Saturation binding experiments carried out in the dark demonstrated that [125I-Tyr11,ANB-Lys4]somatostatin bound with high affinity (KD = 126 +/- 39 pM) to a single class of binding sites in GH4C1 pituitary cell membranes. The affinity of this analog was similar to that of the unsubstituted peptide [125I-Tyr11]somatostatin (207 +/- 3 pM). In contrast, specific binding was not observed with [125I-Tyr11,ANB-Lys9]somatostatin. The binding of both [125I-Tyr11,ANB-Lys4]somatostatin and [125I-Tyr11]somatostatin was potently inhibited by somatostatin (EC50 = 300 pM) whereas at 100 nM unrelated peptides had no effect. Furthermore, both pertussis toxin treatment and guanyl-5'yl imidophosphate (Gpp(NH)p) markedly reduced [125I-Tyr11,ANB-Lys4]somatostatin binding. Thus, [125I-Tyr11,ANB-Lys4]somatostatin binds to G-protein coupled somatostatin receptors with high affinity. To characterize these receptors biochemically, GH4C1 cell membranes were irradiated with ultraviolet light following the binding incubation, and the labeled proteins were identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. A major band of 85 kDa was specifically labeled with [125I-Tyr11,ANB-Lys4]somatostatin but not with [125I-Tyr11,ANB-Lys9]somatostatin or [125I-Tyr11]somatostatin. The binding affinity of the 85-kDa protein for [125I-Tyr11,ANB-Lys4]somatostatin was very high (Kd = 34 pM). Labeling of this protein was inhibited competitively by somatostatin (EC50 = 140 +/- 80 pM) but not by unrelated peptides. Furthermore, this band was not labeled in pertussis toxin-treated membranes or in untreated membranes incubated with Gpp(NH)p. Finally, [125I-Tyr11,ANB-Lys4]somatostatin specifically labeled bands of 82, 75, and 72 kDa in membranes prepared from mouse pituitary AtT-20 cells, rat pancreatic acinar AR4-2J cells, and HIT hamster islet cells, respectively. Thus, [125I-Tyr11,ANB-Lys4]somatostatin represents the first photolabile somatostatin analog able to bind to receptors with high affinity. Our studies demonstrate that this novel peptide covalently labels specific somatostatin receptors in a variety of target cell types.  相似文献   

7.
The in vitro binding of [125I-Tyr11]somatostatin-14 (SRIF-14) to membranes prepared from cultured human small cell lung carcinoma (SCLC) cells (NCI-H69) has been characterized. Binding to SCLC was monophasic and of high affinity (Kd = 0.59 +/- 0.02 nM, n = 3). The estimated Bmax was 173 +/- 2.4 fmol/mg protein. Receptors were also present on solid NCI-H69 tumors grown in vivo in the athymic nude mouse. However, the concentration was only about 10% of that observed in cell culture. Biologically-active SRIF analogues were potent inhibitors of [125I-Tyr11]SRIF-14 binding, and an analysis of the pharmacological specificity indicated that the SCLC receptor was of the peripheral (e.g., non-neural) subtype. The presence of SRIF receptors on SCLC membranes may indicate that SRIF has a role in regulation of SCLC function.  相似文献   

8.
Somatostatin (SRIF) is a putative peptide neurotransmitter that may interact with brain capillaries following neurosecretion of the peptide. The present studies investigate the binding and metabolism of SRIF analogues in isolated bovine brain microvessels. 125I-[Tyr1]SRIF was rapidly degraded by capillary aminopeptidase with a half-time of approximately 3 min at 23 degrees C. The microvessel aminopeptidase had a low affinity and high capacity for the peptide, Km = 76 microM and Vmax = 74 nmol min-1 mgp-1. 125I-[Tyr11]SRIF was converted to free iodotyrosine at a much slower rate, presumably by a lower-activity endopeptidase. 125I-[Try11]SRIF was rapidly bound by microvessels, whereas another basic peptide, [Tyr8]bradykinin, or an acidic peptide, CCK8, or a neutral peptide, leucine enkephalin, were bound to a considerably less extent. The binding of 125I-[Tyr11]SRIF to the capillaries was nonsaturable up to a concentration of 1 microgram/ml of unlabeled peptide, and the binding reaction was extremely rapid, reaching equilibrium within 5 s at either 0 degrees C or 37 degrees C. Approximately 20% of the SRIF bound by the microvessels was resistant to acid wash and presumably represented internalized peptide. In addition, the 125I-[Tyr11]SRIF bound rapidly to the endothelial cytoskeleton remaining after a 1% Triton X-100 extraction of the microvessels. The peptide-cytoskeletal binding reaction was nonsaturable up to 1 microgram/ml of unlabeled [Tyr11]SRIF, but it was inhibited by 0.5% polylysine or 0.8 M KCl and was stimulated by 1 mM dithiothreiotol. These studies suggest that brain microvessels rapidly sequester and degrade SRIF analogues and that this may represent one mechanism for rapid inactivation of the neuropeptides subsequent to neurosecretion.  相似文献   

