首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of massive small bowel resection (MSBR) and jejuno-ileal bypass (JIB) on the enteroinsular axis in rats was compared. Glucose levels after an oral glucose tolerance test were determined in MSBR, JIB and control animals. The response of the beta-cell mass to glucose and gastric inhibitory polypeptide (GIP) was established in the same animals using the isolated perfused pancreas model. Immunocytochemical and morphological studies were performed to monitor the adaptive changes seen in the intestine of these animals. The glucose response to the oral glucose load was blunted in both test groups with the fasting GIP levels in the JIB group being elevated and the MSBR group being reduced. The response of the isolated perfused pancreas to GIP showed a marked (70%) reduction of insulin release in the JIB rats and a slight but non-significant reduction in the MSBR rats. In both groups the insulin response to glucose alone appeared normal. The area of the pancreatic islets and the percentage of the total area consisting of the four islet cell types (B, A, D, PP) were unchanged. In the intestine the GIP cells were markedly reduced in number in the jejunum of the functional intestine of the JIB rats and the jejunum from the MSBR rats. The GIP cells in the jejunum of the bypass loop did not differ from the control jejunum. The results indicate that the high basal GIP levels seen in the JIB rats were the result of GIP secreted from the blind loop. This study also confirmed the decreased sensitivity of the beta-cells to GIP after JIB while indicating that MSBR has little if any effect on the response of the beta-cell to GIP. These data presented further evidence that the high basal GIP levels were causally related to the decreased insulin response in the JIB rats.  相似文献   

2.
The effect of 6 days of total parenteral nutrition (TPN) on the enteroinsular axis was studied in vivo and in vitro in the rat. During the TPN period, blood samples were taken from control and TPN animals to determine the comparative pattern of GIP release. Glucose, insulin and GIP responses to oral glucose (OGTT) were compared in TPN and control rats. The effect of glucose and GIP on insulin release from the isolated perfused pancreas of the same animals was investigated to determine if TPN altered the sensitivity of the beta cell. In conjunction with these studies the number and distribution of GIP-containing cells were compared in control and TPN animals. TPN resulted in no change in basal levels of glucose, insulin and IR-GIP. An exaggerated insulin response to OGTT occurred after TPN whereas the glucose response was reduced. The IR-GIP response to glucose was normal following TPN. The isolated perfused pancreas showed a 30% increase in insulin release in response to GIP after TPN. The insulin response to glucose appeared normal as did the number and distribution of GIP cells. Fluctuations in GIP and insulin levels in control animals were diurnal in nature, whereas IR-GIP levels in TPN animals remained near fasting levels. It was hypothesized that the increase in beta cell sensitivity to GIP may be causally connected to the exposure of the pancreas to chronically low levels of GIP during TPN.  相似文献   

3.
Although it is agreed that autoimmune destruction of pancreatic islets in diabetic BB rats is rapid, reports of endocrine cell content of islets from BB diabetic rats at the time of onset of diabetes vary considerably. Because of the rapid onset of the disease (hours) and the attendant changes in islet morphology and insulin secretion, it was the aim of this study to compare islet beta-cell numbers to other islet endocrine cells as close to the time of onset of hyperglycemia as possible (within 12 h). As it has been reported that hyperglycemia renders the beta cell insensitive to glucose, the early effects of different levels of insulin therapy (well-controlled vs. poorly controlled glycemia) on islet morphology and insulin secretion were examined. When measured within 12 h of onset, insulin content of BB diabetic islets, measured by morphometric analysis or pancreatic extraction, was 60% of insulin content of control islets. Despite significant amounts of insulin remaining in the pancreas, 1-day diabetic rats exhibited fasting hyperglycemia and were glucose intolerant. The insulin response from the isolated perfused pancreas to glucose and the glucose-dependent insulinotropic hormone, gastric inhibitory polypeptide (GIP), was reduced by 95%. Islet content of other endocrine peptides, glucagon, somatostatin, and pancreatic polypeptide, was normal at onset and at 2 weeks post onset. A group of diabetic animals, maintained in a hyperglycemic state for 7 days with low doses of insulin, were compared with a group kept normoglycemic by appropriate insulin therapy. No insulin could be detected in islets of poorly controlled diabetics, while well-controlled animals had 30% of the normal islet insulin content.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The actions of gastric inhibitory polypeptide (GIP) on insulin release from the isolated perfused rat pancreas were compared with those of pure secretin and cholecystokinin (CCK). At dose levels physiologically achievable for GIP (1 ng/mL perfusate), infusions of CCK stimulated significant insulin release both on a weight (1 ng/mL) and a molar (770 pg/mL) basis. Although 50% as potent as GIP on a weight basis and 43% as potent on a molar basis, the insulin response to CCK was multiphasic and sustained for the duration of the infusion. The action of CCK, like that of GIP, was glucose dependent yielding no significant insulin release at a low perfusate glucose concentration (80 mg/dL). Irrespective of perfusate glucose concentration or dose (1 or 5 ng/mL), secretin failed to stimulate significant release of insulin from the perfused pancreas. It was concluded that secretin is ineffective as an incretin and that a physiological role for CCK in an enteroinsular axis awaits accurate measurement of circulating levels of immunoreactive CCK.  相似文献   

