首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Tea is one of the most popular beverages in the world. Many species in the Thea section of the Camellia genus can be processed for drinking and have been domesticated. However, few investigations have focused on the genetic consequence of domestication and geographic origin of landraces on tea plants using credible wild and planted populations of a single species. Here, C. taliensis provides us with a unique opportunity to explore these issues.

Results

Fourteen nuclear microsatellite loci were employed to determine the genetic diversity and domestication origin of C. taliensis, which were represented by 587 individuals from 25 wild, planted and recently domesticated populations. C. taliensis showed a moderate high level of overall genetic diversity. The greater reduction of genetic diversity and stronger genetic drift were detected in the wild group than in the recently domesticated group, indicating the loss of genetic diversity of wild populations due to overexploitation and habitat fragmentation. Instead of the endangered wild trees, recently domesticated individuals were used to compare with the planted trees for detecting the genetic consequence of domestication. A little and non-significant reduction in genetic diversity was found during domestication. The long life cycle, selection for leaf traits and gene flow between populations will delay the emergence of bottleneck in planted trees. Both phylogenetic and assignment analyses suggested that planted trees may have been domesticated from the adjacent central forest of western Yunnan and dispersed artificially to distant places.

Conclusions

This study contributes to the knowledge about levels and distribution of genetic diversity of C. taliensis and provides new insights into genetic consequence of domestication and geographic origin of planted trees of this species. As an endemic tea source plant, wild, planted and recently domesticated C. taliensis trees should all be protected for their unique genetic characteristics, which are valuable for tea breeding.  相似文献   

2.

Background

Mature male parr (MMP) represent an important alternative life-history strategy in Atlantic salmon populations. Previous studies indicate that the maturation size threshold for male parr varies among wild populations and is influenced by individual growth, environmental conditions, and genetics. More than ten generations of breeding have resulted in domesticated salmon displaying many genetic differences to wild salmon, including greatly increased growth rates. This may have resulted in domesticated fish with the potential to outgrow the size threshold for early maturation, or evolution of the size threshold of the trait itself. To investigate this, we performed a common-garden experiment under farming conditions using 4680 salmon from 39 families representing four wild, two wild-domesticated hybrid, and two domesticated strains.

Results

Domesticated salmon outgrew wild salmon 2–5-fold, and hybrids displayed intermediate growth. Overall, the numbers of MMP varied greatly among families and strains: averaging 4–12% in domesticated, 18–25% in hybrid, and 43–74% in the wild populations. However, when the influence of growth was accounted for, by dividing fish into lower and upper size modes, no difference in the incidence of MMP was detected among domesticated and wild strains in either size mode. In the lower size mode, hybrids displayed significantly lower incidences of mature males than their wild parental strains. No consistent differences in the body size of MMP, connected to domestication, was detected.

Conclusions

Our data demonstrate: 1- no evidence for the evolution of the size threshold for MMP in domesticated salmon, 2- the vastly lower incidence of MMP in domesticated strains under aquaculture conditions is primarily due to their genetically increased growth rate causing them to outgrow the size threshold for early maturation, 3- the incidence of MMP is likely to overlap among domesticated and wild salmon in the natural habitat where they typically display overlapping growth, although hybrid offspring may display lower incidences of mature male parr. These results have implications for wild salmon populations that are exposed to introgression from domesticated escapees.
  相似文献   

3.

Key message

Using newly developed euchromatin-derived genomic SSR markers and a flexible Bayesian mapping method, 13 significant agricultural QTLs were identified in a segregating population derived from a four-way cross of tomato.