9.
The present study was designed to determine whether the diminution of growth hormone (GH) secretion that occurs in obese Zucker rats is related to alterations of GH-releasing factor (GRF) or somatostatin (SRIF) pituitary binding sites. Cold saturation studies were performed in pituitary homogenates of 4-month-old lean and obese rats, using [125I-Tyr10]hGRF(1-44)NH2 as radioligand and [127I-Tyr10]hGRF-(1-44)NH2 as competitor, and in pituitary membrane preparations, using [125I-Tyr0, D-Trp8]SRIF14 as radioligand and [127I-Tyr0, D-Trp8]SRIF14 as competitor. In lean rats, analysis of the curves by the Ligand program revealed the presence of two distinct classes of GRF binding sites, the first being of high affinity (0.74 +/- 0.11 nM) and low capacity (118 +/- 31 fmol/mg protein), the second being of lower affinity (880 +/- 240 nM) and higher capacity (140 +/- 35 pmol/mg protein), and of a single class of SRIF binding sites (affinity: 0.40 +/- 0.12 nM; capacity: 24 +/- 6 fmol/mg protein). In obese rats, no difference was observed in GRF binding parameters for both classes of sites, but the concentration of somatostatin binding sites was reduced by 67% when compared to their lean littermates. These findings suggest that the SRIF pituitary receptors are down-regulated in obese Zucker rats and indicate that no alteration of GRF pituitary binding sites contribute to the blunted GH secretion observed in this model of obesity.  相似文献   

10.
The objective of this study was to investigate whether Caco-2 cells bind and internalize epidermal growth factor (EGF). [125I]EGF was presented to the apical (AP) or basolateral (BL) side of Caco-2 monolayers, grown on microporous membranes, at different times in culture. At day 10, [125I]EGF binding (at 37 degrees C) to the BL membrane was 2-3 times greater than binding to the AP membrane. Of that [125I]EGF bound to the AP membrane 76% was internalized within 3 h while internalization from the BL membrane was 90%. At lower temperatures membrane-bound [125I]EGF increased while internalization decreased. At day 16, AP and BL binding decreased and then remained constant through day 25. [125I]EGF was bound to the BL membrane of 10 days old monolayers with a Kd of 0.67 nM. There was a single binding site whose numbers in the BL membrane was about 5500/cell.  相似文献   