5.
6.
The incretin hormones, glucose dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1), potentiate insulin secretion and are responsible for the majority of insulin secretion that occurs after a meal. They may also, however, have a fundamental role in pancreatic beta cell development and function, independently of their role in potentiating insulin secretion after a meal. This has led to observations that a loss of GIP or GLP-1 action affects normal beta cell function, however each one of the incretin hormones may compensate when the action of the other is lost and therefore the overall impact of the incretin hormones on beta cell function is not known. We therefore utilized a mouse line deficient in both the GLP-1 and GIP receptor genes, the double incretin receptor knockout (DIRKO), to determine the consequences of a lifelong, complete lack of incretin hormone action on beta cell function, in vivo, in intact animals. We found that DIRKO mice displayed impaired glucose tolerance and insulin secretion in response to both oral glucose and mixed meal tolerance tests compared to wild-type mice. Assessment of beta cell function using the hyperglycemic clamp technique revealed an 80% decrease in first phase insulin response in DIRKO mice, but a normal second phase insulin secretion. A similar decline was seen when wild-type mice were given acute intravenous injection of glucose together with the GLP-1 receptor antagonist Ex9-39. Ex vivo assessments of the pancreas revealed significantly fewer islets in the pancreata of DIRKO mice despite no differences in total pancreatic mass. Insulin secretion from isolated islets of DIRKO mice was impaired to a similar extent to that seen during the hyperglycemic clamp. Insulin secretion in wild-type islets was impaired by acute treatment with Ex9-39 to a similar extent as the in vivo intravenous glucose tolerance tests. In conclusion, a loss of the action of both incretin hormones results in direct impairment of beta cell function both in vivo and in vitro in a process that appears to be independent of the intestinally secreted incretin hormones. We therefore conclude that the incretin hormones together significantly impact both beta-cell function and beta-cell development.  相似文献   

7.
Triiodothyronine induced hyperthyroidism caused significantly elevated basal and stimulated glucose and insulin levels in rats. The release of Gastric Inhibitory Polypeptide (GIP) following an oral glucose load was not significantly different between euthyroid and hyperthyroid rats. The insulin response, however, was significantly higher in hyperthyroid rats. Following intravenous glucose hyperthyroid rats showed a diminished insulin response when compared with euthyroid rats but intravenous infusion of glucose together with GIP caused a significantly higher insulin response in hyperthyroid rats. It is hypothesized that in hyperthyroidism there is an increased sensitivity to the insulinotropic action of GIP and that this mechanism could emphasize the importance of the enteroinsular axis in pathophysiological states.  相似文献   

8.
We have previously demonstrated an impaired insulin response to intraperitoneal glucose and arginine by the transplantable NEDH rat insulinoma. The nature of this tumour B-cell defect has been further studied by investigating the response of insulinoma-bearing rats to intravenous and intragastric glucose. Intravenous glucose failed to stimulate plasma immunoreactive insulin (IRI) above high basal levels (14.5 +/- 1.1 micrograms/L). However, significant elevation of the plasma IRI concentration was observed following an intragastric glucose load (17.1 +/- 1.5 micrograms/L; P less than 0.02). In view of the different effects of oral and intravenous glucose on insulin secretion in the RIN, implicating an involvement of incretin factors from the gut, the response of the tumour to GIP was investigated. Plasma IRI concentrations rose significantly in these animals (20.6 +/- 2.5 micrograms/L at 5 min, P less than 0.02). We conclude that (a) the transplantable rat insulinoma is responsive to GIP, and (b) that whilst the tumour B-cell has lost its insulin responsiveness to hyperglycaemia produced by intraperitoneal or intravenous glucose, it retains its ability to respond to intragastric glucose. This could be due to incretin factors from the gut of which GIP is currently the strongest candidate.  相似文献   

