首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Some members of the DNA-binding protein from stationary phase cells (Dps) family of proteins have been shown to play an important role in protecting microorganisms from oxidative or nutritional stress. Dps homologs have been identified in various bacteria such as Escherichia coli, Bacillus subtilis, and Listeria innocua. Recently we have reported the presence of a Dps homolog, Ms-Dps, in Mycobacterium smegmatis. Ms-Dps was found to have a nonspecific DNA binding ability. Here we have detected two stable oligomeric forms of Ms-Dps in vitro, a trimeric and a dodecameric form. Interestingly, the conversion of Dps from a trimeric to a dodecameric form takes place upon incubation at 37 degrees C for 12 h. These two oligomeric forms differ in their DNA binding properties. The dodecameric form is capable of DNA binding and forming large crystalline arrays with DNA, whereas the trimeric form cannot do so. However, even in the absence of DNA binding, the trimeric form has the capacity to protect the DNA against Fenton's-mediated damage. The protection is afforded by the ferroxidase activity of the trimer. However, the trimeric form cannot protect DNA from DNaseI attack, for which a direct physical shielding of DNA by the dodecamer is required. Thus we suggest that Ms-Dps provides a bimodal protection of DNA by its two different oligomeric forms.  相似文献   

2.
DNA polymerases are essential enzymes in all domains of life for both DNA replication and repair. The primary DNA replication polymerase from Sulfolobus solfataricus (SsoDpo1) has been shown previously to provide the necessary polymerization speed and exonuclease activity to replicate the genome accurately. We find that this polymerase is able to physically associate with itself to form a trimer and that this complex is stabilized in the presence of DNA. Analytical gel filtration and electrophoretic mobility shift assays establish that initially a single DNA polymerase binds to DNA followed by the cooperative binding of two additional molecules of the polymerase at higher concentrations of the enzyme. Protein chemical crosslinking experiments show that these are specific polymerase–polymerase interactions and not just separate binding events along DNA. Isothermal titration calorimetry and fluorescence anisotropy experiments corroborate these findings and show a stoichiometry where three polymerases are bound to a single DNA substrate. The trimeric polymerase complex significantly increases both the DNA synthesis rate and the processivity of SsoDpo1. Taken together, these results suggest the presence of a trimeric DNA polymerase complex that is able to synthesize long DNA strands more efficiently than the monomeric form.  相似文献   

3.
RSC (remodel the structure of chromatin) is an essential chromatin remodeler of Saccharomyces cerevisiae that has been shown to have DNA translocase properties. We studied the DNA binding properties of a "trimeric minimal RSC" (RSCt) of the RSC chromatin remodeling complex and the effect of nucleotides on this interaction using fluorescence anisotropy. RSCt binds to 20 bp fluorescein-labeled double-stranded DNA with a K(d) of ~100 nM. The affinity of RSCt for DNA is reduced in the presence of AMP-PNP and ADP in a concentration-dependent manner with the addition of AMP-PNP having more pronounced effect. These differences in the magnitude at which the binding of ADP and AMP-PNP affects the affinity of DNA binding by RSCt suggest that the physical movement of the enzyme along DNA begins between the binding of ATP and its subsequent hydrolysis. Furthermore, the fact that the highest affinity for DNA binding by RSCt occurs in the absence of bound nucleotide offers a mechanistic explanation for the apparent low processivity of DNA translocation by the enzyme.  相似文献   

4.
5.
The E. coli DNA binding protein lac repressor (LacI) and a derivative with a designed thiol (T334C) were developed as gold nanocrystal conjugates to assess the effects of conjugation on DNA binding function. The designed derivative was engineered with a solvent-accessible thiol to promote oriented conjugation, avoiding obstruction of the DNA-binding domain by the nanocrystal. Analytical ultracentrifugation (AU) and electrophoretic mobility shift assays (EMSA) were used to evaluate the ability of conjugated repressors to bind the natural operator DNA sequence O(1). The results show that LacI does not retain significant DNA binding function when conjugated to gold nanocrystals, presumably because the basic DNA-binding domain is the site for nonspecific conjugation. T334C, with the potential for both directed and nonspecific conjugation, shows enhanced interaction with O(1) when conjugated. Interestingly, the order of component addition is a key factor in producing functional lac repressor conjugates.  相似文献   

