首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Abstract

Enzymatic systems employed by microorganisms for oxidative transformation of various organic molecules include laccases, ligninases, tyrosinases, monooxygenases, and dioxygenases. Reactions performed by these enzymes play a significant role in maintaining the global carbon cycle through either transformation or complete mineralization of organic molecules. Additionally, oxidative enzymes are instrumental in modification or degradation of the ever-increasing man-made chemicals constantly released into our environment. Due to their inherent stereo- and regioselectivity and high efficiency, oxidative enzymes have attracted attention as potential biocatalysts for various biotechnological processes. Successful commercial application of these enzymes will be possible through employing new methodologies, such as use of organic solvents in the reaction mixtures, immobilization of either the intact microorganisms or isolated enzyme preparations on various supports, and genetic engineering technology.  相似文献   

2.
Antioxidant compounds play a vital role in human physiology. They prevent the oxidation of biomolecules by scavenging free radicals produced during physiochemical processes and/or as a result of several pathological states. A balance between the reactive oxygen species (free radicals) and antioxidants is essential for proper physiological conditions. Excessive free radicals cause oxidative stress which can lead to several human diseases. Therefore, synthesis of the effective antioxidants is crucial in managing the oxidative stress. Biotransformation has evolved as an effective technique for the production of structurally diverse molecules with a wide range of biological activities. This methodology surpasses the conventional chemical synthesis due to the fact that enzymes, being specific in nature, catalyze reactions affording products with excellent regio- and stereoselectivities. Structural transformation of various classes of compounds such as alkaloids, steroids, flavonoids, and terpenes has been carried out through this technique. Several bioactive molecules, especially those having antioxidant potential have also been synthesized by using different biotransformation techniques and enzymes. Hydroxylated, glycosylated, and acylated derivatives of phenols, flavonoids, cinnamates, and other molecules have proven abilities as potential antioxidants. A critical review of the biotransformation of these compounds into potent antioxidant metabolites is presented here.  相似文献   

3.
Potential of halotolerant and halophilic microorganisms for biotechnology   总被引:18,自引:0,他引:18  
Halotolerant or halophilic microorganisms, able to live in saline environments, offer a multitude of actual or potential applications in various fields of biotechnology. The technical applications of bacteriorhodopsin comprise holography, spatial light modulators, optical computing, and optical memories. Compatible solutes are useful as stabilizers of biomolecules and whole cells, salt antagonists, or stress-protective agents. Biopolymers, such as biosurfactants and exopolysaccharides, are of interest for microbially enhanced oil recovery. Other useful biosubstances are enzymes, such as new isomerases and hydrolases, that are active and stable at high salt contents. Halotolerant microorganisms play an essential role in food biotechnology for the production of fermented food and food supplements. The degradation or transformation of a range of organic pollutants and the production of alternative energy are other fields of applications of these groups of extremophiles.  相似文献   

4.
Carbon-carbon bond formation is the key transformation in organic synthesis to set up the carbon backbone of organic molecules. However, only a limited number of enzymatic C-C bond forming reactions have been applied in biocatalytic organic synthesis. Recently, further name reactions have been accomplished for the first time employing enzymes on a preparative scale, for instance the Stetter and Pictet-Spengler reaction or oxidative C-C bond formation. Furthermore, novel enzymatic C-C bond forming reactions have been identified like benzylation of aromatics, intermolecular Diels-Alder or reductive coupling of carbon monoxide.  相似文献   

5.
Phosphate (P)-solubilizing microorganisms as a group form an important part of the microorganisms, which benefit plant growth and development. Growth promotion and increased uptake of phosphate are not the only mechanisms by which these microorganisms exert a positive effect on plants. Microbially mediated solubilization of insoluble phosphates through release of organic acids is often combined with production of other metabolites, which take part in biological control against soilborne phytopathogens. In vitro studies show the potential of P-solubilizing microorganisms for the simultaneous synthesis and release of pathogen-suppressing metabolites, mainly siderophores, phytohormones, and lytic enzymes. Further trends in this field are discussed, suggesting a number of biotechnological approaches through physiological and biochemical studies using various microorganisms.  相似文献   

