首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Symbiobacterium thermophilum, a thermophilic bacterium, is a thermostable tryptophanase producer that can grow only in coculture with a specific Bacillus strain. Two thermostable tryptophanase genes, tna-1 and tna-2, that are located close to each other were cloned into Escherichia coli from S. thermophilum by the DNA-probing method. The nucleotide and deduced amino acid sequences indicate that Tna1 and Tna2 share 92% identical amino acids in a total of 453 amino acids. By means of DNA manipulation with E. coli host-vector systems, Tna1 and Tna2 were produced in very large amounts in enzymatically active forms. Comparison of the NH2-terminal amino acid sequences and the enzymatic properties of the tryptophanases purified from the original S. thermophilum strain and these two tryptophanases from recombinant E. coli cells suggest that in S. thermophilum, only Tna2 is produced and tna-1 is silent. Notwithstanding the great similarity in amino acid sequence between Tna1 and Tna2, the two enzymes differ markedly in activation energy for catalysis and thermostability.  相似文献   

2.
A highly heat-stable amylase gene from an obligately anaerobic and extremely thermophilic bacterium, Dictyoglomus thermophilum, was cloned and expressed in Escherichia coli. The nucleotide sequence of the amylase gene predicts a 686-amino-acid protein of relative molecular mass 81,200, which is consistent with that determined by sodium dodecyl sulfate/polyacrylamide gel electrophoresis of the purified enzyme. The NH2-terminal sequence determined using the enzyme purified from E. coli cells corresponds precisely to that predicted from the nucleotide sequence, except for the absence of the NH2-terminal methionine in the mature protein. When the amylase gene was expressed in E. coli cells, the enzyme was localized in the cytoplasmic fraction; this is probably explained by the absence of the signal sequence for secretion. By using the amylase purified from the E. coli transformant, some enzymatic properties, such as optimum pH, optimum temperature, pH-stability and heat-stability, were examined. The amylase was found to be a highly liquefying-type.  相似文献   

3.
An obligately anaerobic and extremely thermophilic bacterium, Dictyoglomus thermophilum, produces multiple extracellular amylases. In addition to one of the amylase genes, amyA, which we previously cloned and characterized, we have cloned two additional genes, amyB and amyC, coding for amylases of this thermophile, into Escherichia coli and determined their nucleotide sequences. The two amylase genes were expressed under the control of E. coli promoters. Almost all activity was detected in the intracellular fraction in the E. coli cells. The molecular mass and NH2-terminal amino acid sequence of the AmyB enzyme, which was purified from an E. coli transformant containing the amyB gene, confirmed that the reading frame of amyB consisted of 562 amino acids (Mr 67,000). The molecular mass of the AmyC enzyme, estimated by activity staining of a crude extract of E. coli containing amyC, confirmed that AmyC consisted of 498 amino acids (Mr 59,000). The optimal temperatures for AmyB and AmyC activities on soluble starch were 80 degrees C and 70 degrees C, respectively. Both AmyB and AmyC showed a pH optimum of 5.5. AmyB and AmyC showed a different pattern of starch hydrolysis when examined by thin-layer chromatography. Some homology in the amino acid sequences with the functional regions of Taka-amylase A was found in both AmyB and AmyC. The codon usage in the amyA, amyB and amyC genes was highly biased, which reflects the fact that the guanine-plus-cytosine (G + C) content of DNA of D. thermophilum is 29 mol%. The distribution of G and C at each position of the codons was non-random; the G + C content of the first position of codons is significantly high, whereas that of the third position is somewhat low. In addition, codons consisting only of A and T were preferentially used in this thermophile.  相似文献   

4.
Symbiobacterium thermophilum is a tryptophanase-positive thermophile which shows normal growth only in coculture with its supporting bacteria. Analysis of the 16S rRNA gene (rDNA) indicated that the bacterium belongs to a novel phylogenetic branch at the outermost position of the gram-positive bacterial group without clustering to any other known genus. Here we describe the distribution and diversity of S. thermophilum and related bacteria in the environment. Thermostable tryptophanase activity and amplification of the specific 16S rDNA fragment were effectively employed to detect the presence of Symbiobacterium. Enrichment with kanamycin raised detection sensitivity. Mixed cultures of thermophiles containing Symbiobacterium species were frequently obtained from compost, soil, animal feces, and contents in the intestinal tracts, as well as feeds. Phylogenetic analysis and denaturing gradient gel electrophoresis of the specific 16S rDNA amplicons revealed a diversity of this group of bacteria in the environment.  相似文献   