6.
The energetics for binding of a diphenyl diamidine antitrypanosomal agent CGP 40215A to DNA have been studied by spectroscopy, isothermal titration calorimetry, and surface plasmon resonance biosensor methods. Both amidines are positively charged under experimental conditions, but the linking group for the two phenyl amidines has a pK(a) of 6.3 that is susceptible to a protonation process. Spectroscopic studies indicate an increase of 2.7 pK(a) units in the linking group when the compound binds to an A/T minor-groove site. Calorimetric titrations in different buffers and pH conditions support the proton-linkage process and are in a good agreement with spectroscopic titrations. The two methods established a proton-uptake profile as a function of pH. The exothermic enthalpy of complex formation varies with different pH conditions. The observed binding enthalpy increases as a function of temperature indicating a negative heat capacity change that is typical for DNA minor-groove binders. Solvent accessible surface area calculations suggest that surface burial accounts for about one-half of the observed intrinsic negative heat capacity change. Biosensor and calorimetric experiments indicate that the binding affinities vary with pH values and salt concentrations due to protonation and electrostatic interactions. The surface plasmon resonance binding studies indicate that the charge density per phosphate in DNA hairpins is smaller than that in polymers. Energetic contributions from different factors were also estimated for the ligand/DNA complex.  相似文献   

7.
Fluorescent proteins that also bind DNA molecules are useful reagents for a broad range of biological applications because they can be optically localized and tracked within cells, or provide versatile labels for in vitro experiments. We report a novel design for a fluorescent, DNA-binding protein (FP-DBP) that completely ‘paints’ entire DNA molecules, whereby sequence-independent DNA binding is accomplished by linking a fluorescent protein to two small peptides (KWKWKKA) using lysine for binding to the DNA phosphates, and tryptophan for intercalating between DNA bases. Importantly, this ubiquitous binding motif enables fluorescent proteins (Kd = 14.7 μM) to confluently stain DNA molecules and such binding is reversible via pH shifts. These proteins offer useful robust advantages for single DNA molecule studies: lack of fluorophore mediated photocleavage and staining that does not perturb polymer contour lengths. Accordingly, we demonstrate confluent staining of naked DNA molecules presented within microfluidic devices, or localized within live bacterial cells.  相似文献   

8.
An equilibrium containing the thiol derivative of Hoechst33258 (Ht-SH), glutathione (G-SH), and the corresponding homo and hetero disulfides was shifted by the addition of the duplex DNA. It was shown from the analysis of the components that the hetero disulfide Ht-SS-G increased by binding with the DNA (CA14) with an A(3)T(3) binding motif for the structure of Hoechst33258, and that the different equilibrium shift was observed in the presence of CT14 with no A(3)T(3) binding motif.  相似文献   

9.
The DNA binding efficacy and preferred mode of binding of a series of rhodamine-related chalcogenoxanthylium dyes was investigated by isothermal titration calorimetry (ITC) using ctDNA, [poly(dCdG)](2) and [poly(dAdT)](2), and by a topoisomerase I DNA unwinding (Topo I) assay. The dyes of this study showed tight binding to ctDNA with binding constants, K(b), on the order of 10(6)-10(7)M(-1). The ITC and Topo I assay studies suggested that the 9-substituent has a strong impact on binding modes ranging from an apparent preference for intercalation with a 9-2-thienyl substituent (similar binding to [poly(dCdG)](2) and [poly(dAdT)](2), re-supercoiling of DNA in the Topo I assay at <10(-5)M dye), to mixed binding modes with 9-phenyl derivatives (2- to 3-fold preference for binding to [poly(dAdT)](2), re-supercoiling of DNA in the Topo I assay at approximately 2 x 10(-5)M dye), to minor groove binding in a 9-(2-thienyl-5-diethylcarboxamide) derivative (strong preference for binding to [poly(dAdT)](2), did not show complete re-supercoiling in the Topo I assay). No binding to ctDNA was observed in one derivative with a 9-(3-thienyl-2-diethylcarboxamide) substituent, which cannot be co-planar with the xanthylium core. In series of dyes where the chalcogen atom was varied, the selenoxanthylium derivatives had 2- to 3-fold higher values of K(b) than the corresponding xanthylium, thioxanthylium, or telluroxanthylium derivatives, which all showed comparable values of K(b). The chalcogen atom appeared to have little influence on binding mode.  相似文献   

