首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SUMMARY: A field-scale experiment carried out in Wales and the West Midlands, in which the temperature-compensated clot-on-boiling (C.O.B.) test of Rowlands & Hosking (1951) was applied to 11,626 samples of designated milk, morning, mixed and evening milk, gave proportions of failures in the ratio 1:2:3 respectively. Despite temperature compensation, failures varied according to atmospheric temperature from c. 50% at 72°F. or more to 10% at 56°F. or less and averaged 20% during the summer and 7% during the six winter months.
No marked differences were noted between the keeping qualities of tuberculin tested or accredited milk. During the winter no difference was found between producer-wholesaler and producer-retailer supplies, but the latter had a higher proportion of failures of evening and mixed milks during the summer.
In a set of 8,297 samples examined in addition by the methylene blue and coli-aerogenes tests, the C.O.B. test gave a lower incidence of failures than either the methylene blue or combined methylene blue and coli-aerogenes tests throughout almost the entire year. It is suggested that a temperature-compensated C.O.B. test is practicable as a routine procedure.  相似文献   

2.
SUMMARY: The effects of shaking milk samples before the addition of methylene blue, delaying the time of addition of the dye, adding a second quantity of dye with a hypodermic syringe after the initial charge had been decolourized and of increasing the storage time or varying the testing time have been studied in five separate experiments. Vigorous shaking at the time of dye addition lengthened the reduction time. This effect was more pronounced when the milk was stored in a tube than in a bottle. Delayed addition of the dye resulted in a shorter reduction time than expected for inverted samples and longer than expected for samples which were not inverted between the time they were put into the 37° bath and the addition of the dye. Second additons of dye did not usually have reduction times exceeding 1 hr. Methylene blue reduction times did not necessarily decrease with successive tests carried out over a period of time on one sample: a time of 30 min. might persist over a series of tests for 4 hr. or more and small increase and decrease in reduction time with successive tests were also noted.  相似文献   

3.
A capillary electrophoresis method for the determination of the dye methylene blue (tetramethylthionine, MB) in human urine depending on liquid/liquid-extraction and diode array detection has been developed, validated, and applied to samples of healthy individuals, who had been dosed with methylene blue within clinical studies. After extraction with dichloromethane and sodium hexanesulfonate, sample extracts were measured on an extended light path capillary. The dye was detected simultaneously at 292 and 592 nm using methylene violet 3 RAX as internal standard. The limit of quantification was 1.0 microg/ml. The accuracy of the method varied between -15.2 and +0.8% and the precision ranged from 2.0 to 12.0%. The method was linear at least within 1.0 and 60 microg/ml. In contrast to earlier indirect determinations no leuco methylene blue (LMB) was directly detected in urine, whereas in aqueous test solutions containing surplus amounts of ascorbic acid leuco methylene blue was well separated from MB in a single run.  相似文献   

4.
Reticulocyte counting by flow cytometry with thiazole orange was compared to manual or automated counting of new methylene blue stained blood smears. Forty-nine samples were compared for manual counting from randomly chosen clinical samples. Two hundred and eighty-nine samples from bone marrow transplant patients were compared during the period before and through chemo-irradiation and engraftment. The slopes of correlation plots were less than 1 when flow cytometric data were the dependent variable, suggesting that thiazole orange is less sensitive than new methylene blue. In a third study, 407 samples from bone marrow transplant patients were compared after increasing the thiazole orange concentration. The reticulocyte fluorescence distribution was divided into four groups of the brightest (youngest) 40, 60, 80, and 100% of reticulocytes. The slopes from regression analysis were 0.25, 0.49, 0.78, and 1.14, respectively. This demonstrates that thiazole orange is more sensitive than new methylene blue because the window of analysis includes an increased fraction of mature reticulocytes. In addition, the precision of each assay as measured. The rank order of precision from high to low was flow cytometry > image analysis > manual counting.  相似文献   

