共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Onifer SM Rabchevsky AG Scheff SW 《ILAR journal / National Research Council, Institute of Laboratory Animal Resources》2007,48(4):385-395
Devastating motor, sensory, and autonomic dysfunctions render long-term personal hardships to the survivors of traumatic spinal cord injury (SCI). The suffering also extends to the survivors' families and friends, who endure emotional, physical, and financial burdens in providing for necessary surgeries, care, and rehabilitation. After the primary mechanical SCI, there is a complex secondary injury cascade that leads to the progressive death of otherwise potentially viable axons and cells and that impairs endogenous recovery processes. Investigations of possible cures and of ways to alleviate the hardships of traumatic SCI include those of interventions that attenuate or overcome the secondary injury cascade, enhance the endogenous repair mechanisms, regenerate axons, replace lost cells, and rehabilitate. These investigations have led to the creation of laboratory animal models of the different types of traumatic human SCI and components of the secondary injury cascade. However, no particular model completely addresses all aspects of traumatic SCI. In this article, we describe adult rat SCI models and the motor, and in some cases sensory and autonomic, deficits that each produces. Importantly, as researchers in this area move toward clinical trials to alleviate the hardships of traumatic SCI, there is a need for standardized small and large animal SCI models as well as quantitative behavioral and electrophysiological assessments of their outcomes so that investigators testing various interventions can directly compare their results and correlate them with the molecular, biochemical, and histological alterations. 相似文献
3.
Background
Spinal cord injury is a major cause of long-term disability and has no current clinically accepted treatment. Leptin, an adipocyte-derived hormone, is best known as a regulator of food intake and energy expenditure. Interestingly, several studies have demonstrated that leptin has significant effects on proliferation and cell survival in different neuropathologies. Here, we sought to evaluate the role of leptin after spinal cord injury.Findings
Based on its proposed neuroprotective role, we have evaluated the effects of a single, acute intraparenchymal injection of leptin in a clinically relevant animal model of spinal cord injury. As determined by quantitative Real Time-PCR, endogenous leptin and the long isoform of the leptin receptor genes show time-dependent variations in their expression in the healthy and injured adult spinal cord. Immunohistochemical analysis of post-injury tissue showed the long isoform of the leptin receptor expression in oligodendrocytes and, to a lesser extent, in astrocytes, microglia/macrophages and neurons. Moreover, leptin administered after spinal cord injury increased the expression of neuroprotective genes, reduced caspase-3 activity and decreased the expression of pro-inflammatory molecules. In addition, histological analysis performed at the completion of the study showed that leptin treatment reduced microglial reactivity and increased caudal myelin preservation, but it did not modulate astroglial reactivity. Consequently, leptin improved the recovery of sensory and locomotor functioning.Conclusions
Our data suggest that leptin has a prominent neuroprotective and anti-inflammatory role in spinal cord damage and highlights leptin as a promising therapeutic agent. 相似文献4.
Hata K Fujitani M Yasuda Y Doya H Saito T Yamagishi S Mueller BK Yamashita T 《The Journal of cell biology》2006,173(1):47-58
Repulsive guidance molecule (RGM) is a protein implicated in both axonal guidance and neural tube closure. We report RGMa as a potent inhibitor of axon regeneration in the adult central nervous system (CNS). RGMa inhibits mammalian CNS neurite outgrowth by a mechanism dependent on the activation of the RhoA-Rho kinase pathway. RGMa expression is observed in oligodendrocytes, myelinated fibers, and neurons of the adult rat spinal cord and is induced around the injury site after spinal cord injury. We developed an antibody to RGMa that efficiently blocks the effect of RGMa in vitro. Intrathecal administration of the antibody to rats with thoracic spinal cord hemisection results in significant axonal growth of the corticospinal tract and improves functional recovery. Thus, RGMa plays an important role in limiting axonal regeneration after CNS injury and the RGMa antibody offers a possible therapeutic agent in clinical conditions characterized by a failure of CNS regeneration. 相似文献
5.
6.
7.