Abstract

So far, many QTL mapping studies in tomato have been performed for progeny obtained from crosses between two genetically distant parents, e.g., domesticated tomatoes and wild relatives. However, QTL information of quantitative traits related to yield (e.g., flower or fruit number, and total or average weight of fruits) in such intercross populations would be of limited use for breeding commercial tomato cultivars because individuals in the populations have specific genetic backgrounds underlying extremely different phenotypes between the parents such as large fruit in domesticated tomatoes and small fruit in wild relatives, which may not be reflective of the genetic variation in tomato breeding populations. In this study, we constructed F2 population derived from a cross between two commercial F1 cultivars in tomato to extract QTL information practical for tomato breeding. This cross corresponded to a four-way cross, because the four parental lines of the two F1 cultivars were considered to be the founders. We developed 2510 new expressed sequence tag (EST)-based (euchromatin-derived) genomic SSR markers and selected 262 markers from these new SSR markers and publicly available SSR markers to construct a linkage map. QTL analysis for ten agricultural traits of tomato was performed based on the phenotypes and marker genotypes of F2 plants using a flexible Bayesian method. As results, 13 QTL regions were detected for six traits by the Bayesian method developed in this study.
  相似文献   

4.

Key message

The selected material of Cerasus subgen. will be useful for conservation and management and important for Prunus breeding programs.

Abstract

Knowledge of relationships among the cultivated and wild species of Cerasus is important for recognizing gene pools in germplasm and developing effective conservation and management strategies. In this study, genetic and phylogenetic relationships of wild Cerasus subgenus species naturally growing in Iran, including P. avium (mazzard), P. mahaleb, P. brachypetala, P. incana, P. yazdiana, P. microcarpa subsp. microcarpa, P. microcarpa subsp. diffusa and P. pseudoprostrata and three commercial species, sweet cherry (P. avium), sour cherry (P. cerasus) and duke cherry (P. x gondouinii) was investigated based on 16 nuclear SSR and five chloroplast SSR. Very high level of polymorphism was detected among the studied species based these molecular markers, indicating high inter and intraspecific genetic variation. Inter and intraspecific genetic similarity coefficients varied from 0.00 to 1.00, indicating high genetic variation in studied germplasm. These two molecular markers types could distinguish differences between all species so that accessions of each species were placed into a single group. Based on molecular markers, a close correlation was observed between intraspecific variation and geographical distribution. Furthermore, based on nuSSR primers, most wild species showed 2–4 alleles and may be tetraploid. In conclusion, the conservation of these highly diverse native populations of Iranian wild Cerasus germplasm is recommended for future breeding activity.  相似文献   

5.

Aims

Wild soybean accession PI 468917 [Glycine soja (Sieb. and Zucc.)] was examined for traits that could potentially be beneficial for development of drought resistant soybean cultivars.

Methods

Water use was examined in controlled environment chambers at three temperatures (25, 30, and 35 °C). Root morphology of plants grown in hydroponics was analyzed using digital imaging software.

Results

Wild soybean had lower transpiration efficiency in producing mass than the domesticated soybean cultivar Hutcheson at all temperatures. As soil dried, wild soybean decreased transpiration earlier (at a higher soil water content) than domesticated soybean, but only at 25 °C. Wild soybean had much greater root length than the modern soybean when grown at 25 or 30 °C in hydroponics, with the increase observed in the 0.25 to 0.50 mm diameter class. Wild soybean’s advantages dissipated at higher growth temperatures.

Conclusions

Wild soybean populations, potentially, can offer useful traits for improving drought resistance of modern soybean. Sensitive transpiration control in response to soil drying would contribute to ‘slow-wilting’ strategies known to be advantageous for drought resistance, and greater root length would enhance water acquisition from the soil profile. Use of the traits in breeding programs will require extending the temperature range for trait expression.  相似文献   

6.

Background

In the laboratory, the Drosophila melanogaster heat shock protein Hsp90 can buffer the phenotypic effects of genetic variation. Laboratory experiments either manipulate Hsp90 activity pharmacologically, or they induce mutations with strong effects in the gene Hsp83, the single-copy fly gene encoding Hsp90. It is unknown whether observations from such laboratory experiments are relevant in the wild.