11.
SRIF receptors are membrane-bound glycoproteins. To structurally identify the carbohydrate components of SRIF receptors, solubilized rat brain SRIF receptors were subjected to lectin affinity chromatography. Solubilized SRIF receptors specifically bound to wheat germ agglutinin-lectin affinity columns but not to succinylated wheat germ agglutinin. This finding, as well as the ability of the solubilized receptor to interact with a Sambucus nigra L. lectin affinity column suggested that sialic acid residues are associated with SRIF receptors. The inability of the receptor to bind to concanavalin A, Dolichus biflorus agglutinin, Ulex europeaus I, and Jacalin lectin affinity columns suggests that high mannose, N-acetylgalactosamine, fucose, and O-linked carbohydrates are not associated with receptor. To investigate the functional role of the carbohydrate groups in brain SRIF receptors, specific sugars were selectively cleaved from SRIF receptors and the subsequent effect on the specific high affinity binding of the agonist [125I]MK 678 to SRIF receptors was determined. Treatment of the receptor with endoglycosidase D did not affect the specific binding of [125I] MK 678 to the solubilized SRIF receptors, consistent with the finding from lectin affinity chromatography that high mannose-type carbohydrate structures were not associated with SRIF receptors. Treatment of solubilized SRIF receptors with peptide-N-glycosidase F and endoglycosidases H and F reduced [125I]MK 678 binding to SRIF receptors indicating that either hybrid, or a combination of hybrid and complex N-linked carbohydrate structures, have a role in maintaining the receptor in a high affinity state for agonists. Treatment of solubilized SRIF receptors with neuraminidase from Vibrio cholera abolished high affinity agonist binding to the receptors, whereas treatment of the receptor with neuraminidase from Newcastle disease virus did not affect [125I]MK 678 binding to the receptor. These findings suggest that sialic acid residues in an alpha 2,6-configuration have a role in maintaining the SRIF receptor in a high affinity conformation for agonists. This is further indicated by studies on SRIF receptors in the pituitary tumor cell line, AtT-20. Treatment of AtT-20 cells in culture with neuraminidase (V. cholera) greatly reduces high affinity [125I] MK 678 binding sites, but did not alter the maximal ability of SRIF to inhibit forskolin-stimulated cAMP accumulation in intact AtT-20 cells. This finding suggests that the desialylated SRIF receptor is functionally active and remains coupled to GTP-binding proteins, but exhibits a reduced affinity for agonists. Treatment of AtT-20 cell membranes with neuraminidase from V. cholera was also able to greatly reduce the affinity of SRIF receptors for [125I]MK 678.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
Our results demonstrate that upon incubation of 125I-3G5 (a monoclonal IgM against a membrane ganglioside antigen on RINm5F cells) with rat insulinoma RINm5F cell monolayers at 37 degrees C, the IgM is rapidly internalized. Cell-bound radioactivity, detectable within 10 to 15 minutes, reaches a peak at 4 hours. By 24 hours the intracellular radioactivity has decreased to about 37.5% of the 4-hour value, accompanied by an increase in free 125I in the incubation medium. The incubation of 125I-3G5 with RINm5F cell monolayers at 4 degrees C shows that this series of events is inhibited by low temperature. Microautoradiography confirms these events indicating the presence of radiolabeled antibody on the plasma membrane as well as distinct capping processes and diffuse radioactive deposits within the cells as early as 5 to 10 minutes after initiating incubation at 37 degrees C. Electron microscopy autoradiography provides a detailed demonstration of the capping phenomenon and of endocytic vacuoles, followed at later times by the distribution of radioactive deposits throughout the cell. This model constituted by the capping of the 125I-3G5-ganglioside complex on rat insulinoma RINm5F cells may be useful in elucidating a possible mode of interaction of monoclonal antibodies and tumor cells.  相似文献   

13.
The GH4C1 pituitary cell line contains specific plasma membrane receptors for the inhibitory neuropeptide somatostatin (SRIF). Unlike other peptides which bind to cell surface receptors on these cells, SRIF is not rapidly internalized via receptor-mediated endocytosis. Here we examined the effects of chronic SRIF pretreatment on the subsequent ability of GH4C1 cells to bind and respond to this hormone. Treatment of cells with 100 nM SRIF increased [125I-Tyr1]SRIF binding to a maximum value of 220% of control after 20 h. Scatchard analysis demonstrated that the number, but not the affinity, of the receptors was altered. The effect of SRIF was dose-dependent (ED50 = 2.3 +/- 0.4 nM), was not mimicked by an inactive analog, and was specific for the SRIF receptor. Furthermore, pretreatment of cells with other agents, which mimic SRIF's action to decrease intracellular cAMP and free Ca2+ concentrations, did not mimic the SRIF-induced increase in receptor number. Thus, occupancy of the SRIF receptor was required for SRIF receptor up-regulation. Inhibition of protein synthesis with cycloheximide did not prevent the SRIF-induced increase in receptors, consistent with an effect of SRIF to either reduce receptor degradation or cause slow redistribution of preexisting receptors to the plasma membrane. In contrast to the effects on receptor binding, pretreating cells with SRIF did not alter either basal cAMP levels or the potency of SRIF to inhibit cAMP accumulation (ED50 = 0.5 +/- 0.2 nM). However, the maximum cAMP produced by stimulators of adenylyl cyclase was increased. The observation that chronic SRIF exposure did not cause homologous desensitization in GH4C1 cells and increased rather than decreased SRIF receptor number is consistent with the fact that this neuropeptide is not rapidly internalized by receptor-mediated endocytosis.  相似文献   

