首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
T Watanabe  S Hayashi    H C Wu 《Journal of bacteriology》1988,170(9):4001-4007
Export of the outer membrane lipoprotein in Escherichia coli was examined in conditionally lethal mutants that were defective in protein export in general, including secA, secB, secC, and secD. Lipoprotein export was affected in a secA(Ts) mutant of E. coli at the nonpermissive temperature; it was also affected in a secA(Am) mutant of E. coli at the permissive temperature, but not at the nonpermissive temperature. The export of lipoprotein occurred normally in E. coli carrying a null secB::Tn5 mutation; on the other hand, the export of an OmpF::Lpp hybrid protein, consisting of the signal sequence plus 11 amino acid residues of mature OmpF and mature lipoprotein, was affected by the secB mutation. The synthesis of lipoprotein was reduced in the secC mutant at the nonpermissive temperature, as was the case for synthesis of the maltose-binding protein, while the synthesis of OmpA was not affected. Lipoprotein export was found to be slightly affected in secD(Cs) mutants at the nonpermissive temperature. These results taken together indicate that the export of lipoprotein shares the common requirements for functional SecA and SecD proteins with other exported proteins, but does not require a functional SecB protein. SecC protein (ribosomal protein S15) is required for the optimal synthesis of lipoprotein.  相似文献   

2.
To define additional components of the export machinery of Escherichia coli, I have isolated extragenic suppressors of a mutant [secA(Ts)] that is temperature sensitive for growth and secretion at 37 degrees C. Suppressors that restored growth at 37 degrees C, but that rendered the cell cold sensitive for growth at 28 degrees C, were obtained. The suppressor mutations fall into at least seven loci, two of which (prlA and secC) have been previously implicated in protein secretion. The five remaining loci (ssaD, ssaE, ssaF, ssaG, and ssaH) have been mapped by P1 transduction and appear to define new genes in E. coli. All of the suppressor mutations allow both enhanced growth and protein secretion of the secA(Ts) mutant at 37 degrees C, but not 42 degrees C, indicating a continued requirement for SecA protein. Strains carrying solely the cold-sensitive mutations show reduced levels of certain periplasmic proteins when grown at low temperatures. In at least one case, that of maltose-binding protein, this defect is at the level of synthesis of the protein. Since mutants in any of seven genes as well as secA amber mutants halt or reduce the synthesis of an exported protein, it appears that E. coli may possess a general and complex mechanism for coupling protein synthesis and secretion.  相似文献   

3.
Summary We previously demonstrated that the E. coli protein, H-NS (or Hla), encoded by the gene hns (or osmZ or bglY preferentially recognizes curved DNA sequences in vitro. In order to gain further insight into the complex function of H-NS and the significance of DNA curvature, we constructed a structurally defined hns deletion mutant on the E. coli chromosome. The hns deletion mutant thus obtained showed a variety of phenotypes previously for other lesions in hns. It was further demonstrated that, in this hns deletion background, numerous E. coli cellular proteins were either strongly expressed or remarkably repressed, as compared to their expression levels in wild-type cells.  相似文献   

4.
Bacillus subtilis, likeEscherichia coli, possesses several sets of genes involved in the utilization of-glucosides. InE. coli, all these genes are cryptic, including the genes forming thebgl operon, thus leading to a Bgl phenotype. We screened forB. subtilis chromosomal DNA fragments capable of reverting the Bgl+ phenotype associated with anE. coli hns mutant to the Bgl wild-type phenotype. OneB. subtilis chromosomal fragment having this property was selected. It contained a putative Ribonucleic AntiTerminator binding site (RAT sequence) upstream from thebglP gene. Deletion studies as well as subcloning experiments allowed us to prove that the putativeB. subtilis bglP RAT sequence was responsible for the repression of theE. coli bgl operon. We propose that this repression results from the titration of the BglG antiterminator protein ofE. coli bgl operon by our putativeB. subtilis bglP RAT sequence. Thus, we report evidence for a new cross interaction between heterologous RAT-antiterminator protein pairs.  相似文献   

5.
Summary A DNA fragment that codes for the 364 amino-terminal amino acid residues of a putative Bacillus subtilis SecA homologue has been cloned using the Escherichia coli SecA gene as a probe. The deduced amino acid sequence showed 58% identity to the aminoterminus of the E. coli SecA protein. A DNA fragment which codes for 275 amino-terminal amino acid residues of the B. subtilis SecA homologue was expressed in E. coli and the corresponding gene product was shown to be recognized by anti-E. coli SecA antibodies. This polypeptide, although only about 30% the size of the E. coli SecA protein, also restored growth of E. coli MM52 (secA ts) at the non-permissive temperature and the translocation defect of proOmpA in this mutant was relieved to a substantial extent.  相似文献   