5.
The gene encoding L-rhamnose isomerase (L-RhI) from Pseudomonas stutzeri was cloned into Escherichia coli and sequenced. A sequence analysis of the DNA responsible for the L-RhI gene revealed an open reading frame of 1,290 bp coding for a protein of 430 amino acid residues with a predicted molecular mass of 46,946 Da. A comparison of the deduced amino acid sequence with sequences in relevant databases indicated that no significant homology has previously been identified. An amino acid sequence alignment, however, suggested that the residues involved in the active site of L-RhI from E. coli are conserved in that from P. stutzeri. The L-RhI gene was then overexpressed in E. coli cells under the control of the T5 promoter. The recombinant clone, E. coli JM109, produced significant levels of L-RhI activity, with a specific activity of 140 U/mg and a volumetric yield of 20,000 U of soluble enzyme per liter of medium. This reflected a 20-fold increase in the volumetric yield compared to the value for the intrinsic yield. The recombinant L-RhI protein was purified to apparent homogeneity on the basis of three-step chromatography. The purified recombinant enzyme showed a single band with an estimated molecular weight of 42,000 in a sodium dodecyl sulfate-polyacrylamide gel. The overall enzymatic properties of the purified recombinant L-RhI protein were the same as those of the authentic one, as the optimal activity was measured at 60 degrees C within a broad pH range from 5.0 to 11.0, with an optimum at pH 9.0.  相似文献   

6.
Having previously determined the complete amino acid sequence of 2-keto-4-hydroxyglutarate aldolase from Escherichia coli (C. J. Vlahos and E. E. Dekker, J. Biol. Chem. 263:11683-11691, 1988), we amplified the gene that codes for this enzyme by the polymerase chain reaction using synthetic degenerate deoxyoligonucleotide primers. The amplified DNA was sequenced by subcloning the polymerase chain reaction products into bacteriophage M13; the nucleotide sequence of the gene was found to be in exact agreement with the amino acid sequence of the gene product. Overexpression of the gene was accomplished by cloning it into the pKK223.3 expression vector so that it was under control of the tac promoter and then using the resultant plasmid, pDP6, to transform E. coli DH5 alpha F'IQ. When this strain was grown in the presence of isopropyl beta-D-thiogalactopyranoside, aldolase specific activity in crude extracts was 80-fold higher than that in wild-type cells and the enzyme constituted approximately 30% of the total cellular protein. All properties of the purified, cloned gene product, including cross-reactivity with antibodies elicited against the wild-type enzyme, were identical with the aldolase previously isolated and characterized. A strain of E. coli in which this gene is inactivated was prepared for the first time by insertion of the kanamycin resistance gene cartridge into the aldolase chromosomal gene.  相似文献   

7.
NAD(+)-dependent D-lactate dehydrogenase from Lactobacillus helveticus was purified to apparent homogeneity, and the sequence of the first 36 amino acid residues determined. Using forward and reverse oligonucleotide primers, based on the N-terminal sequence and amino acid residues 220-215 of the Lactobacillus bulgaricus enzyme [Kochhar, S., Hunziker, P. E., Leong-Morgenthaler, P. & Hottinger, H. (1992) J. Biol. Chem. 267, 8499-8513], a 0.6-kbp DNA fragment was amplified from L. helveticus genomic DNA by the polymerase chain reaction. This amplified DNA fragment was used as a probe to identify two recombinant clones containing the D-lactate dehydrogenase gene. Both plasmids overexpressed D-lactate dehydrogenase (greater than 60% total soluble cell protein) and were stable in Escherichia coli, compared to plasmids carrying the L. bulgaricus and Lactobacillus plantarum genes. The entire nucleotide sequence of the L. helveticus D-lactate dehydrogenase gene was determined. The deduced amino acid sequence indicated a polypeptide consisting of 336 amino acid residues, which showed significant amino acid sequence similarity to the recently identified family of D-2-hydroxy-acid dehydrogenases [Kochhar, S., Hunziker, P. E., Leong-Morgenthaler, P. & Hottinger, H. (1992) Biochem. Biophys. Res. Commun. 184, 60-66]. The physicochemical and catalytic properties of recombinant D-lactate dehydrogenase were identical to those of the wild-type enzyme, e.g. alpha 2 dimeric subunit structure, isoelectric pH, Km and Kcat for pyruvate and other 2-oxo-acid substrates. The kinetic profiles of 2-oxo-acid substrates showed some marked differences from that of L-lactate dehydrogenase, suggesting different mechanisms for substrate binding and specificity.  相似文献   

