首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tumor angiogenesis is the uncontrolled growth of blood vessels in tumors,serving to supply nutrients and oxygen,and remove metabolic wastes.Kaposi's sarcoma (KS),a multifocal angioproliferative disorder characterized by spindle cell proliferation,neo-angiogenesis,inflammation,and edema,is associated with infection by Kaposi's sarcoma-associated herpesvirus (KSHV).Recent studies indicate that KSHV infection directly promotes angiogenesis and inflammation through an autocrine and paracrine mechanism by inducing pro-angiogenic and pro-inflammatory cytokines.Many of these cytokines are also expressed in KS lesions,implicating a direct role of KSI-IV in the pathogenesis of this malignancy.Several KSHV genes are involved in KSHV-induced angiogenesis.These studies have provided insights into the pathogenesis of KS,and identified potential therapeutic targets for this malignancy.  相似文献   

2.
3.
Kaposi's sarcoma-associated herpesvirus (KSHV) is associated with Kaposi's sarcoma (KS), primary effusion lymphoma (PEL), and multicentric Castleman's disease. Most KS tumor cells are latently infected with KSHV and are of endothelial origin. While PEL-derived cell lines maintain KSHV indefinitely, all KS tumor-derived cells to date have lost viral genomes upon ex vivo cultivation. To study KSHV latency and tumorigenesis in endothelial cells, we generated telomerase-immortalized human umbilical vein endothelial (TIVE) cells. TIVE cells express all KSHV latent genes 48 h postinfection, and productive lytic replication could be induced by RTA/Orf50. Similar to prior models, infected cultures gradually lost viral episomes. However, we also obtained, for the first time, two endothelial cell lines in which KSHV episomes were maintained indefinitely in the absence of selection. Long-term KSHV maintenance correlated with loss of reactivation in response to RTA/Orf50 and complete oncogenic transformation. Long-term-infected TIVE cells (LTC) grew in soft agar and proliferated under reduced-serum conditions. LTC, but not parental TIVE cells, formed tumors in nude mice. These tumors expressed high levels of the latency-associated nuclear antigen (LANA) and expressed lymphatic endothelial specific antigens as found in KS (LYVE-1). Furthermore, host genes, like those encoding interleukin 6, vascular endothelial growth factor, and basic fibroblast growth factor, known to be highly expressed in KS lesions were also induced in LTC-derived tumors. KSHV-infected LTCs represent the first xenograft model for KS and should be of use to study KS pathogenesis and for the validation of anti-KS drug candidates.  相似文献   

4.
The molecular pathology of Kaposi's sarcoma-associated herpesvirus   总被引:9,自引:0,他引:9  
Kaposi's sarcoma (KS)-associated herpesvirus (KSHV) is the eighth and most recently identified human herpesvirus (HHV-8). KSHV was discovered in 1994 by Chang et al. who used representational difference analysis to search for DNA sequences present in AIDS-associated KS but not in adjacent normal skin [1]. The virus has since been shown to be specifically associated with all forms of this disease and has fulfilled all of Hill's criteria for causation (reviewed in ). KSHV is also found in all cases of primary effusion lymphoma and in a plasmablastic variant of multicentric Castleman's disease. Over the last few years a wealth of data has been gained on the role of KSHV genes during infection. This review is an attempt to assemble this information into a more complete picture of how KSHV may cause disease.  相似文献   

5.
Deng JH  Zhang YJ  Wang XP  Gao SJ 《Journal of virology》2004,78(20):11108-11120
Defective viruses often have pivotal roles in virus-induced diseases. Although Kaposi's sarcoma-associated herpesvirus (KSHV) is etiologically associated with Kaposi's sarcoma (KS) and primary effusion lymphoma (PEL), defective KSHV has not been reported. Using differential genetic screening methods, we show that defective KSHV is present in KS tumors and PEL cell lines. To investigate the role of defective viruses in KSHV-induced pathogenesis, we isolated and characterized a lytic replication-defective KSHV, KV-1, containing an 82-kb genomic deletion of solely lytic genes. Cells harboring KV-1 escaped G(0)/G(1) apoptosis induced by spontaneous lytic replication occurred in cells infected with regular KSHV but maintained efficient latent replication. Consequently, KV-1-infected cells had phenotypes of enhanced cell proliferation and transformation potentials. Importantly, KV-1 was packaged as infectious virions by using regular KSHV as helpers, and KV-1-like variants were detected in cultures of two of five KSHV cell lines and 1 of 18 KS tumors. These results point to a potential role for defective viruses in the regulation of KSHV infection and malignant transformation.  相似文献   