6.
Genetic analysis of rec E activities in Bacillus subtilis   总被引:3,自引:0,他引:3  
Summary ArecE mutant (recE6) ofBacillus subtilis was constructed by insertion of a selectable marker into therecE coding region. The insertional inactivation of therecE gene renders cells very sensitive to DNA damaging agents and severely impairs intermolecular recombination, but does not markedly affect plasmid interstrand annealing and intramolecular recombination. TherecE6 allele was then introduced into a set of DNA repair-deficient strains ofB. subtilis. The removal of DNA damage by therecF,addAaddB,recH,recL andrecP gene products is strictly dependent on an activerecE gene product (recE-dependent pathway). On the other hand, the increased sensitization to purine adducts in theuvrA42recE6 andpolA5recE6 strains suggests that such lethal lesions may be removed either by therecE-dependent or by therecE-independent pathway.  相似文献   

7.
Summary The thermosensitivity of dnaA(Ts) mutations can be suppressed by integration of plasmid F (integrative suppression). In the light of the recent finding that F requires DnaA protein for both establishment and maintenance, integrative suppression of 11 dnaA(Ts) mutations by a mini-F, pML31, integrated near oriC was examined. The plating efficiency of integratively suppressed strains was dnaA(Ts) allele-dependent and medium-dependent. The initiation capability of suppressed dnaA(Ts) strains lacking the oriC site and their F- counterparts was determined at various temperatures between 30°C and 42°C. The degree of integrative suppression measured by the initiation capability varied in a dnaA(Ts) allele-dependent manner. F-directed DNA replication was most affected by the dnaA(Ts) mutations mapping in the middle of the gene whereas oriC-dependent replication was most thermosensitive in strains carrying mutations mapping in the carboxy-terminal half of the gene. The results indicated that the integrative suppression by F plasmid is a DnaA-dependent process and suggested that the requirements for DnaA protein in the oriC-dependent replication and F replication processes are qualitatively different.  相似文献   

8.
A system is described that enables the cloning of genes specifying detrimental proteins inEscherichia coli. The system is based on pUC plasmids and was developed for the expression of theBacillus subtilis csaA gene, which is lethal when expressed at high levels. Suppressor strains that tolerate the presence of plasmids for high-level expression ofcsaA were isolated, which contained small cryptic deletion variants of the parental plasmid in high copy numbers. The cryptic plasmids consisted mainly of the pUC replication functions and lacked thecsaA region and selectable markers. The co-resident, incompatible, cryptic plasmids enabled the maintenance of thecsaA plasmids by reducing their copy number 20-fold, which resulted in a concomitant 3- to 7-fold reduction in the expression of plasmid-encoded genes. Strains carrying these cryptic endogenous plasmids proved to be useful for the construction of pUC-based recombinant plasmids carrying other genes, such as theskc gene ofStreptococcus equisimilis, which cannot be cloned in high copy numbers inE. coli. Several strategies to reduce production levels of heterologous proteins specified by plasmids are compared.  相似文献   

9.
The Bacillus subtilis lipoprotein PrsA enhances the yield of several homologous and heterologous exported proteins in B. subtilis by being involved in the posttranslocational stage of the secretion process. In this work, we have studied the effect of B. subtilis PrsA on the secretion of Bacillus amyloliquefaciens α-amylase (AmyQ), a target protein for PrsA, and Bacillus licheniformis penicillinase (PenP) a nontarget protein for PrsA, in Lactococcus lactis. Two compatible plasmids were constructed and introduced into L. lactis strain NZ9000: one high copy plasmid, expressing the AmyQ gene (amyQ) or the PenP gene (penP), and one low copy plasmid, expressing the PrsA encoding gene (prsA). When amyQ and prsA were simultaneously expressed under the nisin-inducible promoter P nisA , Western blotting experiments revealed a 15- to 20-fold increase in the total yield of AmyQ and a sixfold increase in secreted AmyQ activity, compared to a control strain lacking prsA. When expressed under the same induction conditions, PrsA had no effect on the secretion or total yield of PenP. These results show that the secretion yield of some heterologous proteins can be significantly increased in L. lactis when coproduced with the B. subtilis PrsA protein.  相似文献   

10.
Results of Southern blot analyses and polymerase chain reaction revealed that the Gram-negative pathogen, Actinobacillus actinomycetemcomitans, harbored DNA homologous to the secA gene of Escherichia coli. In E. coli, the secA gene product is essential for translocation of proteins across the inner membrane via the Sec system. This A. actinomycetemcomitans secA homolog was cloned and its nucleotide sequence determined. Amino acid sequence analysis of the cloned gene revealed significant homology to the SecA proteins of Haemophilus influenzae, E. coli, Caulobacter crescentus and Bacillus subtilis. Although the cloned gene did not complement a temperature sensitive mutation in the E. coli secA gene, strains harboring the cloned gene did produce a protein that cross-reacted with anti-SecA antibody. In addition, the cloned gene did restore sensitivity to sodium azide in an E. coli azide mutant. These data support the hypothesis that A. actinomycetemcomitans may use a system similar to the Sec system of E. coli to transport proteins across the cytoplasmic membrane, but suggest that the A. actinomycetemcomitans gene product may require genera-specific Sec proteins to complement some Sec mutations in E. coli.  相似文献   