9.
A high level of nitric oxide (NO) produced by inducible NO synthase (iNOS) is involved in pancreatic beta-cell dysfunction and apoptosis. In the present study, we examined whether iNOS is also expressed in beta cells after induction of acute pancreatitis (AP) in the rat. Pancreatic islets taken from AP animals and incubated for 60 min in the presence of 20.0 mmol/l glucose showed a decreased insulin secretory response to glucose. The basal insulin release at 1.0 mmol/l glucose was also moderately reduced. Experiments on the dynamics of insulin secretion from perfused pancreas revealed an impairment of both first and second phase of glucose-stimulated insulin release after the induction of AP. Confocal microscopy demonstrated that most of the beta cells in pancreas of rat with AP expressed strong immunoreactivity for iNOS. This was further confirmed by biochemical and Western blot analysis that showed a marked increase in iNOS protein expression and enzyme activity concomitant with a modest reduction in the cNOS protein and activity. Although the mechanisms underlying the defective insulin secretory response of beta cells seen during the early stage of AP are complex, the present finding suggests that the expression of iNOS and a marked iNOS-derived NO production in the beta cells may play at least a contributory role in the impairment of beta-cell function.This study was supported by the Swedish Medical Research Council (14X-4286), the Swedish Diabetes Association, and the Crafoord, Albert Påhlsson and Magnus Bergvall Foundations  相似文献   

10.
Insulin secretion from pieces of pancreas of rabbits aged 6 weeks or 1 day, or of 24-day foetuses was studied in vitro in response to glucose, glucagon and theophylline. Glucose did not stimulate insulin release from foetal pancreas but was effective postnatally. Glucagon in medium containing 3.0 mg glucose/ml stimulated insulin secretion equally at each stage of development. Theophylline in medium containing 0.6 or 3.0 mg glucose/ml stimulated insulin secretion from foetal pancreas but was effective on postnatal pancreas only in the presence of 3.0 mg glucose/ml. Glucose potentiated the action of theophylline on the foetal β cell and theophylline potentiated the action of glucose on the adult β cell.  相似文献   

11.
Changes in hepatic insulin clearance can occur after oral glucose or meal ingestion. This has been attributed to the secretion and action of gastric inhibitory polypeptide (GIP) and glucagon-like peptide (GLP)-1. Given the recent availability of drugs based on incretin hormones, such clearance effects may be important for the future treatment of type 2 diabetes. Therefore, we determined insulin clearance in response to endogenously secreted and exogenously administered GIP and GLP-1. Insulin clearance was estimated from the molar C-peptide-to-insulin ratio calculated at basal conditions and from the respective areas under the curve after glucose, GIP, or GLP-1 administration. Oral glucose administration led to an approximately 60% reduction in the C-peptide-to-insulin ratio (P < 0.0001), whereas intravenous glucose administration had no effect (P = 0.09). The endogenous secretion of GIP or GLP-1 was unrelated to the changes in insulin clearance. The C-peptide-to-insulin ratio was unchanged after the intravenous administration of GIP or GLP-1 in the fasting state (P = 0.27 and P = 0.35, respectively). Likewise, infusing GLP-1 during a meal course did not alter insulin clearance (P = 0.87). An inverse nonlinear relationship was found between the C-peptide-to-insulin ratio and the integrated insulin levels after oral and during intravenous glucose administration. Insulin clearance is reduced by oral but not by intravenous glucose administration. Neither GIP nor GLP-1 has significant effects on insulin extraction. An inverse relationship between insulin concentrations and insulin clearance suggests that the secretion of insulin itself determines the rate of hepatic insulin clearance.  相似文献   