8.
Plant chitinases are pathogenesis-related proteins, which are believed to be involved in plant defense responses to pathogen infection. In this study, chitinase gene from barley was cloned and overexpressed in Escherichia coli. Chitinase (35 kDa) was isolated and purified. Since the protein was produced as insoluble inclusion bodies, the protein was solubilized and refolded. Purified chitinase exerted broad-spectrum antifungal activity against Botrytis cinerea (blight of tobacco), Pestalotia theae (leaf spot of tea), Bipolaris oryzae (brown spot of rice), Alternaria sp. (grain discoloration of rice), Curvularia lunata (leaf spot of clover) and Rhizoctonia solani (sheath blight of rice). Due to the potential of broad-spectrum antifungal activity barley chitinase gene can be used to enhance fungal-resistance in crop plants such as rice, tobacco, tea and clover.  相似文献   

9.
Symbiobacterium thermophilum is a strictly symbiotic thermophile, the growth of which is dependent on the coexistence of an associating thermophilic Bacillus sp., strain S. S. thermophilum grows only in mixed culture with the Bacillus strain in liquid media, and does not form visible colonies on solid media. To measure the growth of this symbiotic bacterium and to analyze its growth requirements, we developed a quantitative PCR method by using its specific sequences in a putative membrane translocator gene tnaT as primers. According to this method, independent growth of S. thermophilum was first confirmed in a dialyzing culture physically separated from Bacillus strain S with a cellulose membrane. Independent growth of S. thermophilum was also managed by adding conditioned medium prepared from the culture filtrate of the Bacillus strain, but the growth in the conditioned medium stopped at a very limited extent with appearance of filamentous cells, suggesting the uncoupling of cellular growth and cell division. Formation of micro-colonies of S. thermophilum was observed on the conditioned agar medium under both aerobic and anaerobic conditions, but the colony-forming efficiencies remained below 1%. Several other bacterial species, such as Bacillus stearothermophilus, Bacillus subtilis, Thermus thermophilus, and even Escherichia coli, were also found to support the growth of S. thermophilum. These results indicate that S. thermophilum essentially requires some ubiquitous metabolite(s) of low molecular weight produced by various bacterial species as growth factor(s) but coexistence of the living partner cells is still required, probably to maintain an effective level of the putative factor(s) in the medium.  相似文献   

10.
C R Meyer  P Ghosh  E Remy    J Preiss 《Journal of bacteriology》1992,174(13):4509-4512
A mutant glgC gene contained in a 10.9-kb PstI fragment was cloned from the Escherichia coli B strain SG5 via colony hybridization by using a wild-type glgC probe. The altered allosteric properties of the expressed ADPglucose synthetase were found to result from the conversion of proline to serine at amino acid residue 295.  相似文献   

11.
F Barany  D H Gelfand 《Gene》1991,109(1):1-11
Thermostable DNA ligase has been harnessed for the detection of single-base genetic diseases using the ligase chain reaction [Barany, Proc. Natl. Acad. Sci. USA 88 (1991) 189-193]. The Thermus thermophilus (Tth) DNA ligase-encoding gene (ligT) was cloned in Escherichia coli by genetic complementation of a ligts 7 defect in an E. coli host. Nucleotide sequence analysis of the gene revealed a single chain of 676 amino acid residues with 47% identity to the E. coli ligase. Under phoA promoter control, Tth ligase was overproduced to greater than 10% of E. coli cellular proteins. Adenylated and deadenylated forms of the purified enzyme were distinguished by apparent molecular weights of 81 kDa and 78 kDa, respectively, after separation via sodium dodecyl sulfate-polyacrylamide-gel electrophoresis.  相似文献   