The dorsal root reflex in isolated mammalian spinal cord 总被引:1,自引:0,他引:1
J Bagust G A Kerkut N I Rakkah 《Comparative biochemistry and physiology. A, Comparative physiology》1989,93(1):151-160
1. The dorsal root reflex has been investigated in an isolated preparation of adult mammalian spinal cord. 2. Both evoked and spontaneous activity can be recorded from the cord in the dorsal spinal roots. 3. The spontaneous activity has a characteristic pattern of firing in bursts of action potentials. Spontaneous and evoked activity are optimum at temperatures between 25 and 27 degrees C; little activity can be detected above 35 degrees C. 4. The spontaneous dorsal root activity has been shown to be correlated with negative potentials in the dorsal horn of the cord, and intracellular recordings made from primary afferent fibres have shown spontaneous primary afferent depolarizations (PAD) which underlie the generation of the spontaneous dorsal root activity. 5. The evoked dorsal root reflex has been shown to spread up to 16 spinal segments both rostrally and caudally from the stimulated dorsal root, and to the contralateral side of the cord. 6. The spontaneous dorsal root activity in widely separated segments has been shown by cross-correlation analysis to be linked both ipsi- and contra-laterally. 7. The significance of such a widespread system for the generation of PAD is discussed. 相似文献
8.
BMP inhibition enhances axonal growth and functional recovery after spinal cord injury 总被引:1,自引:0,他引:1
Bone morphogenetic proteins (BMPs) are multifunctional growth factors that belong to the transforming growth factor-β superfamily. BMPs regulate several crucial aspects of embryonic development and organogenesis. The reemergence of BMPs in the injured adult CNS suggests their involvement in the pathogenesis of the lesion. Here, we demonstrate that BMPs are potent inhibitors of axonal regeneration in the adult spinal cord. The expression of BMP-2/4 is elevated in oligodendrocytes and astrocytes around the injury site following spinal cord contusion. Intrathecal administration of noggin – a soluble BMP antagonist—leads to enhanced locomotor activity and reveals significant regrowth of the corticospinal tract after spinal cord contusion. Thus, BMPs play a role in inhibiting axonal regeneration and limiting functional recovery following injury to the CNS. 相似文献
9.
《Cell cycle (Georgetown, Tex.)》2013,12(9):1782-1795
Traumatic spinal cord injury (SCI) causes tissue loss and associated neurological dysfunction through mechanical damage and secondary biochemical and physiological responses. We have previously described the pathobiological role of cell cycle pathways following rat contusion SCI by examining the effects of early intrathecal cell cycle inhibitor treatment initiation or gene knockout on secondary injury. Here, we delineate changes in cell cycle pathway activation following SCI and examine the effects of delayed (24 h) systemic administration of flavopiridol, an inhibitor of major cyclin-dependent kinases (CDKs), on functional recovery and histopathology in a rat SCI contusion model. Immunoblot analysis demonstrated a marked upregulation of cell cycle-related proteins, including pRb, cyclin D1, CDK4, E2F1 and PCNA, at various time points following SCI, along with downregulation of the endogenous CDK inhibitor p27. Treatment with flavopiridol reduced induction of cell cycle proteins and increased p27 expression in the injured spinal cord. Functional recovery was significantly improved after SCI from day 7 through day 28. Treatment significantly reduced lesion volume and the number of Iba-1+ microglia in the preserved tissue and increased the myelinated area of spared white matter as well as the number of CC1+ oligodendrocytes. Furthermore, flavopiridol attenuated expression of Iba-1 and glactin-3, associated with microglial activation and astrocytic reactivity by reduction of GFAP, NG2, and CHL1 expression. Our current study supports the role of cell cycle activation in the pathophysiology of SCI and by using a clinically relevant treatment model, provides further support for the therapeutic potential of cell cycle inhibitors in the treatment of human SCI. 相似文献
10.