Results

We here study naturally occurring mutations in Hsp83, and their effects on fitness and phenotypic buffering in flies derived from wild populations. We examined more than 4500 flies from 42 Drosophila populations distributed world-wide for insertions or deletions of mobile DNA in or near the Hsp83 gene. The insertions we observed occur at low population frequencies, and reduce Hsp83 gene expression. In competition experiments, mutant flies performed much more poorly than wild-type flies. Mutant flies were also significantly less fecund and shorter-lived than wild-type flies, as well as less well buffered against cryptic deleterious variation, as we show through inbreeding experiments. Specifically, in Hsp83 mutant flies female fecundity dropped to much lower levels after inbreeding than in wild-type flies. At even slightly elevated temperatures, inbred mutant Hsp83 populations went extinct, whereas inbred wild-type populations persisted.

Conclusions

Our work shows that Hsp90, a regulator of the stress response and of signaling, helps buffer deleterious variation in fruit flies derived from wild population, and that its buffering role becomes even more important under heat stress.  相似文献   

7.

Key message

Modelling additive genotype-by-environment interaction is best achieved with the use of factor analytic models. With numerous environments and for outcrossing plant species, computation is facilitated using reduced animal models.

Abstract

The development of efficient plant breeding strategies requires a knowledge of the magnitude and structure of genotype-by-environment interaction. This information can be obtained from appropriate linear mixed model analyses of phenotypic data from multi-environment trials. The use of factor analytic models for genotype-by-environment effects is known to provide a reliable, parsimonious and holistic approach for obtaining estimates of genetic correlations between all pairs of trials. When breeding for outcrossing species the focus is on estimating additive genetic correlations and effects which is achieved by including pedigree information in the analysis. The use of factor analytic models in this setting may be computationally prohibitive when the number of environments is moderate to large. In this paper, we present an approach that uses an approximate reduced animal model to overcome the computational issues associated with factor analytic models for additive genotype-by-environment effects. The approach is illustrated using a Pinus radiata breeding dataset involving 77 trials, located in environments across New Zealand and south eastern Australia, and with pedigree information on 315,581 trees. Using this approach we demonstrate the existence of substantial additive genotype-by-environment interaction for the trait of stem diameter measured at breast height. This finding has potentially significant implications for both breeding and deployment strategies. Although our approach has been developed for forest tree breeding programmes, it is directly applicable for other outcrossing plant species, including sugarcane, maize and numerous horticultural crops.  相似文献   

8.

Key message

The rice local population was clearly differentiated into six groups over the 100-year history of rice breeding programs in the northern limit of rice cultivation over the world.

Abstract

Genetic improvements in plant breeding programs in local regions have led to the development of new cultivars with specific agronomic traits under environmental conditions and generated the unique genetic structures of local populations. Understanding historical changes in genome structures and phenotypic characteristics within local populations may be useful for identifying profitable genes and/or genetic resources and the creation of new gene combinations in plant breeding programs. In the present study, historical changes were elucidated in genome structures and phenotypic characteristics during 100-year rice breeding programs in Hokkaido, the northern limit of rice cultivation in the world. We selected 63 rice cultivars to represent the historical diversity of this local population from landraces to the current breeding lines. The results of the phylogenetic analysis demonstrated that these cultivars clearly differentiated into six groups over the history of rice breeding programs. Significant differences among these groups were detected in five of the seven traits, indicating that the differentiation of the Hokkaido rice population into these groups was correlated with these phenotypic changes. These results demonstrated that breeding practices in Hokkaido have created new genetic structures for adaptability to specific environmental conditions and breeding objectives. They also provide a new strategy for rice breeding programs in which such unique genes in local populations in the world can explore the genetic potentials of the local populations.  相似文献   

9.

Key message

This study revealed that the western Mediterranean provided the founder population for domesticated narrow-leafed lupin and that genetic diversity decreased significantly during narrow-leafed lupin domestication.

