首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
珠江三角洲3种典型森林类型乔木叶片生态化学计量学   总被引:13,自引:3,他引:13       下载免费PDF全文
以珠江三角洲3种典型森林类型(常绿阔叶林、针阔混交林和针叶林)为研究对象, 分析了各类型优势乔木叶片C、N、P化学计量特征。结果显示, 所有研究个体叶片C、N、P含量范围分别为434-537、6.8-23.0和0.56-2.10 mg·g-1, C:N、C:P和N:P的分布区间分别为 21.22-70.74、227.14-844.64和5.26-20.91, 且N与P之间、C:N与C:P之间具有较好的协同性。3种森林类型中, 针叶林乔木叶片C含量最大, 加权平均值为(517.85 ± 35.96) mg·g-1, 其次是针阔混交林((509.47 ± 19.38) mg·g-1), 常绿阔叶林最小((481.59 ± 18.35) mg·g-1); 针叶林乔木叶片N含量((12.20 ± 5.65) mg·g-1)最大, 其次是常绿阔叶林((11.50 ± 4.24) mg·g-1), 针阔混交林((10.51 ± 5.22) mg·g-1)最小; 各森林类型乔木叶片P含量大小顺序与C含量完全相反, 为常绿阔叶林((1.31 ± 0.48) mg·g-1)>针阔混交林((0.96 ± 0.61) mg·g-1)>针叶林((0.77 ± 0.40) mg·g-1)。针阔混交林乔木叶片C:N (51.35 ± 13.65)最大, 针叶林(47.40 ± 15.85)其次, 常绿阔叶林(45.59 ± 14.70)最小; 各森林类型乔木叶片C:P和N:P大小顺序相同, 均为针叶林(727.47 ± 231.52、15.71 ± 3.76)>针阔混交林(553.01 ± 152.32、10.93 ± 1.89)>常绿阔叶林(412.19 ± 200.91、9.46 ± 4.28)。同时根据乔木叶片N:P还发现, 少数阔叶树种和常绿阔叶林生产力受到N素限制。  相似文献   

2.
中国主要湿地植被氮和磷生态化学计量学特征   总被引:1,自引:0,他引:1       下载免费PDF全文
研究湿地植物氮(N)和磷(P)的生态化学计量学特征对揭示植物与生境的耦合关系具有重要意义。通过收集中国52个采样区湿地植物不同器官和全株样本的N和P含量, 对其进行分类和统计分析, 探讨植物器官、生长期、植物类型、湿地类型和气候带对湿地植物N和P生态化学计量学特征的影响。结果表明: 1)湿地植物各器官N、P和N:P的几何平均值均表现为叶片(N, 16.07 mg·g-1; P, 1.85 mg·g-1; N:P, 8.67) >地上部分(N, 13.54 mg·g-1; P, 1.72 mg·g-1; N:P, 7.96) >茎(N, 7.86 mg·g-1; P, 1.71 mg·g-1; N:P, 4.58); 2)叶片N含量随时间变化呈现“三峰”型变化, 峰值分别出现在5月、7月和9月; 茎的N含量随时间变化表现为“双峰”型, 峰值出现在5月和9月; 成熟期之前, 植物叶片的N:P与N趋同波动, N:P主要受N含量控制; 衰老期N:P受P含量控制。3)湿地类型是影响植物叶片N和P生态化学计量特征的关键因素, N和P含量最高值出现在河流, 最低值出现在沼泽湿地, N:P的变化趋势大致与之相反。4)植物叶片N、P和N:P的几何平均值都表现为热带>温带>亚热带, 但总体差异不显著(p > 0.05)。5)中国大部分湿地植物叶片N:P < 14, 表现为N限制。  相似文献   