14.
In the investigation of the intracellular sites of insulin degradation, it might be important whether receptor-bound insulin could be a substrate for insulin-degrading enzyme (IDE). Insulin receptor and IDE were purified from rat liver using a wheat germ agglutinin column and monoclonal anti-IDE antibody affinity column, respectively. [125I]insulin-receptor complex was incubated with various amounts of IDE at 0 degree C in the presence of disuccinimidyl suberate and analyzed by reduced 7.5% SDS-PAGE and autoradiography. With increasing amounts of IDE, the radioactivity of 135 kd band (insulin receptor alpha-subunit) decreased, whereas that of 110 kd band (IDE) appeared then gradually increased, suggesting that IDE could bind to receptor-bound insulin. During incubation of insulin-receptor complex with IDE at 37 degrees C, about half of the [125I]insulin was dissociated from the complex. However, the time course of [125I]insulin degradation in this incubation was essentially identical to that of free [125I]insulin degradation. Cross-linked, non-dissociable receptor-bound [125I]insulin was also degraded by IDE. Rebinding studies to IM-9 cells showed that the receptor binding activity of dissociated [125I]insulin from insulin-receptor complex incubated with IDE was significantly (p less than 0.001) decreased as compared with that without the enzyme. These results, therefore, show that IDE could recognize and degrade receptor-bound insulin, and suggest that IDE may be involved in insulin metabolism during receptor-mediated endocytosis through the degradation of receptor-bound insulin in early neutral vesicles before their internal pH is acidified.  相似文献   

15.
The cytosol fraction of rat pancrease can bind [3H] estradiol specifically and extensively. In contrast to the rat uterus, the binding protein in pancreas requires an accessory factor as a coligand in the steroid-binding reaction. Removal of this accessory factor by passage of the cytosol through CM Affi-Gel blue columns renders eluate fractions virtually incompetent with respect to binding of [3H]estradiol (10 nM). Certain synthetic oligopeptides such as N-benzoyl-L-argininyl-p-nitroanilide, as well as an endogenous accessory factor, can reactivate binding of [3H]estradiol. Thus, localization of the protein that binds [3H]estradiol following chromatography with CM Affi-Gel blue columns can be determined readily by assaying eluate fractions in the absence and presence of either accessory factor or N-benzoyl-L-argininyl-p-nitroanilide. Addition of somatostatin (tetradecapeptide referred to as SRIF14; somatotropin release inhibiting factor) to the activatable, but incompetent, eluate fractions, also enhanced binding of [3H]estradiol. The effect of SRIF14 was biphasic. The threshold concentration required for activation of [3H]estradiol binding was about 1 microM, and maximal stimulation occurred at 25 microM. At higher concentrations of SRIF14, binding declined and reached basal levels at about 75 microM. The concentrations of somatostatin required for activation of binding of [3H]estradiol in vivo may be lower than those indicated above since 1) preparations containing [3H]estradiol-binding protein also contained an SRIF14 peptidase. Following incubation of [125I-Tyr1]SRIF14 with these preparations there was loss of binding of radiolabeled peptide with SRIF14 antiserum. 2) The biphasic nature of SRIF14 activation may reflect feedback inhibition of [3H]estradiol binding by a degradation product of SRIF14. Since SRIF14 has been identified in the delta- (or D-) islet cells of the pancreas, and in concentrations that may be in the microM range, the possibility is raised that these cells serve a paracrine function with respect to acinar cell secretion.  相似文献   

16.
Somatostatin receptors in the rat pituitary gland were characterized by binding analysis with a radioiodinated high affinity somatostatin analogue, 125I-Tyr1[D-Trp8]somatostatin. Receptor binding of this derivative reached equilibrium at 30 min and was maintained at a plateau for at least 60 min. Two L-Trp8- labeled somatostatin analogues. 125I-Tyr1- and [125I-Tyr11]somatostatin, displayed less stable and lower specific uptake and higher nonspecific binding. In contrast to the rapid degradation of the L-Trp8 ligands during binding assay, 125I-Tyr1]D-Trp8]somatostatin retained more than 80% of its binding activity after 90 min of incubation with pituitary particles. Pituitary particles bound 125I-Tyr1]D-Tyr8]somatostatin with high affinity (Ka = 8.6 +/- 1.2 X 10(9) M-1) and capacity of 54.4 +/- 2.6 fmol/mg. These binding sites showed specificity for the native peptide and its active analogues, and other peptide hormones, including angiotensin II, thyrotropin-releasing hormone, vasopressin, oxytocin, substance P, and gonadotropin-releasing hormone, did not inhibit tracer binding. A good correlation was observed between the binding affinities of several somatostatin analogues and their potencies as inhibitors of growth hormone release in rat pituitary cells. These findings emphasize the physiological importance of the pituitary somatostatin receptor in mediating the inhibitory action of the peptide on growth hormone release. The use of Tyr1[d-Trp8]somatostatin as a labeled ligand permits accurate determinations of the binding affinity and concentration of receptors for somatostatin in the normal pituitary gland and provides a basis for further studies of somatostatin receptor regulation and receptor-mediated cellular effects of the tetradecapeptide.  相似文献   