12.
The priming effect of glucagon-like peptide-1 (7-36) amide (GLP-1 (7-36) amide), glucose-dependent insulin-releasing polypeptide (GIP) and cholecystokinin-8 (CCK-8) on glucose-induced insulin secretion from rat pancreas was investigated. The isolated pancreas was perfused in vitro with Krebs-Ringer bicarbonate buffer containing 2.8 mmol/l glucose. After 10 min this medium was supplemented with GLP-1 (7-36) amide, GIP or CCK-8 (10, 100, 1000 pmol/l) for 10 min. After an additional 10 min period with 2.8 mmol/l glucose alone, insulin secretion was stimulated with buffer containing 10 mmol/l glucose for 44 min. In control experiments the typical biphasic insulin response to 10 mmol/l glucose occurred. Pretreatment of the pancreas with GIP augmented insulin secretion: 10 pmol/l GIP enhanced only the first phase of the secretory response to 10 mmol/l glucose; 100 and 1000 pmol/l GIP stimulated both phases of hormone secretion. After exposure to CCK-8, enhanced insulin release during the first (at 10 and 1000 pmol/l CCK-8) and the second phase (at 1000 pmol/l) was observed. Priming with 100 pmol/l GLP-1 (7-36) amide significantly amplified the first and 1000 pmol/l GLP-1 (7-36) amide both secretion periods, 10 pmol/l GLP-1 (7-36) amide had no significant effect. All three peptide hormones influenced the first, quickly arising secretory response more than the second phase. Priming with forskolin (30 mM) enhanced the secretory response to 10 mM glucose plus 0.5 nM GLP-1 (7-36) amide 4-fold. With a glucose-responsive B-cell line (HIT cells), we investigated the hypothesis that the priming effect of GLP-1 (7-36) amide is mediated by the adenylate cyclase system. Priming with either IBMX (0.1 mM) or forskolin (2.5 microM) enhanced the insulin release after a consecutive glucose stimulation (5 mM). This effect was pronounced when GLP-1 (7-36) amide (100 pM) was added during glucose stimulation. Priming capacities of intestinal peptide hormones may be involved in the regulation of postprandial insulin release. The incretin action of these hormones can probably, at least in part, be explained by these effects. The priming effect of GLP-1 (7-36) amide is most likely mediated by the adenylate cyclase system.  相似文献   

13.
Glucose-dependent insulinotropic polypeptide (GIP) is a key hormone of the enteroinsular axis. The present study was designed to assess the metabolic effects in healthy mice of long term activation of the GIP receptor by N-AcGIP(LysPAL37), a potent long-acting GIP receptor agonist. Daily injection of N-AcGIP(LysPAL37) (25 nmol/kg body weight) for 14 days had no significant effect on food intake, body weight, glycated hemoglobin levels, non-fasting plasma glucose and insulin concentrations compared to saline treated controls. No significant differences in post-prandial plasma glucose and insulin concentrations were observed between the two groups following 15 min feeding. However, after 14 days, the glycemic response to intraperitoneal (i.p.) glucose was significantly improved in the N-AcGIP(LysPAL37) treated mice compared to controls (P < 0.01). In keeping with this, glucose-mediated insulin secretion was significantly enhanced in the N-AcGIP(LysPAL37) treated group (P < 0.05). No changes in insulin sensitivity or pancreatic insulin content of the N-AcGIP(LysPAL37) treated mice were detected. No adverse reactions were noted and the effects of N-AcGIP(LysPAL37) were reversed by 14 days cessation of treatment. These data indicate that long term activation of the GIP receptor by daily treatment with N-AcGIP(LysPAL37) improved glucose tolerance due to enhancement of pancreatic beta cell glucose responsiveness and insulin secretion.  相似文献   

14.
Recent research suggests that long-term ablation of gastric inhibitory polypeptide (GIP) receptor signalling can reverse or prevent many of the metabolic abnormalities associated with dietary and genetically induced obesity-diabetes. The present study was designed to assess the sub-chronic effects of passive or active immunisation against GIP in ob/ob mice. Initial acute administration of GIP antibody together with oral glucose in ob/ob mice significantly increased the glycaemic excursion compared to controls (p<0.05). This was associated with a significant reduction (p<0.05) in the overall glucose-mediated insulin response. However, sub-chronic passive GIP immunisation was not associated with any changes in body weight, food intake or metabolic control. In contrast, active immunisation against GIP for 56 days in young ob/ob mice resulted in significantly (p<0.05) reduced circulating plasma glucose concentrations on day 56 compared to controls. There was a tendency for decreased circulating insulin in GIP immunised mice. The glycaemic response to intraperitoneal glucose was correspondingly improved (p<0.05) in mice immunised against GIP. Glucose-stimulated insulin levels were not significantly different from controls. Furthermore, insulin sensitivity was similar in mice immunised against GIP and respective controls. Overall, the results reveal that active, as opposed to passive, immunisation against GIP improves blood glucose control ob/ob mice.  相似文献   