6.
Redox enzymes are ubiquitous in all living organisms. In fact, oxidation and reduction reactions are fundamental for the transformation of cellular and external compounds both for cell reproduction and for energy production. Redox enzymes share a common characteristic that is the capacity of transferring electrons to and from molecules. In addition, microorganisms contain many oxidative enzymes, and because they are relatively easier to cultivate and study, they have been investigated in details, in particular for potential use in biotechnological field. One important reaction that oxidative enzymes perform is the introduction of one or two oxygen atoms on aromatic compounds. The most representative classes of enzymes that perform this reaction are oxygenases/hydroxylases, peroxidases, and laccases; they differ in many aspects: the metal present in the active site, the used reductive cofactor, the final oxidant, and the number of electrons transferred in each step. Their essential features and mechanisms of action have been the subject of several studies, together with some structural analyses. This review reports recent developments and summarizes some of the most interesting results concerning both structural requirements and mechanisms implicated in aromatic hydroxylation.  相似文献   

7.
The cell-to-cell communication of microorganisms is known to be via exertion of certain chemical compounds (signal molecules) and is referred to as quorum sensing (QS). QS phenomenon is widespread in microbial communities. Several Gram-positive and Gram-negative bacteria and fungi use lactone-containing compounds (e.g. acyl-homoserine lactones (AHLs), γ-heptalactone, butyrolactone-I) as signalling molecules. The ability of microorganisms to metabolise these compounds and the mechanisms they employ for this purpose are not clearly understood. Many studies, however, have focused on identifying AHL and other lactone-degrading enzymes produced by bacteria and fungi. Various strains that are able to utilise these signalling molecules as carbon and energy sources have also been isolated. In addition, several reports have provided evidence on the involvement of lactones and lactone-degrading enzymes in numerous biological functions. These studies, although focused on processes other than metabolism of lactone signalling molecules, still provide insights into further understanding of the mechanisms employed by various microorganisms to metabolise the QS compounds. In this review, we consider conceivable microbial strategies to metabolise AHL and other lactone-containing signalling molecules such as γ-heptalactones.  相似文献   

8.
Fungal laccases: versatile tools for lignocellulose transformation   总被引:2,自引:0,他引:2  
Conversion of lignocellulosic materials to useful, high value products normally requires a pre-treatment step to transform or deconstruct the recalcitrant and heterogeneous lignin fraction. The development of "green tools" for the transformation of lignocellulosic feedstocks is in high demand for a sustainable exploitation of such resources. This multi-faceted challenge is being addressed by an ever-increasing suite of ligninolytic enzymes isolated from various sources. Among these, fungal laccases are known to play an important role in lignin degradation/modification processes. The white-rot fungus Pleurotus ostreatus expresses multiple laccase genes encoding isoenzymes with different properties. The availability of established recombinant expression systems for P.?ostreatus laccase isoenzymes has allowed to further enrich the panel of P.?ostreatus laccases by the construction of mutated, "better performing" enzymes through molecular evolution techniques. New oxidative catalysts with improved activity and stability either at high temperature and at acidic and alkaline pH have been isolated and characterized.  相似文献   

9.
10.
Enzymatic degradation of TNT by aerobic bacteria is mediated by oxygen insensitive (Type 1) or by oxygen sensitive nitroreductases (Type II nitroreductases). Transformation by Type I nitroreductases proceeds through two successive electron reductions either by hydride addition to the aromatic ring or by direct nitro group reduction following a ping pong kinetic mechanism. TNT is reduced to the level of hydroxylaminodinitrotoluenes and aminodinitrotoluenes by pure enzyme preparations without achieving mineralization. Interestingly, database gene and amino acid sequence comparisons of nitroreductases reveal a close relationship among all enzymes involved in TNT transformation. They are all flavoproteins which use NADPH/NADH as electron donor and reduce a wide range of electrophilic xenobiotics. TNT degradation by fungi is initiated by mycelia bound nitroreductases which reduce TNT to hydroxylaminodinitrotoluenes and aminodinitrotoluenes. Further degradation of these products and mineralization is achieved through the activity of oxidative enzymes especially lignin degrading enzymes (lignin and manganese peroxidases).  相似文献   