6.
Simian retroperitoneal fibromatosis (RF) is a vascular fibroproliferative neoplasm which has many morphological and histological similarities to human Kaposi's sarcoma (KS). Like epidemic KS in AIDS patients, RF is highly associated with an immunodeficiency syndrome (simian acquired immunodeficiency syndrome [SAIDS]) caused by a retrovirus infection. Recently, a new gammaherpesvirus, called Kaposi's sarcoma-associated herpesvirus (KSHV) or human herpesvirus 8 (HHV8), has been identified in KS tumors, suggesting that KS has a viral etiology. Our previous experimental transmission studies and epidemiological data suggest that RF also has an infectious etiology. In order to determine whether a similar virus is also associated with RF, we have assayed for the presence of an unknown herpesvirus using degenerate PCR primers targeting the highly conserved DNA polymerase genes of the herpesvirus family. Here we provide DNA sequence evidence for two new herpesviruses closely related to KSHV from RF tissues of two macaque species, Macaca nemestrina and Macaca mulatta. Our data suggest that KSHV and the putative macaque herpesviruses define a new group within the subfamily Gammaherpesvirinae whose members are implicated in the pathogenesis of KS and KS-like neoplasms in different primate species.  相似文献   

7.
Epidemiology and pathogenesis of Kaposi's sarcoma-associated herpesvirus   总被引:10,自引:0,他引:10  
Kaposi's sarcoma (KS) occurs in Europe and the Mediterranean countries (classic KS) and Africa (endemic KS), immunosuppressed patients (iatrogenic or post-transplant KS) and those with acquired immune deficiency syndrome (AIDS), especially among those who acquired human immunodeficiency virus sexually (AIDS-KS). KS-associated herpesvirus (KSHV or HHV-8) is unusual among herpesviruses in having a restricted geographical distribution. Like KS, which it induces in immunosuppressed or elderly people, the virus is prevalent in Africa, in Mediterranean countries, among Jews and Arabs and certain Amerindians. Distinct KSHV genotypes occur in different parts of the world, but have not been identified as having a differential pathogenesis. KSHV is aetiologically linked to three distinct neoplasms: (i) KS, (ii) primary effusion lymphoma, and (iii) plasmablastic multicentric Castleman's disease. The histogenesis, clonality and pathology of the tumours are described, together with the epidemiology and possible modes of transmission of the virus.  相似文献   

8.
The response of Kaposi's sarcoma (KS)-associated herpesvirus (KSHV) to inflammatory cytokine treatment of experimentally infected endothelial cells was investigated. The cytokines inhibited spontaneous KSHV lytic gene expression but not the level of infection. The data suggest that if inflammatory cytokines present in KS lesions contribute to KSHV pathogenesis, they do so in part by promoting latent KSHV infection of the endothelial cells.  相似文献   