10.
Binding of exogenous DNA to the nuclear scaffold was investigated using a plasmid DNA (pBR322, EcoRI site deleted) of various topological forms and nuclear subfractions with different levels of nuclear DNA depletion. When supercoiled DNA was incubated with histone-depleted nuclei (nuclear halo), a dose-dependent binding of the DNA occurred, whereas no binding was observed with relaxed and linear forms of DNA. The bound DNA was released upon linearization with BamHI or digestion of the scaffolding structure with proteinase K. Extensive digestion of the halo with micrococcal nuclease generated additional sites which bind both relaxed and linear DNA. In the presence of a large excess of calf thymus DNA, these sites were effectively blocked and the specificity to supercoiled DNA was restored. The binding of all forms of DNA was abolished by heat-denatured DNA. There was no detectable change in linking number of the scaffold-associated supercoils. Competitive binding was observed between supercoiled DNAs with unrelated sequences, indicating that no specific nucleotide sequence is required for the binding. RNA was found to be a weak competitor. A DNA binding assay performed on electrophoretic blots of solubilized nuclear scaffold revealed a protein component with apparent molecular weight of 120,000 which retained selective binding to supercoils. These results suggest that the nuclear scaffold possesses DNA-binding sites for torsionally strained domains of chromatin and that an integral protein factor is involved in the binding. Implications of the findings are discussed in connection with proposed functions of the nuclear scaffold and topoisomerase II.  相似文献   

11.
Light-induced modifications of DNA by gilvocarcin V and its aglycone   总被引:1,自引:0,他引:1  
Gilvocarcins are antitumor agents that have been reported to damage DNA upon activation by visible light. This activation is dependent on interaction with DNA. Here it is shown that gilvocarcin V and its synthetic aglycone analogue can both introduce single-strand scission into plasmid DNA. Light irradiation is required for the reaction. The binding of gilvocarcin V to plasmid DNA in the absence of light decreased the DNA linking number in a fashion similar to known intercalating agents such as ethidium bromide. The use of oligonucleotides as substrates for gilvocarcin V demonstrated that one of the steps of the reaction following binding of gilvocarcin V to DNA involves covalent modification at thymidine and to a lesser extent, cytosine residues.  相似文献   

12.
Simian virus 40 large T antigen untwists DNA at the origin of DNA replication.   总被引:18,自引:0,他引:18  
Simian virus 40 large tumor antigen (SV40 T antigen) untwists DNA at the SV40 replication origin. In the presence of ATP, T antigen shifted the average linking number of an SV40 origin-containing plasmid topoisomer distribution. The loss of up to two helical turns was detected. The reaction required the presence of the 64-base pair core origin of replication containing T antigen DNA binding site II; binding site I had no effect on the untwisting reaction. The presence of human single-stranded DNA binding protein (SSB) slightly reduced the degree of untwisting in the presence of ATP. ATP hydrolysis was not required since untwisting occurred in the presence of nonhydrolyzable analogs of ATP. However, in the presence of a nonhydrolyzable analog of ATP, the requirement for the SV40 origin sequence was lost. The origin requirement for DNA untwisting was also lost in the absence of dithiothreitol. The origin-specific untwisting activity of T antigen is distinct from its DNA helicase activity, since helicase activity does not require the SV40 origin but does require ATP hydrolysis. The lack of a requirement for SSB or ATP hydrolysis and the reduction in the pitch of the DNA helix by just a few turns at the replication origin distinguishes this reaction from the T antigen-mediated DNA unwinding reaction, which results in the formation of a highly underwound DNA molecule. Untwisting occurred without a lag after the start of the reaction, whereas unwound DNA was first detected after a lag of 10 min. It is proposed that the formation of a multimeric T antigen complex containing untwisted DNA at the SV40 origin is a prerequisite for the initiation of DNA unwinding and replication.  相似文献   