3.
为探索植物叶片氮(N)、磷(P)、碳(C)生态化学计量特征随植物生长发育的变化规律, 在普洱季风常绿阔叶林中, 选取6种优势植物种(红锥(Castanopsis hystrix)、短刺锥(Castanopsis echidnocarpa)、泥柯(Lithocarpus fenestratus)、截果柯(Lithocarpus truncatus)、西南木荷(Schima wallichii)、茶梨(Anneslea fragrans))采集叶片, 分析其N、P、C含量及化学计量比随植物生长发育的变化。结果显示: 6种植物在不同生长阶段的N含量变化范围为7.90-17.72 mg·g-1, P为0.34-1.39 mg·g-1, C为458.48-516.87 mg·g-1, C:N为28.04-65.70, N:P为11.41-63.50, C:P为355.23-1878.17, 且不同生长阶段6种植物及总体叶片N、P、C含量及其化学计量比变化趋势各异。在变异系数上, N:P比整体变异最大, 为36.46% (变化范围19.19%-91.65%), 其次为C:P, 为34.80% (变化范围15.99%-91.60%), C的整体变异最小, 为3.12% (变化范围1.61%-5.89%)。变异来源分析结果显示, N含量、C含量、C:N、N:P及C:P均主要受植物生长阶段的影响, 而P含量主要受物种与生长阶段的交互作用影响。  相似文献   

4.
青藏高原草地植物群落冠层叶片氮磷化学计量学分析   总被引:28,自引:1,他引:28       下载免费PDF全文
叶片氮(N)和磷(P)的化学计量学研究涉及到植物生态学的众多领域与多个尺度, 然而各个尺度上的化学计量学研究并未同步展开。通过对青藏高原47个草地样地连续3年的调查, 分析了当地群落水平上的植物叶片N、P含量及其化学计量学特征, 并结合温度和降水气候数据研究了N、P含量及N:P比值与这两个气候因子的相关关系。研究结果显示: 青藏高原草地群落水平的叶片N含量变化范围为14.8-36.7 mg·g-1, 平均为23.2 mg·g-1; P含量变化范围为0.8-2.8 mg·g-1, 平均为1.7 mg·g-1; N:P比值变化范围为6.8-25.6, 平均为13.5。群落叶片N含量与P含量呈显著正相关关系, 叶片的N:P比值与P含量呈显著负相关关系, N:P比值的变化主要由P含量变化决定。另外发现: 群落水平叶片N、P含量及N:P比值存在着显著的年际变化, 叶片的N、P含量及N:P比值与年平均气温之间存在着极显著的相关关系。通过该研究结果推测: P含量较高的变异系数及其与环境因子表现出的显著相关性, 在一定程度上体现了植物群落对当地气候条件的一种适应。  相似文献   

5.
刘建国  刘卫国 《植物学报》2017,52(6):756-763
短命植物是荒漠生态系统的重要组成部分。为了解短命植物叶片N、P化学计量特征随生长季变化的特点,选择古尔班通古特沙漠6种优势短命植物(3种一年生短命植物,3种多年生类短命植物)为研究对象,对比了2种生活型短命植物叶片N、P化学计量特征随生长季变化特点。结果表明,3种一年生短命植物尖喙牻牛儿苗(Erodium oxyrrhynchum)、小花荆芥(Nepeta micrantha)以及条叶庭芥(Alyssum linifolium)N含量平均值(±标准差)分别为(11.23±7.16)、(14.11±6.38)和(10.85±6.14)mg·g–1;P含量平均值分别为(2.82±0.73)、(3.12±1.24)和(3.43±0.55)mg·g–1;3种多年生类短命植物独尾草(Eremurus chinensis)、雅葱(Scorzonera pusilla)和簇花芹(Soranthus meyeri)N含量的平均值分别为(19.97±5.94)(15.08±4.01)和(17.94±9.03)mg·g–1;P含量平均值分别为(3.55±0.83)、(2.73±1.11)和(5.03±0.65)mg·g–1。由此可见,短命植物在生长过程中叶片N-P化学计量特征存在一定差异。各物种N、P含量在生长初期都大于其它生长季节,在生长旺季随叶片生物量增加,N、P含量呈下降趋势;而在生长末季N、P含量又有所回升。相关性分析表明,不同生活型短命植物元素间的关系存在差异,但同一生活型短命植物元素间的关系并无显著差异,体现了种内一致性。  相似文献   

6.
坡向对植物叶片生态化学计量特征及功能性状有显著影响。研究不同坡向上植物叶片生态化学计量特征与功能性状有助于了解植物对环境变化的响应及适应。以兰州地区狗娃花叶片为研究对象,分析其生态化学计量及功能性状随坡向的变化特征。结果显示:阳坡叶片C含量(408.12 g·kg-1)、C∶P(348.61)与N∶P(29.71)均显著高于阴坡(其值分别为400.75 g·kg-1、196.69和16.60),N含量(34.81 g·kg-1)和C∶N(11.72)与阴坡无显著差异(其值分别为34.07 g·kg-1和12.24),而P含量(1.67 g·kg-1)显著小于阴坡(2.56 g·kg-1);阳坡比叶面积及叶片含水量(10.55 cm2·g-1、59.06%)与阴坡(9.70 cm2·g-1、60.65%)无显著差异,叶干物质含量(0.14 g·g-1)和叶面积(0.31 cm2)均显著低于阴坡...  相似文献   