5.
Procedure:Cut paraffin sections and float on a 45-50 C water bath; spread silicone-rubber adhesive (Clear Seal-General Electric) thinly and evenly over 2/3 of the slide; pick up the sections from the floatation water with the coated slide; dry for 1.5 hr at 25 C and at 60 C for 0.5 hr; deparaffinize, and hydrate to water. Place 150 mg of rhodamine B and 150 mg of methylene blue each in separate 100 ml beakers and add 80 ml of 10% HCl to each beaker. Bring both solutions to a boil on a hot plate in a fume hood; immerse tissue sections in the boiling rhodamine B exactly 2 min; rinse in a beaker of 10% HCl 5 sec; immerse in the boiling methylene blue exactly 0.5 min; rinse in distilled water; blot dry; and mount in a silicone-rubber medium (Glass and Ceramic Adhesive—Dow Corning Corp.). Hair shaft keratin stains red; inner root sheath keratin and keratogenous zone of the hair shaft, blue green; epidermal keratin remains unstained. Pilomatrixornas show foci of both red and blue green keratin; epidermal and hair sheath (“sebaceous”) cysts remain unstained.  相似文献   

6.
THE ASSESSMENT OF THE BACTERIOLOGICAL CONDITION OF MILK BOTTLES   总被引:1,自引:1,他引:0  
SUMMARY: A study of the relative values of a number of bacteriological tests for assessing the condition of milk bottles indicated that the colony count of the bottle rinse solution on yeastrel milk agar incubated for 4 days at 30°, combined with a clot-on-boiling test applied to 1 ml. of rinse in 9 ml. of sterile milk after incubation for 72 hr. at 19–20°, gave the most useful results.
The mean of the ratios of colony counts at 30° to those at 37° was 15·1, while it was as high as 22·9 for rinses with 37° of over 600 for an unsatisfactory bottle should be retained when the test is done at 30°. The thermoduric colony count of rinses of milk bottles, even when laboratory pasteurized in milk, did not provide any additional information to that given by the colony count at 30° made without pasteurization. A high proportion of the organisms in bottle rinses survived laboratory pasteurization in milk, the survival rate being highest in efficiently treated bottles.
The clot-on-boiling test gave results in general agreement with colony counts and served to indicate the potential influence of badly contaminated bottles on the keeping quality of milk placed in them. A substantial proportion of rinses with satisfactory colony counts reduced methylene blue within 48 hr. at 19–20°.
Colony counts at 37° were on the average much lower for bottles treated with steam than for bottles submitted to detergent treatment in various types of bottle washing machines. Treatment of bottles by steam or hypochlorite was more efficiently done on the farms than at the dairies.  相似文献   

7.
The L-arginine/nitric oxide (NO)/cyclic guanosine monophosphate (cGMP) pathway is known to be involved in central and peripheral nociceptive processes. This study evaluated the rhythmic pattern of the L-arginine/NO/cGMP pathway using the mouse visceral pain model. Experiments were performed at six different times (1, 5, 9, 13, 17, and 21 h after light on) per day in male mice synchronized to a 12 h:12 h light-dark cycle. Animals were injected s.c. with saline, 2 mg/kg L-arginine (a NO precursor), 75 mg/kg L-N(G)-nitroarginine methyl ester (L-NAME, a NOS inhibitor), 40 mg/kg methylene blue (a soluble guanylyl cyclase and/or NOS inhibitor), or 0.1 mg/kg sodium nitroprusside (a nonenzymatic NO donor) 15 min before counting 2.5 mg/kg (i.p.) p-benzoquinone (PBQ)-induced abdominal constrictions for 15 min. Blood samples were collected after the test, and the nitrite concentration was determined in serum samples. L-arginine or L-NAME caused both antinociception and nociception, depending on the circadian time of their injection. The analgesic effect of methylene blue or sodium nitroprusside exhibited significant biological time-dependent differences in PBQ-induced abdominal constrictions. Serum nitrite levels also displayed a significant 24 h variation in mice injected with PBQ, L-NAME, methylene blue, or sodium nitroprusside, but not saline or L-arginine. These results suggest that components of L-arginine/NO/cGMP pathway exhibit biological time-dependent effects on visceral nociceptive process.  相似文献   