15.
Plasma glucose and insulin have been studied during lethargy and spontaneous arousal of hibernating edible dormouse. During lethargy blood glucose was low while plasma insulin remained at the same level as in other seasons. Plasma glucose and insulin did not fluctuate along the phase of lethargy. During spontaneous arousal plasma insulin rose strongly from the 17 degrees C stage, reaching the higher values at 26 degrees C while blood glucose was only 85 mg/100 ml, then decreased at 37 degrees C. The effect of glucose and temperature on insulin secretion was studied using perfused pancreas preparation from hibernating edible dormice. During the rewarming of the edible dormouse pancreas the insulin release did not occur in response to the absolute extracellular glucose level but occurred in response to a B cell membrane phenomenon which was dependent on the changing rate of glucose level. The effect of glucose and temperature on insulin secretion from perfused pancreas was compared between edible dormouse and homeotherm permanent, the rat. The B cell response to glucose of the dormouse pancreas increased up to 15 degrees C whereas that of the rat only from 25 degrees C. The dormouse insulin secretion reached a peak value at the 30 degrees C of temperature, whereas that of the rat progressively increased until 37 degrees C. These results showed that some biochemical adjustment or process of acclimatization took place in the B cells of the hibernators.  相似文献   

16.
Bypass of the foregut following Roux-en-Y gastric bypass (RYGB) surgery results in altered nutrient absorption, which is proposed to underlie the improvement in glucose tolerance and insulin sensitivity. We conducted a prospective crossover study in which a mixed meal was delivered orally before RYGB (gastric) and both orally (jejunal) and by gastrostomy tube (gastric) postoperatively (1 and 6 wk) in nine subjects. Glucose, insulin, and incretin responses were measured, and whole-body insulin sensitivity was estimated with the insulin sensitivity index composite. RYGB resulted in an improved glucose, insulin, and glucagon-like peptide-1 (GLP-1) area under the curve (AUC) in the first 6 wk postoperatively (all P ≤ 0.018); there was no effect of delivery route (all P ≥ 0.632) or route × time interaction (all P ≥ 0.084). The glucose-dependent insulinotropic polypeptide (GIP) AUC was unchanged after RYGB (P = 0.819); however, GIP levels peaked earlier after RYGB with jejunal delivery. The ratio of insulin AUC to GLP-1 and GIP AUC decreased after surgery (P =.001 and 0.061, respectively) without an effect of delivery route over time (both P ≥ 0.646). Insulin sensitivity improved post-RYGB (P = 0.001) with no difference between the gastric and jejunal delivery of the mixed meal over time (P = 0.819). These data suggest that exclusion of nutrients from the foregut with RYGB does not improve glucose tolerance or insulin sensitivity. However, changes in the foregut response post-RYGB due to lack of nutrient exposure cannot be excluded. Our findings suggest that foregut bypass may alter the incretin response by enhanced nutrient delivery to the hindgut.  相似文献   

17.
The role of the redox potential in insulin secretion by beta cells stimulated with high glucose was investigated using an in vitro pancreas perfusion system. To assess glycolytic flux the sum of fructose-1,6-P2 + triose-P was determined in pure beta cells microdissected from lyophilized sections of the isolated perfused pancreas quick frozen during the early insulin secretory response. L-Glycerol 3-phosphate and dihydroxyacetone phosphate were measured as indicators of the free cytosolic [NAD+]/[NADH] ratio and NADH and NADPH were also measured. Fructose-1,6-P2 + triose-P was increased in beta cells simultaneously with the onset of insulin secretion indicating an increase in glucose metabolism had occurred. The ratio of [dihydroxyacetone phosphate]/[L-glycerol 3-phosphate] increased simultaneously with the onset of insulin secretion. NADH content increased only after initiation of insulin secretion and NADPH levels remained unchanged during the early secretory response to high glucose. These data contradict the hypothesis that insulin secretion is triggered by a more reduced cytosolic redox state and instead indicate that insulin secretion is initiated by other metabolic coupling factor(s) generated in beta cells stimulated by high glucose.  相似文献   