7.
碳(C)、氮(N)、磷(P)生态化学计量比是生态系统过程与功能的重要特征, 开展种群生态化学计量学研究可以细化植物种群化学计量学内容, 确定限制植物生长的元素类型, 同时为大尺度模型的发展提供数据基础。为阐明我国毛竹(Phyllostachys edulis)林C、N、P化学计量学特征, 通过对毛竹主要产区文献数据的搜集整理与分析, 探索我国毛竹林“植物-土壤-凋落物”系统C、N、P及C:N、C:P、N:P生态化学计量特征, 以及不同组分生态化学计量特征与经纬度之间的关系。结果表明: 1)我国毛竹林叶片C含量为478.30 mg·g-1, N含量为22.20 mg·g-1, P含量为1.90 mg·g-1, C:N为26.80, C:P为299.60, N:P为14.40; 毛竹林0-20 cm土层C含量为21.53 mg·g-1, N含量为1.66 mg·g-1, P含量0.41 mg·g-1, C:N为14.20, C:P为66.74, N:P为4.28; 毛竹凋落物C含量为438.49 mg·g-1, N含量为13.39 mg·g-1, P含量为0.86 mg·g-1, C:N为22.53, C:P为665.67, N:P为22.55。2)毛竹林“植物-土壤-凋落物”系统中, C:N表现为: 叶片>凋落物>土壤, C:P和N:P均表现为: 凋落物>叶片>土壤, 叶片N、P再吸收率分别为39.68%和54.74%, 我国毛竹林生长发育总体上可能受到P限制或者N和P两种元素的双重限制。3)纬度梯度: 叶片N含量、N:P随纬度增加而增加, C:N随纬度增加而降低。经度梯度: 叶片N:P随经度增加而增加, P含量、C:N随经度增加而降低; 土壤C:N随经度增加而增加, N含量随经度增加而降低; 凋落物N含量随经度增加而降低。4)叶片N含量与年平均气温和年降水量均存在明显负相关关系, 但对温度的响应比降水更敏感, 叶片N含量与纬度呈正相关关系, 支持“温度-植物生理假说”, 反映了植物对自然环境的适应。  相似文献   

8.
为了解新鲜叶凋落物碳(C)、氮(N)、磷(P)化学计量特征对生长季环境因子变化的响应规律,揭示落叶松人工林生态系统养分循环过程,本研究以东北地区4个不同纬度地点的落叶松人工林新鲜针叶凋落物为对象,分析了针叶凋落物C、N和P含量与生长季累积温度、累积降水量和土壤养分累计变化量的关系。结果表明:4个地点间落叶松针叶凋落物C、N和P含量变化范围分别为429~497、7.94~16.27和1.04~2.49 mg·g-1。随生长季累积温度升高,落叶松针叶凋落物C、N含量升高,P含量降低,C∶P和N∶P升高;随生长季累积降水量增加,落叶松针叶凋落物C、N含量降低,C∶N升高,C∶P和N∶P降低。凉水、帽儿山、露水河和草河口生长季土壤全氮变化量分别为(-0.84±0.27)、(-0.42±0.07)、(0.04±0.01)和(1.44±0.01) g·kg-1,土壤全磷变化量分别为(0.98±0.04)、(-0.24±0.05)、(-0.30±0.06)和(-0.95±0.05) g·kg-1。4个地点的人工林中,落叶松普遍受到N限...  相似文献   