8.
When uninjured cells of Valonia are placed in methylene blue dissolved in sea water it is found, after 1 to 3 hours, that at pH 5.5 practically no dye penetrates, while at pH 9.5 more enters the vacuole. As the cells become injured more dye enters at pH 5.5, as well as at pH 9.5. No dye in reduced form is found in the sap of uninjured cells exposed from 1 to 3 hours to methylene blue in sea water at both pH values. When uninjured cells are placed in azure B solution, the rate of penetration of dye into the vacuole is found to increase with the rise in the pH value of the external dye solution. The partition coefficient of the dye between chloroform and sea water is higher at pH 9.5 than at pH 5.5 with both methylene blue and azure B. The color of the dye in chloroform absorbed from methylene blue or from azure B in sea water at pH 5.5 is blue, while it is reddish purple when absorbed from methylene blue and azure B at pH 9.5. Dry salt of methylene blue and azure B dissolved in chloroform appears blue. It is shown that chiefly azure B in form of free base is absorbed by chloroform from methylene blue or azure B dissolved in sea water at pH 9.5, but possibly a mixture of methylene blue and azure B in form of salt is absorbed from methylene blue at pH 5.5, and azure B in form of salt is absorbed from azure B in sea water at pH 5.5. Spectrophotometric analysis of the dye shows the following facts. 1. The dye which is absorbed by the cell wall from methylene blue solution is found to be chiefly methylene blue. 2. The dye which has penetrated from methylene blue solution into the vacuole of uninjured cells is found to be azure B or trimethyl thionine, a small amount of which may be present in a solution of methylene blue especially at a high pH value. 3. The dye which has penetrated from methylene blue solution into the vacuole of injured cells is either methylene blue or a mixture of methylene blue and azure B. 4. The dye which is absorbed by chloroform from methylene blue dissolved in sea water is also found to be azure B, when the pH value of the sea water is at 9.5, but it consists of azure B and to a less extent of methylene blue when the pH value is at 5.5. 5. Methylene blue employed for these experiments, when dissolved in sea water, in sap of Valonia, or in artificial sap, gives absorption maxima characteristic of methylene blue. Azure B found in the sap collected from the vacuole cannot be due to the transformation of methylene blue into this dye after methylene blue has penetrated into the vacuole from the external solution because no such transformation detectable by this method is found to take place within 3 hours after dissolving methylene blue in the sap of Valonia. These experiments indicate that the penetration of dye into the vacuole from methylene blue solution represents a diffusion of azure B in the form of free base. This result agrees with the theory that a basic dye penetrates the vacuole of living cells chiefly in the form of free base and only very slightly in the form of salt. But as soon as the cells are injured the methylene blue (in form of salt) enters the vacuole. It is suggested that these experiments do not show that methylene blue does not enter the protoplasm, but they point out the danger of basing any theoretical conclusion as to permeability on oxidation-reduction potential of living cells from experiments made or the penetration of dye from methylene blue solution into the vacuole, without determining the nature of the dye inside and outside the cell.  相似文献   

9.
The rate of reduction of methylene blue by milk and acetaldehyde is proportional to the concentration of oxygen in the milk. This fact may be made the basis of a method of determining oxygen in gaseous mixtures.  相似文献   

10.
Zinc chloride methylene blue appeared on the market almost contemporaneously with the zinc-free medicinal form. The former has rarely been reported as being used in blood stains. Recent suspension of manufacture of medicinal methylene blue by it. principal American producer has excited interest in the use of the zinc chloride form for the preparation of blood stains. According to Lillie (1944a,b) the azure B content of zinc chloride methylene blue may have varied from 5 to 30% in the samples studied. Taking the Merck Index (1968, 1976) figures for the spectroscopic absorption maximum (λmax) of 667.8 and 668 nm as standard, recent samples of zinc chloride methylene blue are calculated to contain 6-8% azure B. These figures are baaed on 1) the shift of λmax after exhaustive pH 9.5 chloroform extraction, 2) evaluation of the actual ratio of the observed TiCl2 dye content to the theoretical for pure zinc chloride methylene blue, 3) comparison of spectroscopic and staining effects of graded hot dichromate oxidation products with those of highly purified azure B-methylene blue mixtures of known proportions.