17.
125I-labelled calcitonin and 125I-labelled epidermal growth factor (EGF) bound to T 47D breast cancer cells at 37 degrees C in a manner that became increasingly resistant to removal by acid pH. Bound 125I-labelled EGF became resistant to acid removal more rapidly than did bound 125I-labelled calcitonin. The shift from acid accessibility to acid inaccessibility was energy-dependent since it was not seen at 4 degrees C and was inhibited in the presence of cell metabolic inhibitors. Radioactivity removed by acid represented intact hormone as assessed by trichloroacetic acid precipitation, whereas radioactivity released spontaneously by the cells was trichloroacetic acid-soluble. Inclusion of 10 mM-NH4Cl in the incubation medium resulted in an accumulation of cell-associated radioactivity without affecting the shift to acid inaccessibility. The accumulated radioactivity was relatively more trichloroacetic acid-precipitable in comparison with that associated with control cells. These data are consistent with internalization of receptor-bound EGF and a similar though slower mechanism of processing for receptor-bound calcitonin. The predominant route of hormone release from cells seems to occur via intracellular degradation rather than dissociation from cell-surface receptors.  相似文献   

18.
1. Receptor binding for epidermal growth factor (EGF) in rat buccal mucosa was characterized. Binding of [125I]EGF to rat buccal mucosa was time, temperature, cell number and [125I]EGF concentration dependent. 2. The [125I]EGF binding was reversible and specific. Unlabeled EGF competed for binding to buccal mucosal cells with an IC50 of 1.25 nM, whereas insulin failed to compete. 3. Scatchard analysis of the binding data revealed a curvilinear plot with dissociation constants of 3.39 nM and 2.14 microM, and binding capacities of 1.23 x 10(4) and 3.38 x 10(5) receptors per cell for high and low affinity sites, respectively. 4. Crosslinking of [125I]EGF to buccal mucosa followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed one major protein with Mw 170,000 which shares similar molecular weight with other known EGF receptors from different tissues and species. 5. The study is the first report to provide biochemical parameters of the specific EGF receptors in rat buccal mucosa.  相似文献   

19.
Epidermal growth factor (EGF) stimulates the growth of both benzo[a]pyrene-transformed Balb 3T3 cells (BP3T3) and untransformed Balb 3T3 cells. We describe here the binding, internalization, and degradation of [125I]-EGF by BP3T3 cells and 3T3 cells. Binding of [125I]-EGF reaches a maximum after 45 to 90 minutes incubation at 37 degrees C. In both BP3T3 and 3T3 cells the extent of EGF binding required to stimulate DNA synthesis is density dependent; sparse cultures require a 15-30% occupancy to elicit a maximal response whereas dense cultures require a 70-85% occupancy. At physiological concentrations the total binding of [125I]-EGF to 3T3 cells is higher than to BP3T3 cells, and this difference increases at higher cell densities. The rate of degradation of [125I]-EGF is directly proportional to the total [125I]-EGF binding in each cell type. This supports the hypothesis that one cause of the diminished serum requirement of BP3T3 cells is a reduced rate of utilization of serum growth factors.  相似文献   

20.
The internalization of 125I-epidermal growth factor (EGF) by A431 cells was investigated. Control cells were able to internalize over 80% of receptor-bound 125I-EGF. By contrast, cells treated with EGF before incubation with 125I-EGF internalized only 50% of the surface-bound radioligand. The ligand-induced decrease in 125I-EGF internalization showed a dose response to EGF with half-maximal effect occurring at 3 nM. The alteration in the extent of 125I-EGF internalization did not require extended treatment with high concentrations of the hormone. When the internalization of picomolar versus nanomolar concentrations of EGF were compared, the lower concentrations of 125I-EGF were more completely internalized than the higher concentrations of radioligand. These data are consistent with the hypothesis that occupation of the EGF receptor by hormone rapidly leads to the activation of cellular processes which effectively desensitize the system to further ligand-induced internalization. The decrease in the extent of ligand internalization occurred in cells in which the protein kinase C (Ca2+/phospholipid-dependent enzyme) activity had been down-regulated by prolonged treatment with 12-O-tetradecanoyl-phorbol-13-acetate implying that the desensitization process is independent of protein kinase C. However, the effects of EGF on the extent of hormone internalization could be mimicked by the addition of A23187 and could be prevented by pretreatment of the cells with calmodulin antagonists suggesting the possibility that Ca2+-calmodulin is involved in the regulation of EGF receptor internalization in A431 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号