12.
The Escherichia coli B mutant strain CL1136 accumulates glycogen at a 3.4- to 4-fold greater rate than the parent E. coli B strain and contains an ADPglucose synthetase with altered kinetic and allosteric properties. The enzyme from CL1136 is less dependent on the allosteric activator, fructose 1,6-bisphosphate, for activity and less sensitive to inhibition by AMP than the parent strain enzyme. The structural gene, glgC, for the allosteric mutant enzyme was selected by colony hybridization and cloned into the bacterial plasmid pBR322 by insertion of the chromosomal DNA at the PstI site. One recombinant plasmid, designated pKG3, was isolated from the genomic library of CL1136 containing glgC. The cloned ADPglucose synthetase from the mutant CL1136 was expressed and characterized with respect to kinetic and allosteric properties and found to be identical to the enzyme purified from the CL1136 strain. The mutant glgC was then subcloned into pUC118/119 for dideoxy sequencing of both strands. The mutant glgC sequence was found to differ from the wild-type at the deduced amino acid residue 67 where a single point mutation resulted in a change from arginine to cysteine.  相似文献   

13.
A simple membrane dialysis bioreactor was developed for a large-scale axenic culture of Symbiobacterium thermophilum, a symbiotic thermophile that requires co-cultivation with an associating thermophilic Bacillus strain S for normal growth. The bioreactor consisted of an outer- and an inner-coaxial cylindrical compartment bordered across a dialyzing membrane, which enabled a 1 l-scale dialysis culture with exchange of low molecular metabolites between the two compartments to be performed. Using the bioreactor, growth characteristics of S. thermophilum and Bacillus strain S were assessed under two medium conditions. The growth of S. thermophilum was measured by quantitative PCR because the bacterium formed no visible colonies and gave abnormally low turbidity. In medium containing 2% tryptone peptone, S. thermophilum proliferated up to 4x10(7) cells/ml, and strict dependence on the co-culture with Bacillus strain S was observed. On the other hand, medium containing 0.5% yeast extract not only facilitated the growth of S. thermophilum in the co-culture (6x10(7) cells/ml), but also allowed limited pure growth independent of Bacillus strain S (1x10(7) cells/ml), implying that some component of yeast extract can partially replace the growth requirement of S. thermophilum supplied by Bacillus strain S. Both the oxidative redox potential values and the cell morphology in the independently growing culture suggested the occurrence of marked unbalanced growth possibly caused by significant metabolic changes. The bioreactor is applicable to the analyses of culturing characteristics in symbiotic systems between free-living microorganisms.  相似文献   

14.
The gene coding for an extracellular lipase of Bacillus subtilis 168 was cloned and found to be expressed in Escherichia coli. Enzyme activity measurements showed no fatty acid chain length preference. A set of Tn5 insertions which inactivate the gene were localized and used to initiate its sequencing. The nucleotide sequence was determined on two independent clones expressed in E. coli. In one of these clones, the sequence revealed a frameshift, due to the presence of an additional adenine in the N-terminal region, which caused the interruption of the open reading frame, probably allowing translation to initiate at a second ATG codon. The sequence of the wild-type lip gene from B. subtilis was confirmed on the chromosomal fragment amplified by polymerase chain reaction (PCR). When compared to other lipases sequenced to date, the enzyme described here lacks the conserved pentapeptide Gly-X-Ser-X-Gly supposed to be essential for catalysis. However, alignments of several microbial lipase sequences suggest that the pentapeptide Ala-X-Ser-X-Gly present in the lipase B. subtilis may function as the catalytic site. Homologies were found in the N-terminal protein region with lipases from different Pseudomonas species. The predicted M(r) and isoelectric point for the mature protein are 19,348 and 9.7 respectively.  相似文献   

15.
The Escherichia coli K-12 ackA gene, which encodes an acetate kinase, was cloned. The acetate kinase activities of ackA+ plasmid-containing strains were amplified 160- to 180-fold. The complete nucleotide sequence of the ackA gene was determined. It was deduced that the ackA gene coded for a protein of 400 amino acids with an Mr of 43,297. The ackA gene was found to be located about 15 kilobases upstream of the purF-folC-hisT region of the chromosome.  相似文献   