As far as can be found, medicinal methylene blue is almost the exclusive source of cosin polychrome methylene blue blood stains. Lillie (1944c) included a short series comparing 5 zinc chloride methylene blues with a dozen medicinal methylene blue samples; all were oxidized with hot dichromate to produce successful Wright stains. No effort was made to remove the zinc Exhaustive pH 9.5 chloroform extraction of zinc chloride methylene blue (lot MCB 12-H-29) yielded a small amount of red dye which when extracted into 0.1 N HCI gave λmax = 650. The extraction moved the absorption peak of the zinc chloride methylene blue from 667 to 668 nm and the midpoint of the 90% maximum absorption band, 18 nm wide, from 666.5 to 667.5 nm.  相似文献   

11.
Mutagenicity of pan residues and gravy from fried meat   总被引:1,自引:0,他引:1  
Lean pork meat was fried with or without the addition of frying-fat at 200 or 250 degrees C. The pan residues were collected by washing the hot pan with boiling water. When producing thickened gravy the water was substituted by a mixture of water and flour, milk and flour or cream and flour. The basic extracts were tested for mutagenicity in Ames' Salmonella test on strain TA98 with the addition of S9 mix. High amounts of mutagenicity were found in all samples. The amounts of mutagenicity in the pan residues were at a comparable level of the amounts found in the meat crusts. Thickening of the gravy caused only small changes in the mutagenicity.  相似文献   

12.
Detailed schemes are described for the preparation of purified methylene blue and azure B from commercial samples of methylene blue. Purified methylene blue is obtained by extracting a solution of the commercial product in an aqueous buffer (pH 9.5) with carbon tetrachloride. Methylene blue remains in the aqueous layer but contaminating dyes pass into the carbon tetrachloride. Metal salt contaminants are removed when the dye is crystallized by the addition of hydrochloric acid at a final concentration of 0.25 N. Purified azure B is obtained by extracting a solution of commercial methylene blue in dilute aqueous sodium hydroxide (pH 11-11.5) with carbon tetrachloride. In this pH range, methylene blue is unstable and yields azure B. The latter passes into the carbon tetrachloride layer as it is formed. Metal salt contaminants remain in the aqueous layer. A concentrated solution oa azure B is obtained by extracting the carbon tetrachloride layer with 4.5 X 10(-4)N hydrobromic acid. The dye is then crystallized by increasing the hydrobromic acid concentration to 0.23 N. Thin-layer chromatography of the purified dyes shows that contamination with related thiazine dyes is absent or negligible. Ash analyses reveal that metal salt contamination is also negligible (sulphated ash less than 0.2%).  相似文献   

13.
Human erythrocytes were shown previously to catalyze the oxyhemoglobin-requiring hydroxylation of aniline, and the reaction was stimulated apparently preferentially by NADPH in the presence of methylene blue (K. S. Blisard and J. J. Mieyal,J. Biol. Chem.254, 5104, 1979). The current study provides a further characterization of the involvement of the NADPH-dependent electron transport system in this reaction. In accordance with the role of NADPH, the hydroxylase activity of erythrocytes or hemolysates from individuals with glucose-6-phosphate dehydrogenase deficiency (i.e., with diminished capacity to form NADPH) displayed decreased responses to glucose or glucose 6-phosphate, respectively, in the presence of methylene blue in comparison to samples from normal adults; maximal activity could be restored by direct addition of NADPH to the deficient hemolysates. Kinetic studies of the methylene blue-stimulated aniline hydroxylase activity of normal hemolysates revealed a biphasic dependence on NADPH concentrations: a plateau was observed at relatively low concentrations (KmNADPH ~ 20 μm), whereas saturation was not achieved at the higher concentrations of NADPH. The latter low efficiency phase (i.e., at the higher concentrations of NADPH) could be ascribed to a direct transfer of electrons from NADPH to methylene blue to hemoglobin. The high efficiency phase suggested involvement of the NADPH-dependent methemoglobin reductase; accordingly 2′-AMP, an analog of NADP+, effectively inhibited this reaction, but the pattern was noncompetitive. This behavior is suggestive of a mechanism by which both NADPH and methylene blue are substrates for the reductase and interact with it in a sequential fashion. The kinetic patterns observed for variation in NADPH concentration at several fixed concentrations of methylene blue, and vice versa, are consistent with this interpretation.  相似文献   