11.
Summary An 8.2 kb fragment of E. coli chromosomal DNA, when cloned in increased copy number, suppresses the dnaA46 mutation, and an abundant protein of about 68 kd (60 kd when measured by us), encoded by the fragment, is essential for the suppression (Takeda and Hirota 1982). Mapping experiments show that the fragment originates from the 94 min region of the chromosome. It encodes several proteins but only one abundant polypeptide of the correct size, the product of the groEL gene. Suppression by the fragment is allele specific; those mutations which map to the centre of the gene are suppressed. Other initiation mutants including dnaA203, dnaA204, dnaA508, dnaAam, dnaC, dnaP and dnaB252 are not suppressed. Most suppressed strains are cold-sensitive suggesting an interaction between the mutant proteins (or their genes) and the suppressing protein or proteins.  相似文献   

12.
We have determined the nucleotide sequence of a 3.5 kb segment in the recF region of the Staphylococcus aureus chromosome. The gene order at this locus, dnaA-dnaN-recF-gyrB is similar to that found in the replication origin region of many other bacteria. S. aureus RecF protein (predicted molecular mass 42.3 kDa), has 57% amino acid sequence identity with the Bacillus subtilis RecF protein (42.2 kDa), but only 26% with the Escherichia coli RecF protein (40.5 kDa). We have shown that the S. aureus recF gene partially complements the defect of a B. subtilis recF mutant, but does not complement an E. coli recF strain. The amino acid sequence alignment of seven available RecF proteins (five of them from bacteria of gram-negative origin) allowed us to identify eight highly conserved regions ( to ) and to predict five new conserved regions within the gram-positive group (a to f). We suggest that the basic mechanism of homologous recombination is conserved among free-living bacteria.  相似文献   

13.
Summary A mutant of was isolated that grows in the Escherichia coli himA/gyrB-him320(Ts) double mutant at 42°C; conditions which are non-permissive for wild-type growth. The responsible mutation, ohm1, alters the 40th codon of the Nul reading frame. The Nul and A gene products comprise the terminase protein which cleaves concatameric DNA into unit-length phage genomes during DNA packaging. The Nul-ohm1 gene product acts in trans to support growth in the double himA/gyrB mutant, and cos154 growth in the single himA mutant. The observation that an alteration in Nul suppresses the inhibition of growth in the double himA/gyrB mutant implicates DNA gyrase, as well as integration host factor, in the DNA: protein interactions that occur at the initiation of packaging.  相似文献   

14.
The DNA sequence of the secA gene, essential for protein export in Escherichia coli, was determined and found to encode a hydrophilic protein of 901 amino acid residues with a predicted molecular weight of 101,902, consistent with its previously determined size and subcellular location. Sequence analysis of 9 secA(Ts) mutations conferring general protein export and secA regulatory defects revealed that these mutations were clustered in three specific regions within the first 170 amino acid residues of the SecA protein and were the result of single amino acid changes predicted to be severely disruptive of protein structure and function. The DNA sequence immediately upstream of secA was shown to encode a previously inferred gene, gene X. Sequence analysis of a conditionally lethal amber mutation, am109, previously inferred to be located proximally in the secA gene, revealed that it was located distally in gene X and was conditionally lethal due to its polar effect on secA expression. This and additional evidence are presented indicating that gene X and secA are cotranscribed.  相似文献   

15.
To establish the overexpression and one-step purification system of Bacillus subtilis elongation factor-Tu (EF-Tu), the EF-Tu gene was amplified with or without own ribosome binding site (rbs) by PCR and the only PCR product without rbs was subcloned successfully. For the expression of the EF-Tu gene cloned after PCR amplification, a constitutive expression system and inducible expression system with His6 tag at N-terminus or C-terminus, or glutathione-S-transferase (GST) fusion system were examined in E. coli and B. subtilis. Except GST fusion system in E. coli, however, all other trials were unsuccessful at the step of plasmid construction for the EF-Tu expression. The GST/EF-Tu fusion proteins were highly expressed by IPTG induction and obtained as both soluble and insoluble form. From the soluble GST/EF-Tu fusion protein, EF-Tu was obtained to near homogeneity by one-step purification with glutathione-sepharose affinity column chromatography followed by factor Xa treatment. The purified EF-Tu showed high GDP binding activity. These results indicate that the GST/EF-Tu fusion system is favorable to overexpression and purification of B. subtilis EF-Tu.  相似文献   