Abstract

The evolutionary history of plants during domestication profoundly shaped the genome structure and genetic diversity of today’s crops. Advances in next-generation sequencing technologies allow unprecedented opportunities to understand genome evolution in minor crops, which constitute the majority of plant domestications. A diverse set of 231 wild and domesticated narrow-leafed lupin (Lupinus angustifolius L.) accessions were subjected to genotyping-by-sequencing using diversity arrays technology. Phylogenetic, genome-wide divergence and linkage disequilibrium analyses were applied to identify the founder population of domesticated narrow-leafed lupin and the genome-wide effect of domestication on its genome. We found wild western Mediterranean population as the founder of domesticated narrow-leafed lupin. Domestication was associated with an almost threefold reduction in genome diversity in domesticated accessions compared to their wild relatives. Selective sweep analysis identified no significant footprints of selection around domestication loci. A genome-wide association study identified single nucleotide polymorphism markers associated with pod dehiscence. This new understanding of the genomic consequences of narrow-leafed lupin domestication along with molecular marker tools developed here will assist plant breeders more effectively access wild genetic diversity for crop improvement.
  相似文献   

10.

Key message

An ultra-high density genetic map containing 34,574 sequence-defined markers was developed in Lupinus angustifolius. Markers closely linked to nine genes of agronomic traits were identified. A physical map was improved to cover 560.5 Mb genome sequence.

Abstract

Lupin (Lupinus angustifolius L.) is a recently domesticated legume grain crop. In this study, we applied the restriction-site associated DNA sequencing (RADseq) method to genotype an F9 recombinant inbred line population derived from a wild type × domesticated cultivar (W × D) cross. A high density linkage map was developed based on the W × D population. By integrating sequence-defined DNA markers reported in previous mapping studies, we established an ultra-high density consensus genetic map, which contains 34,574 markers consisting of 3508 loci covering 2399 cM on 20 linkage groups. The largest gap in the entire consensus map was 4.73 cM. The high density W × D map and the consensus map were used to develop an improved physical map, which covered 560.5 Mb of genome sequence data. The ultra-high density consensus linkage map, the improved physical map and the markers linked to genes of breeding interest reported in this study provide a common tool for genome sequence assembly, structural genomics, comparative genomics, functional genomics, QTL mapping, and molecular plant breeding in lupin.
  相似文献   

11.

Key message

Best linear unbiased prediction (BLUP), which uses pedigree to estimate breeding values, can result in increased genetic gains for low heritability traits in autotetraploid potato.

Abstract

Conventional potato breeding strategies, based on outcrossing followed by phenotypic recurrent selection over a number of generations, can result in slow but steady improvements of traits with moderate to high heritability. However, faster gains, particularly for low heritability traits, could be made by selection on estimated breeding values (EBVs) calculated using more complete pedigree information in best linear unbiased prediction (BLUP) analysis. One complication in applying BLUP predictions of breeding value to potato breeding programs is the autotetraploid inheritance pattern of this species. Here we have used a large pedigree, dating back to 1908, to estimate heritability for nine key traits for potato breeding, modelling autotetraploid inheritance. We estimate the proportion of double reduction in potatoes from our data, and across traits, to be in the order of 10 %. Estimates of heritability ranged from 0.21 for breeder’s visual preference, 0.58 for tuber yield, to 0.83 for plant maturity. Using the accuracies of the EBVs determined by cross generational validation, we model the genetic gain that could be achieved by selection of genotypes for breeding on BLUP EBVs and demonstrate that gains can be greater than in conventional schemes.  相似文献   

12.

Key message

Proof of concept of Bayesian integrated QTL analyses across pedigree-related families from breeding programs of an outbreeding species. Results include QTL confidence intervals, individuals’ genotype probabilities and genomic breeding values.

Abstract

Bayesian QTL linkage mapping approaches offer the flexibility to study multiple full sib families with known pedigrees simultaneously. Such a joint analysis increases the probability of detecting these quantitative trait loci (QTL) and provide insight of the magnitude of QTL across different genetic backgrounds. Here, we present an improved Bayesian multi-QTL pedigree-based approach on an outcrossing species using progenies with different (complex) genetic relationships. Different modeling assumptions were studied in the QTL analyses, i.e., the a priori expected number of QTL varied and polygenic effects were considered. The inferences include number of QTL, additive QTL effect sizes and supporting credible intervals, posterior probabilities of QTL genotypes for all individuals in the dataset, and QTL-based as well as genome-wide breeding values. All these features have been implemented in the FlexQTL? software. We analyzed fruit firmness in a large apple dataset that comprised 1,347 individuals forming 27 full sib families and their known ancestral pedigrees, with genotypes for 87 SSR markers on 17 chromosomes. We report strong or positive evidence for 14 QTL for fruit firmness on eight chromosomes, validating our approach as several of these QTL were reported previously, though dispersed over a series of studies based on single mapping populations. Interpretation of linked QTL was possible via individuals’ QTL genotypes. The correlation between the genomic breeding values and phenotypes was on average 90 %, but varied with the number of detected QTL in a family. The detailed posterior knowledge on QTL of potential parents is critical for the efficiency of marker-assisted breeding.  相似文献   