13.
We have applied molecular docking methods to systems containing nucleic acids as targets and biologically active substances as ligands. The complexes of DNA fragments and actinocin derivatives with different lengths of aminoalkyl side chains were obtained by molecular docking. It was observed that actinocin derivatives could form energetically favourable complexes with DNA both as intercalators and minor groove binders. It was shown that small changes in the binding energy (~1?kcal/mol) could result in complexes with substantially different structure. The complexes of actinocin derivatives and DNA fragments were stabilized by hydrogen bonding upon intercalation and minor groove binding. It was found that the change of solvent-accessible surface area upon binding of the actinocin derivative to DNA linear increased with the growth of methylene groups' number in ligand side chains. The solvation energy change upon binding of actinocin derivatives to DNA calculated by the WSAS method was favourable in the case of small uncharged ligands and unfavourable for positively charged ligands.  相似文献   

14.
The DNA replication, plasmid segregation and transactivation functions of Epstein-Barr nuclear antigen 1 (EBNA1) require the binding of EBNA1 to specific DNA recognition sites in the two non-contiguous functional elements of the Epstein-Barr virus latent origin of replication, oriP . EBNA1 molecules bound to these elements interact with each other resulting in the formation of looped individual DNA molecules and multiply linked DNA molecules. We have developed a glycerol gradient sedimentation assay suitable for quantitative analysis of the DNA linking activity of EBNA1 and used it to investigate the contribution of EBNA1 residues to the linking interaction and the mechanism of the interaction. Using overlapping internal deletion mutants, we found that two regions of EBNA1 can cause DNA linking, amino acids 40-100 and 327-377, but that the stabilities of the linked complexes formed by the two regions differ dramatically; only complexes formed through the latter region are stable to glycerol gradient sedimentation analysis. Mechanistic studies using EBNA1 in combination with GAL4-EBNA1 fusion proteins showed that linking interactions mediated by residues 327-377 are homotypic. Our results also suggest that only the DNA-bound form of EBNA1 participates in the protein-protein interactions seen in DNA linking.  相似文献   

15.
Changes in DNA binding ability of daunomycin following structural modifications in the aglycone moiety have been studied by the fluorescence quenching method and by thermal denaturation of the complex. Removal of the methoxyl group at position 4 leads to a slightly stronger binding. Changes in the position of the glycosidic linkage result in a markedly weaker binding. Removal of the hydroxyl group at position 9, with the concomitant formation of a 9,10-anhydro derivative, decreases the binding ability. Methylation of hydroxyl groups at C-6 and C-11 leads to an inactive derivative and makes the binding affinity disappear almost completely. Structure-activity correlations for the DNA binding reaction deduced from these studies are in agreement with earlier findings that relate to the biological activity and confirm the general picture of the binding mechanism.  相似文献   

16.
Using purified DNA gyrase to supercoil circular plasmid pBR322 DNA, we examined how the linking number attained at the steady state (‘static head’) varies with the concentrations of ATP and ADP, both in the absence and presence of spermidine. In the absence of spermidine at total adenine nucleotide concentrations between 0.35 and 1.4 mM, the static-head linking number was independent of the sum concentration of ATP and ADP, but depended strongly on the ratio of their concentrations. We established that the same linking number was attained independent of the direction from which the steady state was approached. The decrease in linking number at static head is more extensive when spermidine is present in the incubation, but remains a function of the [ATP]-to-[ADP] ratio. These results are discussed in terms of various kinetic schemes for DNA gyrase. We present one kinetic scheme that accounts for the experimental observations. According to this scheme our experimental results imply that there is significant slip in DNA gyrase when spermidine is absent. It is possible that spermidine acts through adjustment of the degree of coupling of DNA gyrase.  相似文献   