11.
Biodegradation of 2,4,6-trinitrotoluene (TNT): An enzymatic perspective   总被引:2,自引:0,他引:2  
Enzymatic degradation of TNT by aerobic bacteria is mediated by oxygen insensitive (Type 1) or by oxygen sensitive nitroreductases (Type II nitroreductases). Transformation by Type I nitroreductases proceeds through two successive electron reductions either by hydride addition to the aromatic ring or by direct nitro group reduction following a ping pong kinetic mechanism. TNT is reduced to the level of hydroxylaminodinitrotoluenes and aminodinitrotoluenes by pure enzyme preparations without achieving mineralization. Interestingly, database gene and amino acid sequence comparisons of nitroreductases reveal a close relationship among all enzymes involved in TNT transformation. They are all flavoproteins which use NADPH/NADH as electron donor and reduce a wide range of electrophilic xenobiotics. TNT degradation by fungi is initiated by mycelia bound nitroreductases which reduce TNT to hydroxylaminodinitrotoluenes and aminodinitrotoluenes. Further degradation of these products and mineralization is achieved through the activity of oxidative enzymes especially lignin degrading enzymes (lignin and manganese peroxidases).  相似文献   

12.
Reactive oxygen species (ROS) are known to be mediators of intracellular signaling pathways. However the excessive production of ROS may be detrimental to the cell as a result of the increased oxidative stress and loss of cell function. Hence, well tuned, balanced and responsive antioxidant systems are vital for proper regulation of the redox status of the cell. The cells are normally able to defend themselves against the oxidative stress induced damage through the use of several antioxidant systems. Even though the free radical scavenging enzymes such as superoxide dismutase (SOD) and catalase can handle huge amounts of reactive oxygen species, should these systems fail some reactive molecules will evade the detoxification process and damage potential targets. In such a scenario, cells recruit certain small molecules and proteins as 'rescue specialists' in case the 'bodyguards' fail to protect potential targets from oxidative damage. The thioredoxin (Trx) system thus plays a vital role in the maintenance of a reduced intracellular redox state which is essential for the proper functioning of each individual cell. Trx alterations have been implicated in many diseases such as cataract formation, ischemic heart diseases, cancers, AIDS, complications of diabetes, hypertension etc. The interactions of Trx with many different proteins and different metabolic and signaling pathways as well as the significant species differences make it an attractive target for therapeutic intervention in many fields of medical science. In this review, we present, the critical roles that thioredoxins play in limiting oxidant stress through either its direct effect as an antioxidant or through its interactions with other key signaling proteins (thioredoxin interacting proteins) and its implications in various disease models.  相似文献   

13.
14.
The carbon–fluorine bond is one of the strongest in nature, and the increasing use of organofluorine compounds in agriculture, human and veterinary medicine, and industry has raised concerns about their fate in the environment. Microorganisms can degrade organofluorine compounds, either via specific enzymatic hydrolysis of the C–F bond, or through transformation by catabolic enzymes with broad substrate specificities. Here our current understanding of organofluorine catabolism in microorganisms is summarised.  相似文献   