13.

Key Message

Rapid LD decay in wild emmer population from Israel allows high-resolution association mapping. Known and putative new stripe rust resistance genes were found.

Abstract

Genome-wide association mapping (GWAM) is becoming an important tool for the discovery and mapping of loci underlying trait variation in crops, but in the wild relatives of crops the use of GWAM has been limited. Critical factors for the use of GWAM are the levels of linkage disequilibrium (LD) and genetic diversity in mapped populations, particularly in those of self-pollinating species. Here, we report LD estimation in a population of 128 accessions of self-pollinating wild emmer, Triticum turgidum ssp. dicoccoides, the progenitor of cultivated wheat, collected in Israel. LD decayed fast along wild emmer chromosomes and reached the background level within 1 cM. We employed GWAM for the discovery and mapping of genes for resistance to three isolates of Puccinia striiformis, the causative agent of wheat stripe rust. The wild emmer population was genotyped with the wheat iSelect assay including 8643 gene-associated SNP markers (wheat 9K Infinium) of which 2,278 were polymorphic. The significance of association between stripe rust resistance and each of the polymorphic SNP was tested using mixed linear model implemented in EMMA software. The model produced satisfactory results and uncovered four significant associations on chromosome arms 1BS, 1BL and 3AL. The locus on 1BS was located in a region known to contain stripe rust resistance genes. These results show that GWAM is an effective strategy for gene discovery and mapping in wild emmer that will accelerate the utilization of this genetic resource in wheat breeding.  相似文献   

14.

Key message

Commercial heterosis for grain yield is present in hybrid wheat but long-term competiveness of hybrid versus line breeding depends on the development of heterotic groups to improve hybrid prediction.

Abstract

Detailed knowledge of the amount of heterosis and quantitative genetic parameters are of paramount importance to assess the potential of hybrid breeding. Our objectives were to (1) examine the extent of midparent, better-parent and commercial heterosis in a vast population of 1,604 wheat (Triticum aestivum L.) hybrids and their parental elite inbred lines and (2) discuss the consequences of relevant quantitative parameters for the design of hybrid wheat breeding programs. Fifteen male lines were crossed in a factorial mating design with 120 female lines, resulting in 1,604 of the 1,800 potential single-cross hybrid combinations. The hybrids, their parents, and ten commercial wheat varieties were evaluated in multi-location field experiments for grain yield, plant height, heading time and susceptibility to frost, lodging, septoria tritici blotch, yellow rust, leaf rust, and powdery mildew at up to five locations. We observed that hybrids were superior to the mean of their parents for grain yield (10.7 %) and susceptibility to frost (?7.2 %), leaf rust (?8.4 %) and septoria tritici blotch (?9.3 %). Moreover, 69 hybrids significantly (P < 0.05) outyielded the best commercial inbred line variety underlining the potential of hybrid wheat breeding. The estimated quantitative genetic parameters suggest that the establishment of reciprocal recurrent selection programs is pivotal for a successful long-term hybrid wheat breeding.  相似文献   

15.

Key message

Three regions with quantitative resistance to downy mildew of non-host and wild lettuce species, Lactuca saligna , disintegrate into seventeen sub-QTLs with plant-stage-dependent effects, reducing or even promoting the infection.