14.
Quantification of viable cells is a critical step in almost all biological experiments. Despite its importance, the methods developed so far to differentiate between viable and non-viable cells suffer from major limitations such as being time intensive, inaccurate and expensive. Here, we present a method to quantify viable cells based on reduction of methylene blue dye in cell cultures. Although the methylene blue reduction method is well known to check the bacterial load in milk, its application in the quantification of viable cells has not been reported. We have developed and standardized this method by monitoring the dye reduction rate at each time point for growth of Escherichia coli. The standard growth curve was monitored using this technique. The Methylene Blue dye Reduction Test (MBRT) correlates very well with Colony Forming Units (CFU) up to a 800 live cells as established by plating. The test developed is simple, accurate and fast (200 s) as compared to available techniques. We demonstrate the utility of the developed assay to monitor CFU rapidly and accurately for E. coli, Bacillus subtilis and a mixed culture of E. coli and B. subtilis. This assay, thus, has a wide applicability to all types of aerobic organisms.  相似文献   

15.
The surface area of various types of montmorillonites (MMT) with different values of layer charge plays a very important role in surface arrangement of methylene blue cations (MB). Photoluminescence measurements can be strongly or partially influenced by this surface arrangement of cations. For these reasons and on the basis of our previous results, molecular simulations were performed for various types of montmorillonites covered with methylene blue cations. Adsorption of methylene blue cations on Na-Wyoming MMT surface is different from Ca-Cheto MMT. In the case of Wyoming with a lower layer charge, MB cations lie parallel to the silicate layer for all investigated samples. On the other hand, Cheto surface is covered with a higher amount of MB cations. The results obtained from molecular modeling indicate that MB lies parallel to low loading case and become tilted with respect to layer for a higher loading. Moreover, a higher amount of MB cations covering the silicate layer are much less energy-stable. A higher loading of MB cations leads to aggregates but at low loading MB cations degrade to monomers.  相似文献   

16.
Suitable tests have been devised for the detection of azure B (trimethyl thonin) and methylene violet in methylene blue. All samples of methylene blue examined have been found to contain appreciable proportions of azure B.  相似文献   

17.
Suitable tests have been devised for the detection of azure B (trimethyl thonin) and methylene violet in methylene blue. All samples of methylene blue examined have been found to contain appreciable proportions of azure B.  相似文献   

18.
The iron, potassium, sodium and zinc contents of commercial samples of the thiazine dyes azure A (C.I. 52005), azure B (C.I. 52010), azure C (C.I. 52002), methylene blue (C.I. 52015), new methylene blue (GI. 52030), polychrome methylene blue, thionine (C.I. 52000) and toluidme blue (C.I. 52040) have been determined by atomic absorption spectrophotometry.

The metal concentrations varied widely in the 38 samples examined—iron, potassium, sodium and zinc together comprised between 0.02% and 25.35% of individual samples.  相似文献   

19.
The iron, potassium, sodium and zinc content of commercial samples of the thiazine dyes azure A (C.I. 52005), azure B (C.I. 52010), azure C (C.I. 52002), methylene blue (C.I. 52015), new methylene blue (C.I. 52030), polychrome methylene blue, thionine (C.I. 52000) and toluidine blue (C.I. 52040) have been determined by atomic absorption spectrophotometry. The metal concentration varied widely in the 38 samples examined--iron, potassium, sodium and zinc together comprised between 0.02% and 25.35% of individual samples.  相似文献   

20.
目的 利用鸭乙型肝炎病毒(DHBV)感染动物模型,评价亚甲蓝光化学病毒灭活方法对血液成分中DNA病毒的灭活效果。方法 将超离纯化的DHBV分别加入人血浆或人红细胞,经亚甲蓝光化学灭活病毒,将含不同基因组拷贝数DHBV的血浆成分经静脉感染1 d龄雏鸭。采用放射性核素核酸杂交法对血清中DHBV DNA进行检测,计算病毒灭活处理前、后人血浆及人红细胞中DHBV的半数感染计量(ID50)。结果 结果显示加入DHBV的血浆在未经灭活处理前对1 d龄雏鸭的ID50值为103.33,而经病毒灭活处理后ID50值为1010拷贝,灭活处理可使病毒感染性滴度下降达6个Log;加入DHBV的红细胞灭活前ID50值为103.35,经灭活处理后ID50值为108.35拷贝,灭活处理使病毒感染性滴度下降5个Log。结论 利用DHBV感染动物模型,可以检测到少量病毒在自然感染宿主体内的感染性,可用于评判血液成分中病毒灭活方法的效果,亚甲蓝光化学处理对血浆中DNA病毒的灭活效果较好于对红细胞中DNA病毒的灭活作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号