16.
Carnitine dehydratase from Escherichia coli O44 K74 is an inducible enzyme detectable in cells grown anaerobically in the presence of L-(-)-carnitine or crotonobetaine. The purified enzyme catalyzes the dehydration of L-(-)-carnitine to crotonobetaine (H. Jung, K. Jung, and H.-P. Kleber, Biochim. Biophys. Acta 1003:270-276, 1989). The caiB gene, encoding carnitine dehydratase, was isolated by oligonucleotide screening from a genomic library of E. coli O44 K74. The caiB gene is 1,215 bp long, and it encodes a protein of 405 amino acids with a predicted M(r) of 45,074. The identity of the gene product was first assessed by its comigration in sodium dodecyl sulfate-polyacrylamide gels with the purified enzyme after overexpression in the pT7 system and by its enzymatic activity. Moreover, the N-terminal amino acid sequence of the purified protein was found to be identical to that predicted from the gene sequence. Northern (RNA) analysis showed that caiB is likely to be cotranscribed with at least one other gene. This other gene could be the gene encoding a 47-kDa protein, which was overexpressed upstream of caiB.  相似文献   

17.
The aspA gene of Escherichia coli W which encodes aspartase was cloned into the plasmid vector pBR322. The nucleotide sequences of aspA and its flanking regions were determined. The aspA gene encodes a protein with a molecular weight of 52,224 consisted of 477 amino acid residues. The amino acid sequence of the protein predicted from the nucleotide sequence was consistent with those of the NH2- and COOH-terminal regions and also with the amino acid composition of the purified aspartase determined previously. Potential promoter and terminator sequences for aspA were also found in the determined sequence.  相似文献   

18.
Determinants of tetracycline resistance have been cloned from two different tetracycline-producing industrial strains of Streptomyces into Streptomyces lividans using the plasmid vector pUT206. Three plasmids, pUT250 and pUT260 with a 9.5 and a 7.5 kb insert respectively of Streptomyces rimosus DNA, and pUT270 with a 14.0 kb insert of Streptomyces aureofaciens DNA, conferring resistance to tetracycline, have been isolated. By in vitro sub-cloning, a similar fragment of 2.45 kb containing the tetracycline resistance gene (tet347) was further localized on these plasmids. The S. rimosus gene has been cloned into Escherichia coli and expressed under the control of lambda pL or Lpp promoters. Differential protein extraction of E. coli cells revealed the presence of an additional membrane-embedded protein in tetracycline-resistant cells. On the basis of available restriction endonuclease maps, the tet347 gene is probably identical to the tetB gene from S. rimosus recently identified by T. Ohnuki and co-workers as responsible for the reduced accumulation of tetracycline. The nucleotide sequence of a 2052 bp DNA fragment containing the TcR structural gene from S. rimosus has been determined. The amino acid sequence of the tet347 protein (Mr35818) deduced from the nucleotide sequence shows a limited but significant homology to other characterized tetracycline transport acting determinants from pathogenic bacteria.  相似文献   

19.
20.
Bacillus sp. B-0618 produces both creatinase (Cre; creatine amidinohydrolase; EC 3.5.3.3) and sarcosine oxidase (Sox; EC 1.5.3.1) enzymes when grown in the presence of an inducer, choline chloride. A genomic library of Bacillus sp. B-0618, prepared in the plasmid vector pACYC184, was screened to obtain a gene (sox) encoding Sox by a convenient colorimetric assay. A plasmid, pOXI101, isolated from a sox-positive clone, contained a 14.2-kb insert of Bacillus DNA. The nucleotide sequence of a 1.7-kb segment containing the sox gene was determined, and it was found that an open reading frame encoding a protein consisting of 390 amino acids was located upstream from the cre structural gene cloned previously. When a 1.6-kb XhoI-BglII fragment of pOXI101 was inserted into the pUC118 vector and introduced into Escherichia coli, transformants cultured in the absence of the inducer produced Sox about 50-fold more than Bacillus sp. B-0618 cultured in the presence of the inducer. The Bacillus Sox had the -11Gly-X-13Gly-X-X-16Gly- sequence motif that is highly conserved in flavoproteins. We created an FAD-free Sox by changing 13Gly to Asp in the motif of the parental Sox by oligodeoxynucleotide-directed mutagenesis. The mutant protein no longer expressed the Sox activity, even on the addition of FAD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号