9.
Kaposi's sarcoma-associated herpesvirus (KSHV) is the infectious cause of Kaposi's sarcoma, primary effusion lymphoma, and plasmablastic multicentric Castleman's disease. STAT3 has been shown to be important for the maintenance of primary effusion lymphoma cells in culture and is chronically activated in many tumor cell lines. However, little is known about the role of KSHV in the activation of STAT3 or the role of STAT3 in KS tumors. We demonstrate that STAT3 is activated by KSHV infection of endothelial cells, the KS tumor cell type, in a biphasic fashion. Viral binding and entry activate STAT3 in the first 2 h after infection, but this activation dissipates by 4 h postinfection. By 12 h after KSHV infection, concomitant with the expression of latent genes, STAT3 is once again activated, and this activation persists for as long as latent infection is maintained. Activated STAT3 translocates to the nucleus, where it can bind to STAT3-specific DNA elements and can activate STAT3-dependent promoter activity. Conditioned medium from KSHV-infected endothelial cells is able to transiently activate STAT3, indicating the involvement of a secreted factor and that a latency-associated factor in KSHV-infected cells is necessary for sustained activation. KSHV upregulates gp130 receptor expression, and both gp130 and JAK2 are required for the activation of STAT3. However, neither human nor viral interleukin-6 is required for STAT3 activation. Persistent activation of the oncogenic signal transducer, STAT3, by KSHV may play a critical role in the viral pathogenesis of Kaposi's sarcoma, as well as in primary effusion lymphomas.  相似文献   

10.
The Kaposi's sarcoma-associated herpesvirus (KSHV/HHV8) is associated with Kaposi's sarcoma (KS) as well as primary effusion lymphomas (PEL). The expression of viral proteins capable of inactivating the p53 tumor suppressor protein has been implicated in KSHV oncogenesis. However, DNA-damaging drugs such as doxorubicin are clinically efficacious against PEL and KS, suggesting that p53 signaling remains intact despite the presence of KSHV. To investigate the functionality of p53 in PEL, we examined the response of a large number of PEL cell lines to doxorubicin. Two out of seven (29%) PEL cell lines harbored a mutant p53 allele (BCBL-1 and BCP-1) which led to doxorubicin resistance. In contrast, all other PEL containing wild-type p53 showed DNA damage-induced cell cycle arrest, p53 phosphorylation, and p53 target gene activation. These data imply that p53-mediated DNA damage signaling was intact. Supporting this finding, chemical inhibition of p53 signaling in PEL led to doxorubicin resistance, and chemical activation of p53 by the Hdm2 antagonist Nutlin-3 led to unimpaired induction of p53 target genes as well as growth inhibition and apoptosis.  相似文献   

11.
12.
Chen L  Lagunoff M 《Journal of virology》2005,79(22):14383-14391
Kaposi's sarcoma (KS)-associated herpesvirus (KSHV) is the infectious cause of Kaposi's sarcoma and is also associated with two B-cell lymphoproliferative diseases, primary effusion lymphoma and the plasmablastic form of multicentric Castleman's disease. KSHV is also found in the B-cell fraction of peripheral blood mononucleocytes of some KS patients. Despite in vivo infection of B cells and the ability of KSHV to infect many cell types in culture, to date B cells in culture have been resistant to KSHV infection. However, as shown here, the lack of infection is not due to the inability of B cells to support latent KSHV infection. When KSHV DNA is introduced into B cells, the virus is maintained as an episome and can establish and maintain latency over the course of months. As in all primary effusion lymphoma cell lines, there is a low level of spontaneous lytic replication in latently infected BJAB cells. Importantly, viral gene expression is similar to that of primary effusion lymphoma cell lines. Furthermore, the virus can be reactivated to higher levels with specific stimuli and transmitted to other cells, indicating that this is a productive infection. Thus B cells in culture are capable of establishing, maintaining, and reactivating from latency. These studies provide a controlled system to analyze how KSHV alters B cells during KSHV latency and reactivation.  相似文献   

13.
14.
Di Qin  Chun Lu 《中国病毒学》2008,23(6):473-485
Kaposi sarcoma-associated herpesvirus (KSHV),also known as human herpesvirus 8 (HHV-8),is discovered in 1994 from Kaposi's sarcoma (KS) lesion of an acquired immunodeficiency syndrome (AIDS)patient.In addition to its association with KS,KSHV has also been implicated as the causative agent of two other AIDS-associated malignancies:primary effusion lymphoma (PEL) and multicentric Castleman's disease (MCD).KSHV is a complex DNA virus that not only has the ability to promote cellular growth and survival for tumor development,but also can provoke deregulated angiogenesis,inflammation,and modulate the patient's immune system in favor of tumor growth.As KSHV is a necessary but not sufficient etiological factor for KS,human immunodeficiency virus (HIV) is a very important cofactor.Here we review the basic information about the biology of KSHV,development of pathogenesis and interaction between KSHV and HIV.  相似文献   