9.
庄伟伟  王明明 《植物研究》2022,42(5):896-909
为深入了解荒漠植物营养元素计量特征,认识元素间的交互作用,揭示不同生长期、不同沙丘部位植物元素含量差异。以古尔班通古特沙漠8种优势草本植物(4种1年生植物,4种短命植物)为研究对象,采集不同生长期(旺盛期、枯萎期)、不同沙丘部位(坡上、腹地)的植株,测定全株植物的10种营养元素(C、N、P、K、Na、Mg、Al、Mn、Cu、Zn)。结果表明:(1)8种植物元素含量存在显著差异,体现了植物因遗传特性不同而对元素选择吸收的特点,含量为:C(230.19~401.82 mg·g-1)、N(11.31~18.85 mg·g-1)、P(0.95~2.08 mg·g-1)、K(16.12~29.79mg·g-1)、Na(0.88~3.31 mg·g-1)、Mg(3.38~5.31 mg·g-1)、Al(0.33~1.99 mg·g-1)、Mn(51.35~105.32 mg·kg-1)、Cu(4.14~6.38 mg·kg<...  相似文献   

10.
为研究风车草(Cyperus alternifolius)和香根草(Vetiveria zizanioides)迁移养分的能力,建立17.0m2风车草潜流式人工湿地和13.3 m2香根草潜流式人工湿地处理猪场废水,在四个季节末测定植物生物量和组织氮、磷、铜、锌含量.结果表明,香根草地下部生物量大于风车草,地上部生物量则是风车草大于香根草.风车草年地上部收获量为3406.47 g·m-2,比香根草的1483.88 g·m-2高2.3倍;风车草的氮含量为22.69 mg·g-1,比香根草的15.44 mg·g-1高7.25 mg·g-1;风车草的磷含量为6.09 mg·g-1,比香根草的5.47 mg·g-1高0.62 mg·g-1.植株含铜、锌量风车草略比香根草高.风车草每年迁移N 68.72 g·m-2和P18.49 g·m-2,香根草迁移N 8.93 g·m-2和P 3.69 g·m-2.风车草人工湿地每年由植物迁移的氮、磷、铜、锌比香根草高4~7倍.  相似文献   

11.
Understanding the geographic patterns and potential drivers of leaf stoichiometry is critical for modelling the nutrient fluxes of ecosystems and to predict the responses of ecosystems to global changes. This study aimed to explore the altitudinal patterns and potential drivers of leaf C∶N∶P stoichiometry. We measured the concentrations of leaf C, N and P in 175 plant species as well as soil nutrient concentrations along an altitudinal transect (500–2300 m) on the northern slope of Changbai Mountain, China to explore the response of leaf C∶N∶P stoichiometry to plant growth form (PGF), climate and soil. Leaf C, N, P and C∶N∶P ratios showed significant altitudinal trends. In general, leaf C and C∶N∶P ratios increased while leaf N and P decreased with elevation. Woody and herbaceous species showed different responses to altitudinal gradients. Trees had the largest variation in leaf C, C∶N and C∶P ratios, while herbs showed the largest variation in leaf N, P and N∶P ratio. PGF, climate and soil jointly regulated leaf stoichiometry, explaining 17.6% to 52.1% of the variation in the six leaf stoichiometric traits. PGF was more important in explaining leaf stoichiometry variation than soil and climate. Our findings will help to elucidate the altitudinal patterns of leaf stoichiometry and to model ecosystem nutrient cycling.  相似文献   

12.
Plant carbon : nitrogen : phosphorus (C:N:P) ratios are powerful indicators of diverse ecological processes. During plant development and growth, plant C:N:P stoichiometry responds to environmental conditions and physiological constraints. However, variations caused by effects of sampling (i.e. sampling date, leaf age and root size) often have been neglected in previous studies. We investigated the relative contributions of sampling date, leaf age, root size and species identity to stoichiometric flexibility in a field mesocosm study and a natural grassland in Inner Mongolia. We found that sampling date, leaf age, root size and species identity all significantly affected C:N:P stoichiometry both in the pot study as well as in the field. Overall, C:N and C:P ratios increased significantly over time and with increasing leaf age and root size, while the dynamics of N:P ratios depended on species identity. Our results suggest that attempts to synthesize C:N:P stoichiometry data across studies that span regional to global scales and include many species need to better account for temporal variation.  相似文献   