16.
Summary IndnaK7(Ts) mutant cells, scission of DNA strands occurred after temperature shift up. When cells at 30°C were labeled with [3H]-thymidine and then shifted to 46° or 49°C for 20 min, the profiles of sedimentation of thier cellular DNA in an alkaline sucrose gradient revealed a decrease in the size of DNA to a quarter of that at 30°C in the mutant, but not in wild-type cells. The level of manganese-containing superoxide dismutase (MnSOD) in the mutant was about twice that in wild-type cells, even at the permissive temperature, implying increased production of superoxide radical anion, which may cleave DNA strands directly or indirectly in the mutant. Moderate increase in the MnSOD level on temperature shift up was observed in both strains. These results indicated that some components of the DnaK protein participate in protection of cellular membrane functions from thermal damage resulting from elevated production of the superoxide anion radical.  相似文献   

17.
Summary We cloned the Penicillium chrysogenum trpC gene from a genomic library by complementation of an Escherichia coli trpC mutant lacking phosphoribosylanthranilate isomerase activity. The gene ecodes a 2.7 kb poly(A)+ RNA. We localized the gene by sequence analysis in a 2.9 kb DNA insert found in the smallest plasmid selected from the library. Sequence data strongly suggest that the organization of the gene is similar to that described in other Ascomycetes. We found that a DNA fragment which codes only for the carboxy-terminal protion of the polypeptide is sufficient for complementation of the E. coli trpC9830 mutation.  相似文献   

18.
Phylogenetic relations within the genus Gordonia were analyzed using partial gyrB and secA1 gene sequences of 23 type species in comparison with those of 16S rRNA gene. The gyrB and secA1 phylogenies showed agreement with that constructed using 16S rRNA gene sequences. The degrees of divergence of the gyrB and secA1 genes were approximately 3.4 and 1.7 times greater, respectively, than that of 16S rRNA gene. The gyrB gene showed more discriminatory power than either the secA1 or 16S rRNA gene, facilitating clear differentiation of any two Gordonia species using gyrB gene analysis. Our data indicate that gyrB and secA1 gene sequences are useful as markers for phylogenetic study and identification at the species level of the genus Gordonia.  相似文献   

19.
We have followed the synthesis and secretion of a number of periplasmic and outer membrane proteins in three strains of Escherichia coli, a secA amber mutant, a secA temperature-sensitive mutant, and a strain that blocks protein secretion due to a high level of expression of an export-defective hybrid protein between maltose-binding protein and beta-galactosidase (MalE-LacZ). Our results show that after several hours under nonpermissive conditions the specificity and extent of the export blocks in the secA temperature-sensitive mutant and the strain producing the MalE-LacZ hybrid protein are identical, affecting at least four major outer membrane proteins and most but not all periplasmic proteins. The secA gene product, therefore, appears to be an essential component of the major export pathway in E. coli which is used by many envelope proteins independent of whether they are cotranslationally or post-translationally secreted. In contrast, the synthesis of only a subset of these envelope proteins is reduced in the secA amber mutant after shift to the nonpermissive condition. These results indicate that the SecA protein serves roles both in the synthesis and the secretion of certain cell envelope proteins.  相似文献   

20.
Summary A DNA segment covering the signal sequence coding region, the ribosome binding site, and the promoter of the staphylokinase (sak) 42D gene (Behnke and Gerlach 1987) was cloned into pUC19 to form a portable expression-secretion unit (ESU). Fusion of human interferon α1 (hIFNα1) and hybrid hIFNα1/2 genes to thissak ESU resulted in secretory expression of the two gene products in bothEscherichia coli andBacillus subtilis. While most of the IFNα was exported to the periplasmic space ofE. coli, about 99% was secreted to the culture medium by recombinantB. subtilis strains. The total yield inE. coli was 1.2×105 IU/ml. This level of expression and export led to instability of the recombinant strains that was spontaneously relieved in vivo by inactivation of thesak ESU through insertion of an IS1 element. No such instability was observed withB. subtilis although expression and secretion levels reached even 3×106 IU/ml. Proteolytic degradation of IFNα by extracellular proteases was avoided by a combination of constitutive expression and secretion during the logarithmic growth phase and the use of exoprotease-reduced host strains. The IFNα1 protein purified fromB. subtilis culture supernatant was correctly processed, carried the expected 11 amino acid N-terminal elongation that resulted from DNA manipulations and proved to be homogenous in Western blotting experiments. The same recombinant plasmid that directed efficient secretion of hIFNα1 inB. subtilis gave poor yields when introduced intoStreptococcus sanguis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号