Junfang Wu Bogdan A. Stoica Michael Dinizo Ahdeah Pajoohesh-Ganji Chunshu Piao Alan I. Faden 《Cell cycle (Georgetown, Tex.)》2012,11(9):1782-1795
Traumatic spinal cord injury (SCI) causes tissue loss and associated neurological dysfunction through mechanical damage and secondary biochemical and physiological responses. We have previously described the pathobiological role of cell cycle pathways following rat contusion SCI by examining the effects of early intrathecal cell cycle inhibitor treatment initiation or gene knockout on secondary injury. Here, we delineate changes in cell cycle pathway activation following SCI and examine the effects of delayed (24 h) systemic administration of flavopiridol, an inhibitor of major cyclin-dependent kinases (CDKs), on functional recovery and histopathology in a rat SCI contusion model. Immunoblot analysis demonstrated a marked upregulation of cell cycle-related proteins, including pRb, cyclin D1, CDK4, E2F1 and PCNA, at various time points following SCI, along with downregulation of the endogenous CDK inhibitor p27. Treatment with flavopiridol reduced induction of cell cycle proteins and increased p27 expression in the injured spinal cord. Functional recovery was significantly improved after SCI from day 7 through day 28. Treatment significantly reduced lesion volume and the number of Iba-1+ microglia in the preserved tissue and increased the myelinated area of spared white matter as well as the number of CC1+ oligodendrocytes. Furthermore, flavopiridol attenuated expression of Iba-1 and glactin-3, associated with microglial activation and astrocytic reactivity by reduction of GFAP, NG2, and CHL1 expression. Our current study supports the role of cell cycle activation in the pathophysiology of SCI and by using a clinically relevant treatment model, provides further support for the therapeutic potential of cell cycle inhibitors in the treatment of human SCI. 相似文献
11.
12.
Repairing trauma to the central nervous system by replacement of glial support cells is an increasingly attractive therapeutic strategy. We have focused on the less-studied replacement of astrocytes, the major support cell in the central nervous system, by generating astrocytes from embryonic human glial precursor cells using two different astrocyte differentiation inducing factors. The resulting astrocytes differed in expression of multiple proteins thought to either promote or inhibit central nervous system homeostasis and regeneration. When transplanted into acute transection injuries of the adult rat spinal cord, astrocytes generated by exposing human glial precursor cells to bone morphogenetic protein promoted significant recovery of volitional foot placement, axonal growth and notably robust increases in neuronal survival in multiple spinal cord laminae. In marked contrast, human glial precursor cells and astrocytes generated from these cells by exposure to ciliary neurotrophic factor both failed to promote significant behavioral recovery or similarly robust neuronal survival and support of axon growth at sites of injury. Our studies thus demonstrate functional differences between human astrocyte populations and suggest that pre-differentiation of precursor cells into a specific astrocyte subtype is required to optimize astrocyte replacement therapies. To our knowledge, this study is the first to show functional differences in ability to promote repair of the injured adult central nervous system between two distinct subtypes of human astrocytes derived from a common fetal glial precursor population. These findings are consistent with our previous studies of transplanting specific subtypes of rodent glial precursor derived astrocytes into sites of spinal cord injury, and indicate a remarkable conservation from rat to human of functional differences between astrocyte subtypes. In addition, our studies provide a specific population of human astrocytes that appears to be particularly suitable for further development towards clinical application in treating the traumatically injured or diseased human central nervous system. 相似文献
13.
P2X7 receptor inhibition improves recovery after spinal cord injury 总被引:21,自引:0,他引:21
Wang X Arcuino G Takano T Lin J Peng WG Wan P Li P Xu Q Liu QS Goldman SA Nedergaard M 《Nature medicine》2004,10(8):821-827
Secondary injury exacerbates the extent of spinal cord insults, yet the mechanistic basis of this phenomenon has largely been unexplored. Here we report that broad regions of the peritraumatic zone are characterized by a sustained process of pathologic, high ATP release. Spinal cord neurons expressed P2X7 purine receptors (P2X7R), and exposure to ATP led to high-frequency spiking, irreversible increases in cytosolic calcium and cell death. To assess the potential effect of P2X7R blockade in ameliorating acute spinal cord injury (SCI), we delivered P2X7R antagonists OxATP or PPADS to rats after acute impact injury. We found that both OxATP and PPADS significantly improved functional recovery and diminished cell death in the peritraumatic zone. These observations demonstrate that SCI is associated with prolonged purinergic receptor activation, which results in excitotoxicity-based neuronal degeneration. P2X7R antagonists inhibit this process, reducing both the histological extent and functional sequelae of acute SCI. 相似文献
14.
15.
16.