Abstract

Previous studies on the genetic dissection of the complete resistance of wild lettuce, Lactuca saligna, to downy mildew revealed 15 introgression regions that conferred plant stage dependent quantitative resistances (QTLs). Three backcross inbred lines (BILs), carrying an individual 30–50 cM long introgression segment from L. saligna in a cultivated lettuce, L. sativa, background, reduced infection by 60–70 % at young plant stage and by 30–50 % at adult plant stage in field situations. We studied these three quantitative resistances in order to narrow down their mapping interval and determine their number of loci, either single or multiple. We performed recombinant screenings and developed near isogenic lines (NILs) with smaller overlapping L. saligna introgressions (substitution mapping). In segregating introgression line populations, recombination was suppressed up to 17-fold compared to the original L. saligna × L. sativa F 2 population. Recombination suppression depended on the chromosome region and was stronger suppressed at the smallest introgression lengths. Disease evaluation of the NILs revealed that the resistance of all three BILs was not explained by a single locus but by multiple sub-QTLs. The 17 L. saligna-derived sub-QTLs had a smaller and plant stage dependent resistance effect, some segments reducing; others even promoting downy mildew infection. Implications for lettuce breeding are outlined.  相似文献   

16.

Background

Evolutionary transitions from outcrossing between individuals to selfing are partly responsible for the great diversity of animal and plant reproduction systems. The hypothesis of `reproductive assurance’ suggests that transitions to selfing occur because selfers that are able to reproduce on their own ensure the persistence of populations in environments where mates or pollination agents are unavailable. Here we test this hypothesis by performing experimental evolution in Caenorhabditis elegans.

Results

We show that self-compatible hermaphrodites provide reproductive assurance to a male-female population facing a novel environment where outcrossing is limiting. Invasions of hermaphrodites in male-female populations, and subsequent experimental evolution in the novel environment, led to successful transitions to selfing and adaptation. Adaptation was not due to the loss of males during transitions, as shown by evolution experiments in exclusively hermaphroditic populations and in male-hermaphrodite populations. Instead, adaptation was due to the displacement of females by hermaphrodites. Genotyping of single-nucleotide polymorphisms further indicated that the observed evolution of selfing rates was not due to selection of standing genetic diversity. Finally, numerical modelling and evolution experiments in male-female populations demonstrate that the improvement of male fitness components may diminish the opportunity for reproductive assurance.

Conclusions

Our findings support the hypothesis that reproductive assurance can drive the transition from outcrossing to selfing, and further suggest that the success of transitions to selfing hinges on adaptation of obligate outcrossing populations to the environment where outcrossing was once a limiting factor.
  相似文献   

17.
Understanding the mating system of a tree species is important in genetic conservation and tree breeding strategies because it affects the inbreeding and genetic diversity of the descendant populations. Araucaria angustifolia (Bert.) O. Kuntze is a mainly dioecious species that reproduces through outcrossing. However, some monoecious trees have been identified and they may reproduce through self-fertilization. The objective of this study was to confirm the expected relatedness of full-sibs in outcrossed hand-pollinated progenies of female seed trees, self-sibs of hand self-pollinated monoecious seed trees, and to investigate the mating system of open-pollinated progenies of female and monoecious A. angustifolia trees. To do this, eight microsatellite loci were used to genotype hand- and open-pollinated progenies. Our results show that the relatedness of outcrossed hand-pollinated progenies are true full-sibs and progenies from a selfed monoecious seed tree are self-sibs, which confirms the hand-pollination method used. Open-pollinated female seed trees reproduced only by outcrossing, generating progenies with a mixture of full- and half-sibs. Monoecious seed trees reproduced mainly by xenogamy, generating progenies with mixtures of self-sibs, full-sibs, half-sibs and self-half-sibs. We also found that an increase in the effective number of pollen donors ( $ N_{\text{ep}} $ ) would lead to an increase in the total number of alleles ( $ K $ ) within progenies. Our results also suggest that monecious trees have limited potential to modify the genetic structure through selfed seed production due to the very low estimated selfing rate in these trees and the rare occurrence of these trees in natural populations.  相似文献   

18.