17.
Abstract

The DNA binding of BMS 181176, an antitumor antibiotic derivative of rebeccamycin was characterized by DNA unwinding assays, as well as by fluorescence emission and polarization spectroscopic techniques. Unwinding and rewinding of supercoiled DNA was interpreted in terms of intercalation of BMS 181176 into DNA BMS 181176 shows an enhanced fluorescence emission upon binding to the AT sequence and no enhancement upon binding to the GC sequence. BMS 181176 appears to be a weaker binder to poly(dAdT).poly(dAdT) compared to doxorubicin and ethidium bromide. When bound to DNA, the rotational motion of BMS 181176 is substantially decreased as evident from the increase in fluorescence polarization. BMS 181176 exhibits a range of binding strengths depending on the DNA This is demonstrated by the Acridine Orange displacement assay using fluorescence polarization.  相似文献   

18.
Monomeric, dimeric, and trimeric derivatives of the triphenylmethane dye crystal violet (1a1f) have been synthesized for the purpose of evaluating their affinity and sequence selectivity for duplex DNA. Competitive ethidum displacement assays indicate that 1a1f have apparent association constants for CT DNA in the range of 1.80–16.2 × 107 M−1 and binding site sizes of 10–14 bp. Viscosity experiments performed on ligand 1f confirmed that these dyes associate with duplex DNA by a non-intercalative mode of binding. Circular dichroism and competition binding studies of the tightest binding ligand 1e with known major and minor groove binding molecules suggest that these dye derivatives likely occupy the major groove of DNA. Data from the binding of 1e to polynucleotides indicate close to an order of magnitude preference for associating with AT rich homopolymers over GC rich homopolymers, suggesting a shape-selective match of the sterically bulky ligand with DNA containing a wider major groove.  相似文献   

19.
The antitumour antibiotic actinomycin D normally binds to DNA by intercalation at sequences containing the CpG step, but in the presence of daunomycin it has been reported to interact with poly(dA-dT). This observation has neither been confirmed nor explained. Here we have used a photoreactive 7-azido derivative of actinomycin to study the effect of daunomycin on its binding to three DNA fragments. Daunomycin did indeed alter the binding of actinomycin to the DNA, such that the antibiotic was displaced from its primary GpC sites onto secondary sites in the DNA, though not to AT regions especially. These findings suggest a possible scientific explanation for the increased toxicity seen during combination chemotherapy with these two drugs.  相似文献   

20.
A series of acridinium derivatives 1-6, wherein steric factors have been varied systematically through substitution at the 9 position of the acridine ring, have been synthesized and their DNA interactions have been investigated by various biophysical techniques. The unsubstituted and methylacridinium derivatives 1 and 2 and the o-tolylacridinium derivative 6 exhibited high fluorescence quantum yields (Phi(f)() congruent with 1) and lifetimes (tau = 35, 34, and 25 ns, respectively), when compared with the arylacridinium derivatives 3-5. The acridinium derivatives 1 and 2 showed high DNA binding affinity (K = 7.3-7.7 x 10(5) M(-)(1)), when compared to the arylacridinium derivatives 3-5 (K = 6.9-10 x 10(4) M(-)(1)). DNA melting and viscosity studies establish that in the case of the aryl-substituted systems, the efficiency of DNA binding is in the order, phenyl > p-tolyl > m-tolyl > o-tolyl derivative. The increase in steric crowding around the acridine ring hinders the DNA binding interactions and thereby leads to negligible binding as observed in the case of 6 (o-tolyl derivative). These results indicate that a subtle variation in the substitution pattern has a profound influence on the photophysical and DNA interactions. Further, they demonstrate that pi-stacking interactions of the ligands with DNA are essential for efficient electron transfer between the DNA bases and the ligands. These water soluble and highly fluorescent molecules which differ in their DNA binding mode can act as models to study various DNA-ligand interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号