13.
The extensive use of traits in ecological studies over the last few decades to predict community functions has revealed that plant traits are plastic and respond to various environmental factors. These plant traits are assumed to predict how plants compete and capture resources. Variation in stoichiometric ratios both within and across species reflects resource capture dynamics under competition. However, the impact of local plant diversity on species‐specific stoichiometry remains poorly studied. Here, we analyze how spatial and temporal diversity in resource‐acquisition traits affects leaf elemental stoichiometry of plants (i.e. the result of resource capture) and how flexible this stoichiometry is depending on the functional composition of the surrounding community. Therefore, we assessed inter‐ and intraspecific variations of leaf carbon (C), nitrogen (N), and phosphorus (P) (and their ratios) of 20 grassland species in a large trait‐based plant diversity experiment located in Jena (Germany) by measuring leaf elemental concentrations at the species‐level along a gradient in plant trait dissimilarity. Our results show that plants showed large intra‐ and interspecific variation in leaf stoichiometry, which was only partly explained by the functional group identity (grass or herb) of the species. Elemental concentrations (N, P, but not C) decreased with plant species richness, and species tended to become more deviant from their monoculture stoichiometry with increasing trait dissimilarity in the community. These responses differed among species, some consistently increased or decreased in P and N concentrations; for other species, the negative or positive change in P and N concentrations increased with increasing trait difference between the target species and the remaining community. The strength of this relationship was significantly associated to the relative position of the species along trait gradients related to resource acquisition. Trait‐difference and trait‐diversity thus were important predictors of how species’ resource capture changed in competitive neighbourhoods.  相似文献   

14.
He JS  Fang J  Wang Z  Guo D  Flynn DF  Geng Z 《Oecologia》2006,149(1):115-122
Nitrogen (N) and carbon–nitrogen (C:N) ratio are key foliar traits with great ecological importance, but their patterns across biomes have only recently been explored. We conducted a systematic census of foliar C, N and C:N ratio for 213 species, from 41 families over 199 research sites across the grassland biomes of China following the same protocol, to explore how different environmental conditions and species composition affect leaf N and C:N stoichiometry. Leaf C:N stoichiometry is stable in three distinct climatic regions in Inner Mongolia, the Tibetan Plateau, and Xinjiang Autonomous Region, despite considerable variations among co-existing species and among different vegetation types. Our results also show that life form and genus identity explain more than 70% of total variations of foliar N and C:N ratio, while mean growing season temperature and growing season precipitation explained only less than 3%. This suggests that, at the biome scale, temperature affects leaf N mainly through a change in plant species composition rather than via temperature itself. When our data were pooled with a global dataset, the previously observed positive correlation between leaf N and mean annual temperature (MAT) at very low MATs, disappeared. Thus, our data do not support the previously proposed biogeochemical hypothesis that low temperature limitations on mineralization of organic matter and N availability in soils lead to low leaf N in cold environments.  相似文献   

15.
The nutritional demands of animals vary by taxon. Across landscapes, communities of animals experience variability in the stoichiometry of carbon and nutrients within their resource base. Thus, we expect stoichiometry to contribute to the spatial variance in the demographic parameters of animal communities. Here, we measure how the composition of a litter-nesting tropical rainforest ant community is influenced by spatial variation in environmental stoichiometry relative to litter biomass, a known predictor of ant density. We found the density of ants and their nests were strongly related to litter biomass and carbon: phosphorus stoichiometry. The spatial variation in soil nutrients, which determines leaf litter stoichiometry, was an excellent predictor of nest size in the two most common genera of ants. We found a negative relationship between species' growth rate and local soil stocks of phosphorus. Overall, the density of litter-dwelling ants varied greatly across this tropical forest landscape and environmental stoichiometry can account for limits on ant density independent of the biomass of the leaf litter resource base.  相似文献   

16.
《植物生态学报》2014,38(9):929
荒漠草本植物是荒漠生态系统物种多样性的主体, 对其生物量分配及叶片化学计量特征随植物生长的变化规律的研究有助于深入了解荒漠草本植物生存策略和功能特征。该文选择古尔班通古特沙漠4种优势草本(2种短命植物, 2种一年生长营养期植物)为研究对象, 通过野外原位多时段取样, 对比研究了四者生物量分配、叶片N-P化学计量学随植物生长的变化特征, 以及二者之间的关系。结果表明, 在生物量累积过程中, 4种植物根冠比逐渐减小, 地上与地下生物量间的相关生长关系也发生变化, 其中琉苞菊(Hyalea pulchella)和角果藜(Ceratocarpus arenarius)的相关生长指数先增加后减小, 并趋于稳定, 而尖喙牻牛儿苗(Erodium oxyrrhynchum)和沙蓬(Agriophyllum squarrosum)的相关生长指数由小到大并趋于等速生长。琉苞菊叶片N、P含量呈逐渐增长趋势, 而另外3种植物呈下降趋势, 表明所研究的荒漠植物在生长过程中, 叶片N-P化学计量发生改变, 叶片化学计量特征与生物量指标的相关性较弱。  相似文献   