15.
Kaposi's sarcoma-associated herpesvirus (KSHV) is the infectious cause of Kaposi's sarcoma (KS) and certain lymphoproliferations particularly in the context of human immunodeficiency virus (HIV) type 1-induced immunosuppression. The introduction of effective therapies to treat HIV has led to a decline in the incidence of KS, suggesting that immune responses may play a role in controlling KSHV infection and pathogenesis. Cytotoxic-T-lymphocyte (CTL) activity against KSHV proteins has been demonstrated; however, the identification of KSHV CTL epitopes remains elusive and problematic. Although the herpesvirus genomic layout is generally conserved, KSHV encodes a unique hypervariable protein, K1, with intense biological selection pressure at specific amino acid sites. To investigate whether this variability is partly driven by cellular immunity, we designed K1 peptides that match only the unique viral sequence for every individual studied here (autologous peptides). We identified functional CTL epitopes within K1's most variable areas, and we show that a given individual responds only to autologous peptides and not to peptides from other individuals. Furthermore, these epitopes are highly conserved sequences within KSHV isolates from a specific strain but are not conserved between different strains. We conclude that CTL recognition contributes to K1, and therefore to KSHV, evolution.  相似文献   

16.
17.
The patchy geographical distributions of classic Kaposi's sarcoma (KS) and human herpesvirus type 8 (HHV-8), better known as Kaposi's sarcoma-associated herpesvirus (KSHV) remain unexplained. It has been proposed that certain species of bloodsucking insects ('promoter arthropods') promote the reactivation of HHV-8/KSHV and facilitate both HHV-8/KSHV transmission and KS development. This hypothesis was tested by sampling the presence and density of human-biting Diptera with CDC light traps in two areas of Sardinia with contrasting incidence rates of classic KS. In total, 11 030 specimens (99.9% sandflies and 0.1% mosquitoes) belonging to 10 species were collected from 40 rural sites. Five of these species are considered to be possible promoter arthropods because of the irritation their bites cause: Phlebotomus perniciosus Newstead; Phlebotomus perfiliewi Parrot (Diptera: Psychodidae); Aedes berlandi Seguy; Culiseta annulata (Schrank) and Culex theileri Theobald (Diptera: Culicidae). Five species are probable 'non-promoters' because their bites are not particularly irritating: Culiseta longiareolata (Macquart); Culex pipiens s.l .; Anopheles algeriensis Theobald; Anopheles maculipennis s.l. , and Anopheles plumbeus Stephens. A significant correlation was found between the geographical distribution of promoter arthropods and incidence rates of KS (Spearman's r = 0.59 ,P < 0.01). Promoter arthropods were more likely to be caught in areas with cutaneous leishmaniasis and a past high prevalence of malaria, and in areas of limestone, acid volcanic soil and cereal cultivation. The study supports the association between promoter arthropods and classic KS, which may explain the geographic variability of KS and HHV-8/KSHV, and highlights the links with a number of variables previously associated with the incidence of KS.  相似文献   

18.
The Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of Kaposi's sarcoma (KS), and the induction of an invasive cellular phenotype by KSHV following de novo infection is an important pathogenic component mediating tumor progression. The metastasis suppressor gene known as Nm23-H1 regulates tumor cell invasiveness, but whether KSHV itself regulates Nm23-H1 expression or subcellular localization, and whether this impacts cell invasiveness, has not been established. We found that KSHV increases expression and nuclear translocation of Nm23-H1 and that nuclear translocation of Nm23-H1 is regulated by the KSHV-encoded latency-associated nuclear antigen (LANA). Moreover, activation of the Ras-BRaf-MAPK (mitogen-activated protein kinase) signal transduction pathway, secretion of promigratory factors associated with this pathway, and cell invasiveness are dependent on KSHV regulation of Nm23-H1. Finally, induction of cytoplasmic overexpression of Nm23-H1 using a pharmacologic inhibitor of DNA methylation reduced KSHV-associated Ras-BRaf-MAPK pathway activation and suppressed KSHV-induced invasiveness. These data provide the first evidence for KSHV regulation of Nm23-H1 as a mechanism for KSHV induction of an invasive cellular phenotype and support the potential utility of targeting Nm23-H1 as a therapeutic approach for the treatment of KS.  相似文献   