15.
Under various stress conditions, plant cells are exposed to oxidative damage which triggers lipid peroxidation. Lipid peroxide breakdown products include protein crosslinking reactive aldehydes. These are highly damaging to living cells. Stress-protective aldo–keto reductase (AKR) enzymes are able to recognise and modify these molecules, reducing their toxicity. AKRs not only modify reactive aldehydes but may synthesize osmoprotective sugar alcohols as well. The role of these mixed function enzymes was investigated under direct reactive aldehyde, heavy metal and salt stress conditions. Transgenic barley (Hordeum vulgare L.) plants constitutively expressing AKR enzymes derived from either thale cress (Arabidopsis thaliana) (AKR4C9) or alfalfa (Medicago sativa) (MsALR) were studied. Not only AKR4C9 but MsALR expressing plants were also found to produce more sorbitol than the non-transgenic (WT) barley. Salinity tolerance of genetically modified (GM) plants improved, presumably as a consequence of the enhanced sorbitol content. The MsALR enzyme expressing line (called 51) exhibited almost no symptoms of salt stress. Furthermore, both transgenes were shown to increase reactive aldehyde (glutaraldehyde) tolerance. Transgenic plants also exhibited better cadmium tolerance compared to WT, which was considered to be an effect of the reduction of reactive aldehyde molecules. Transgenic barley expressing either thale cress or alfalfa derived enzyme showed improved heavy metal and salt tolerance. Both can be explained by higher detoxifying and sugar alcohol producing activity. Based on the presented data, we consider AKRs as very effective stress-protective enzymes and their genes provide promising tools in the improvement of crops through gene technology.  相似文献   

16.
Arsenic induced oxidative stress in plants   总被引:3,自引:0,他引:3  
Iti Sharma 《Biologia》2012,67(3):447-453
Arsenic is a highly toxic metalloid for all forms of life including plants. Arsenic enters in the plants through phosphate transporters as a phosphate analogue or through aquaglycoporins. Uptake of arsenic in plant tissues adversely affects the plant metabolism and leads to various physiological and structural disorders. Photosynthetic apparatus, cell division machinery, energy production, and redox status are the major section of plant system that are badly affected by As (V). Similarly As (III) can react with thiol (-SH) groups of enzymes and inhibits various metabolic processes. Arsenic is also known to induce oxidative stress directly by generating reactive oxygen species (ROS) during conversion of its valence forms or indirectly by inactivating antioxidant molecules through binding with their -SH groups. As-mediated oxidative stress causes cellular, molecular and physiological disturbances in various plant species. Activation of enzymatic antioxidants namely, superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT) and glutathione reductase (GR), Glutathione s-transferase, glutathione peroxidase (GPX) as well as non antioxidant compounds such as, ascorbate, glutathione, carotenoids are reported to neutralize arsenic mediated oxidative stress. Understanding of biochemistry of arsenic toxicity would be beneficial for the development of arsenic tolerant crops and other economically important plants.  相似文献   

17.
Rapid growth in the biotechnological industry and production has put tremendous pressure on the biological methods that may be used according to the guidelines of green chemistry. However, despite continuing dramatic increases in published research on organic biotransformation by microorganisms, more research exists with microalgae. Our efforts in transforming chemicals such as organic compounds for the production of functionalized products help to lessen the environmental effects of organic synthesis. These biotransformations convert organic contaminants to obtain carbon or energy for growth or as cosubstrates. This review aims to focus on the potential of microalgae in transformation, conversion, remediation, accumulation, degradation, and synthesis of various organic compounds. However, these technologies have the ability to provide the most efficient and environmentally safe approach for inexpensive biotransforming of a variety of organic contaminants, which are most industrial residues. In addition, the recent advances in microalgal bioactivity were discussed.  相似文献   

18.
19.
20.
Uncommon pathways of metabolism among lactic acid bacteria   总被引:4,自引:0,他引:4  
A small number of lactic acid bacteria possess the ability to derive energy from organic molecules not utilized by the vast majority of representatives of this large group of microorganisms. Thus, strains of Lactobacillus casei and enterococci readily grow at the expense of substrates such as gluconate, malate and pentitols. Transport of gluconate and pentitols is catalysed by phosphotransferase systems unique to these bacteria. Similarly, the initial steps in pentitol dissimilation are mediated by enzymes found only in Lb. casei and Streptococcus avium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号