17.
为探索植物叶片氮(N)、磷(P)、碳(C)生态化学计量特征随植物生长发育的变化规律,在普洱季风常绿阔叶林中,选取6种优势植物种(红锥(Castanopsis hystrix)、短刺锥(Castanopsis echidnocarpa)、泥柯(Lithocarpus fenestratus)、截果柯(Lithocarpus truncatus)、西南木荷(Schima wallichii)、茶梨(Anneslea fragrans))采集叶片,分析其N、P、C含量及化学计量比随植物生长发育的变化。结果显示:6种植物在不同生长阶段的N含量变化范围为7.90–17.72 mg·g–1,P为0.34–1.39 mg·g–1,C为458.48–516.87 mg·g–1,C:N为28.04–65.70,N:P为11.41–63.50,C:P为355.23–1 878.17,且不同生长阶段6种植物及总体叶片N、P、C含量及其化学计量比变化趋势各异。在变异系数上,N:P比整体变异最大,为36.46%(变化范围19.19%–91.65%),其次为C:P,为34.80%(变化范围15.99%–91.60%),C的整体变异最小,为3.12%(变化范围1.61%–5.89%)。变异来源分析结果显示,N含量、C含量、C:N、N:P及C:P均主要受植物生长阶段的影响,而P含量主要受物种与生长阶段的交互作用影响。  相似文献   

18.
刘旭艳  胡宇坤 《应用生态学报》2020,31(10):3385-3394
探究大兴安岭典型森林沼泽不同植物叶片和细根生态化学计量特征,能够为进一步认识高纬度气候敏感生态系统养分利用策略和物质循环过程提供依据。对大兴安岭地区兴安落叶松-苔草、兴安落叶松-笃斯越桔-藓类和兴安落叶松-杜香-泥炭藓3种典型森林沼泽19种优势和亚优势维管植物叶片和细根碳氮磷计量特征(C∶N∶P)进行比较,分析不同森林沼泽类型、植物生长型和菌根类型叶片和细根C∶N∶P差异,通过标准化主轴回归分析叶片与细根C∶N∶P的关系。结果表明: 叶片C∶N∶P在种间水平具有最大的变异(42.5%~84.6%),且叶片和细根种间变异大小均为N∶P>C∶N>C∶P。土壤养分和水分含量较高的兴安落叶松-苔草沼泽叶片与细根C∶N和C∶P值较低,且3种森林沼泽植物叶片和细根N∶P均小于10,受N限制。草本植物叶片C∶P和细根C∶N、C∶P显著低于木本植物。外生菌根和杜鹃花类菌根植物叶片和细根C∶N和C∶P高于丛枝菌根和无菌根植物,且杜鹃花类菌根植物叶片和细根C∶P显著高于外生菌根植物。不同森林沼泽、生长型、菌根类型植物叶片和细根C∶N和C∶P差异明显,而N∶P相对稳定。森林沼泽植物叶片与细根C∶N、C∶P和N∶P呈线性正相关,植物地上与地下部分在生态化学计量特征上存在协同。  相似文献   

19.
The dynamics of leaf nitrogen (N) and phosphorus (P) have been intensively explored in short-term experiments, but rarely at longer timescales. Here, we investigated leaf N : P stoichiometry over a 27-year interval in an Inner Mongolia grassland by comparing leaf N : P concentration of 2006 with that of 1979. Across 80 species, both leaf N and P increased, but the increase in leaf N lagged behind that of leaf P, leading to a significant decrease in the N : P ratio. These changes in leaf N : P stoichiometry varied among functional groups. For leaf N, grasses increased, woody species tended to increase, whereas forbs showed no change. Unlike leaf N, leaf P of grasses and forbs increased, whereas woody species showed no change. Such changes may reflect N deposition and P release induced by soil acidification over the past decades. The interannual effect of precipitation may somewhat have reduced the soil available N, leading to the more modest increase of leaf N than of leaf P. Thus, leaf N : P stoichiometry significantly responded to long-term environmental changes in this temperate steppe, but different functional groups responded differently. Our results indicate that conclusions of plant stoichiometry under short-term N fertilization should be treated with caution when extrapolating to longer timescales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号