19.
The majority of Kaposi's sarcoma-associated herpesvirus (KSHV)-infected cells identified in vivo contain latent KSHV, with lytic replication in only a few percent of cells, as is the case for the cells of Kaposi's sarcoma (KS) lesions. Factors that influence KSHV latent or lytic replication are not well defined. Because persons with KS are often immunosuppressed and susceptible to many infectious agents, including human cytomegalovirus (HCMV), we have investigated the potential for HCMV to influence the replication of KSHV. Important to this work was the construction of a recombinant KSHV, rKSHV.152, expressing the green fluorescent protein (GFP) and neo (conferring resistance to G418). The expression of GFP was a marker of KSHV infection in cells of both epithelial and endothelial origin. The rKSHV.152 virus was used to establish cells, including human fibroblasts (HF), containing only latent KSHV, as demonstrated by latency-associated nuclear antigen expression and Gardella gel analysis. HCMV infection of KSHV latently infected HF activated KSHV lytic replication with the production of infectious KSHV. Dual-color immunofluorescence detected both the KSHV lytic open reading frame 59 protein and the HCMV glycoprotein B in coinfected cells, and UV-inactivated HCMV did not activate the production of infectious KSHV-GFP. In addition, HCMV coinfection increased the production of KSHV from endothelial cells and activated lytic cycle gene expression in keratinocytes. These data demonstrate that HCMV can activate KSHV lytic replication and suggest that HCMV could influence KSHV pathogenesis.  相似文献   

20.
Kaposi's sarcoma (KS), a vascular tumor associated with human immunodeficiency virus type 1 infection, is characterized by spindle-shaped endothelial cells, inflammatory cells, cytokines, growth and angiogenic factors, and angiogenesis. KS spindle cells are believed to be of the lymphatic endothelial cell (LEC) type. Kaposi's sarcoma-associated herpesvirus (KSHV, or human herpesvirus 8) is etiologically linked to KS, and in vitro KSHV infection of primary human dermal microvascular endothelial cells (HMVEC-d) is characterized by the induction of preexisting host signal cascades, sustained expression of latency-associated genes, transient expression of a limited number of lytic genes, sustained induction of NF-κB and several cytokines, and growth and angiogenic factors. KSHV induced robust vascular endothelial growth factor A (VEGF-A) and VEGF-C gene expression as early as 30 min postinfection (p.i.) in serum-starved HMVEC-d, which was sustained throughout the observation period of 72 h p.i. Significant amounts of VEGF-A and -C were also detected in the culture supernatant of infected cells. VEGF-A and -C were also induced by UV-inactivated KSHV and envelope glycoprotein gpK8.1A, thus suggesting a role for virus entry stages in the early induction of VEGF and requirement of KSHV viral gene expression for sustained induction. Exogenous addition of VEGF-A and -C increased KSHV DNA entry into target cells and moderately increased latent ORF73 and lytic ORF50 promoter activation and gene expression. KSHV infection also induced the expression of lymphatic markers Prox-1 and podoplanin as early as 8 h p.i., and a paracrine effect was seen in the neighboring uninfected cells. Similar observations were also made in the pure blood endothelial cell (BEC)-TIME cells, thus suggesting that commitment to the LEC phenotype is induced early during KSHV infection of blood endothelial cells. Treatment with VEGF-C alone also induced Prox-1 expression in the BEC-TIME cells. Collectively, these studies show that the in vitro microenvironments of KSHV-infected endothelial cells are enriched, with VEGF-A and -C molecules playing key roles in KSHV biology, such as increased infection and gene expression, as well as in angiogenesis and lymphangiogenesis, thus recapitulating the microenvironment of early KS lesions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号