Shen He Wu Shuyu Chen Xi Xu Bai Ma Dezun Zhao Yannan Zhuang Yan Chen Bing Hou Xianglin Li Jiayin Cao Yudong Fu Xianyong Tan Jun Yin Wen Li Juan Meng Li Shi Ya Xiao Zhifeng Jiang Xingjun Dai Jianwu 《中国科学:生命科学英文版》2020,63(12):1879-1886
Science China Life Sciences - Spinal cord injury (SCI), especially complete transected SCI, leads to loss of cells and extracellular matrix and functional impairments. In a previous study, we... 相似文献
17.
Neutralization of CD95 ligand promotes regeneration and functional recovery after spinal cord injury
Demjen D Klussmann S Kleber S Zuliani C Stieltjes B Metzger C Hirt UA Walczak H Falk W Essig M Edler L Krammer PH Martin-Villalba A 《Nature medicine》2004,10(4):389-395
The clinical outcome of spinal cord injury (SCI) depends in part on the extent of secondary damage, to which apoptosis contributes. The CD95 and tumor necrosis factor (TNF) ligand/receptor systems play an essential role in various apoptotic mechanisms. To determine the involvement of these ligands in SCI-induced damage, we neutralized the activity of CD95 ligand (CD95L) and/or TNF in spinal cord-injured mice. Therapeutic neutralization of CD95L, but not of TNF, significantly decreased apoptotic cell death after SCI. Mice treated with CD95L-specific antibodies were capable of initiating active hind-limb movements several weeks after injury. The improvement in locomotor performance was mirrored by an increase in regenerating fibers and upregulation of growth-associated protein-43 (GAP-43). Thus, neutralization of CD95L promoted axonal regeneration and functional improvement in injured adult animals. This therapeutic strategy may constitute a potent future treatment for human spinal injury. 相似文献
18.
19.
cAMP and Schwann cells promote axonal growth and functional recovery after spinal cord injury 总被引:22,自引:0,他引:22
Pearse DD Pereira FC Marcillo AE Bates ML Berrocal YA Filbin MT Bunge MB 《Nature medicine》2004,10(6):610-616
Central neurons regenerate axons if a permissive environment is provided; after spinal cord injury, however, inhibitory molecules are present that make the local environment nonpermissive. A promising new strategy for inducing neurons to overcome inhibitory signals is to activate cAMP signaling. Here we show that cAMP levels fall in the rostral spinal cord, sensorimotor cortex and brainstem after spinal cord contusion. Inhibition of cAMP hydrolysis by the phosphodiesterase IV inhibitor rolipram prevents this decrease and when combined with Schwann cell grafts promotes significant supraspinal and proprioceptive axon sparing and myelination. Furthermore, combining rolipram with an injection of db-cAMP near the graft not only prevents the drop in cAMP levels but increases them above those in uninjured controls. This further enhances axonal sparing and myelination, promotes growth of serotonergic fibers into and beyond grafts, and significantly improves locomotion. These findings show that cAMP levels are key for protection, growth and myelination of injured CNS axons in vivo and recovery of function. 相似文献
20.
In order to obtain further evidence of putative neurotransmitters in primary sensory neurons and interneurons in the dorsal spinal cord, we have studied the effects of unilateral section of dorsal roots and unilateral occlusion of the dorsal spinal artery on cholinergic enzyme activity and on selected amino acid levels in the spinal cord. One week after sectioning dorsal roots from caudal cervical (C7) to cranial thoracic (T2) levels, the specific activity of choline acetyltransferase (ChAT) was significantly decreased and acetylcholinesterase (AChE) showed a tendency to decrease in the dorsal quadrant on the operated side of the spinal cord. Dorsal root sectioning had little effect on the levels of free glutamic acid or other amino acids in the dorsal spinal cord. These results suggest that primary sensory neurons may include some cholinergic axons, and that levels of putative amino acid transmitters are not regulated by materials supplied by axonal transport from the dorsal root ganglia. By contrast, one week following unilateral occlusion of the dorsal spinal artery, the activities of ChAT and AChE were unchanged in the operated quadrant of the spinal cord, while decreases of Asp, Glu, and GABA, and an increase in Tau were detected. These findings are consistent with the proposals that such amino acids, but not ACh, may function as neurotransmitter candidates in interneurons of the dorsal spinal cord.Abbreviation used ACh acetylcholine - AChE acetylcholinesterase - Asp aspartic acid - ChAT choline acetyltransferase - GABA -aminobutyric acid - Glu glutamic acid - Gly glycine - SP substance P - Tau taurine 相似文献