18.
Male Wistar rats chronically (15 weeks) fed a sucrose-rich diet (SRD; 63% w/w) developed hypertriglyceridemia and impaired glucose homeostasis. Hearts from these animals were isolated and perfused using the Langendorff recirculating method. Glucose at levels similar to those found in the animal in vivo was used as the only exogenous substrate. The hearts were perfused for 30 minutes in the presence or absence of insulin (30 mU/mL) in the perfusion medium. In the absence of the hormone, glucose uptake was impaired and the glucose utilization was reduced, with a significant increase of lactate release. Glucose oxidation, which was estimated from the activation state of the enzyme pyruvate dehydrogenase complex (PDHc), was depressed mainly due to both an increase of PDH kinase and a decrease of PDHa (active form of PDHc) activities. Although the addition of insulin in the perfusion medium improved the above parameters, it was unable to normalize them. The present results suggest that at least two different mechanisms might contribute to insulin resistance and to the impaired glucose metabolism in the perfused hearts of the dyslipemic SRD-fed animals: (1) reduced basal and insulin-stimulated glucose uptake and its utilization or (2) increased availability and oxidation of lipids (low PDHa and high PDH kinase activities), which in turn decrease glucose uptake and utilization. Thus, this nutritional experimental model may be useful to study how impaired glucose homeostasis, increases plasma free fatty acid levels and hypertriglyceridemia could contribute to heart tissue malfunction.  相似文献   

19.
The incretins glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are gut hormones that act via the enteroinsular axis to potentiate insulin secretion from the pancreas in a glucose-dependent manner. Both GLP-1 receptor and GIP receptor knockout mice (GLP-1R(-/-) and GIPR(-/-), respectively) have been generated to investigate the physiological importance of this axis. Although reduced GIP action is a component of type 2 diabetes, GIPR-deficient mice exhibit only moderately impaired glucose tolerance. The present study was directed at investigating possible compensatory mechanisms that take place within the enteroinsular axis in the absence of GIP action. Although serum total GLP-1 levels in GIPR knockout mice were unaltered, insulin responses to GLP-1 from pancreas perfusions and static islet incubations were significantly greater (40-60%) in GIPR(-/-) than in wild-type (GIPR(+/+)) mice. Furthermore, GLP-1-induced cAMP production was also elevated twofold in the islets of the knockout animals. Pancreatic insulin content and gene expression were reduced in GIPR(-/-) mice compared with GIPR(+/+) mice. Paradoxically, immunocytochemical studies showed a significant increase in beta-cell area in the GIPR-null mice but with less intense staining for insulin. In conclusion, GIPR(-/-) mice exhibit altered islet structure and topography and increased islet sensitivity to GLP-1 despite a decrease in pancreatic insulin content and gene expression.  相似文献   

20.
Pancreatic islet cell vacuolization, hyperglycemia, and glucose intolerance develop in rats after oral administration of cyproheptadine (CPH). In order to determine whether these effects were associated with abnormal insulin secretion, pancreas segments from CPH-treated and control rats were compared for their ability to secrete insulin in response to several stimuli. Oral administration of CPH (45 mg/kg/day) to rats for 1 or 8 days inhibited glucose-mediated insulin secretion from pancreas segments obtained 3 and 24 hr after the last dose of the drug. Insulin secretion had returned to normal by 48 hr after drug administration. Intraperitoneal administration of the drug was less effective than oral administration in inhibiting in vitro insulin secretion. Other stimuli for insulin secretion (tolbutamide, glucagon, L-leucine, and dibutyryl 3',5'cyclic AMP), like glucose, were incapable of releasing normal amounts of insulin from pancreas segments of CPH-treated rats. CPH and a metabolite, desmethyl-CPH, inhibited glucose-stimulated insulin secretion when added in vitro to pancreas segments from control rats. This suggests that the inhibition of insulin secretion in pancreas segments taken from animals treated with CPH could be due, at least in part, to the presence of drug and its metabolite in the tissue. A previously observed reduction in the pancreatic content of insulin in CPH-treated rats may also contribute to the abnormal insulin release in animals given the drug.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号