Key message

Linkage disequilibrium decay in sugar beet is strongly affected by the breeding history, and varies extensively between and along chromosomes, allowing identification of known and unknown signatures of selection.

Abstract

Genetic diversity and linkage disequilibrium (LD) patterns were investigated in 233 elite sugar beet breeding lines and 91 wild beet accessions, using 454 single nucleotide polymorphisms (SNPs) and 418 SNPs, respectively. Principal coordinate analysis suggested the existence of three groups of germplasm, corresponding to the wild beets, the seed parent and the pollen parent breeding pool. LD was investigated in each of these groups, with and without correction for genetic relatedness. Without correction for genetic relatedness, in the pollen as well as the seed parent pool, LD persisted beyond 50 centiMorgan (cM) on four (2, 3, 4 and 5) and three chromosomes (2, 4 and 6), respectively; after correction for genetic relatedness, LD decayed after <6 cM on all chromosomes in both pools. In the wild beet accessions, there was a strong LD decay: on average LD disappeared after 1 cM when LD was calculated with a correction for genetic relatedness. Persistence of LD was not only observed between distant SNPs on the same chromosome, but also between SNPs on different chromosomes. Regions on chromosomes 3 and 4 that harbor disease resistance and monogermy loci showed strong genetic differentiation between the pollen and seed parent pools. Other regions, on chromosomes 8 and 9, for which no a priori information was available with respect to their contribution to the phenotype, still contributed to clustering of lines in the elite breeding material.  相似文献   

19.

Background

Next generation sequencing technologies allow to obtain at low cost the genomic sequence information that currently lacks for most economically and ecologically important organisms. For the mallard duck genomic data is limited. The mallard is, besides a species of large agricultural and societal importance, also the focal species when it comes to long distance dispersal of Avian Influenza. For large scale identification of SNPs we performed Illumina sequencing of wild mallard DNA and compared our data with ongoing genome and EST sequencing of domesticated conspecifics. This is the first study of its kind for waterfowl.

Results

More than one billion base pairs of sequence information were generated resulting in a 16× coverage of a reduced representation library of the mallard genome. Sequence reads were aligned to a draft domesticated duck reference genome and allowed for the detection of over 122,000 SNPs within our mallard sequence dataset. In addition, almost 62,000 nucleotide positions on the domesticated duck reference showed a different nucleotide compared to wild mallard. Approximately 20,000 SNPs identified within our data were shared with SNPs identified in the sequenced domestic duck or in EST sequencing projects. The shared SNPs were considered to be highly reliable and were used to benchmark non-shared SNPs for quality. Genotyping of a representative sample of 364 SNPs resulted in a SNP conversion rate of 99.7%. The correlation of the minor allele count and observed minor allele frequency in the SNP discovery pool was 0.72.

Conclusion

We identified almost 150,000 SNPs in wild mallards that will likely yield good results in genotyping. Of these, ~101,000 SNPs were detected within our wild mallard sequences and ~49,000 were detected between wild and domesticated duck data. In the ~101,000 SNPs we found a subset of ~20,000 SNPs shared between wild mallards and the sequenced domesticated duck suggesting a low genetic divergence. Comparison of quality metrics between the total SNP set (122,000 + 62,000 = 184,000 SNPs) and the validated subset shows similar characteristics for both sets. This indicates that we have detected a large amount (~150,000) of accurately inferred mallard SNPs, which will benefit bird evolutionary studies, ecological studies (e.g. disentangling migratory connectivity) and industrial breeding programs.
  相似文献   

20.

Background and Aims

Wild carrot is the ancestor of cultivated carrot and is the most important gene pool for carrot breeding. Transgenic carrot may be released into the environment in the future. The aim of the present study was to determine how far a gene can disperse in wild carrot populations, facilitating risk assessment and management of transgene introgression from cultivated to wild carrots and helping to design sampling strategies for germplasm collections.

Methods

Wild carrots were sampled from Meijendel and Alkmaar in The Netherlands and genotyped with 12 microsatellite markers. Spatial autocorrelation analyses were used to detect spatial genetic structures (SGSs). Historical gene dispersal estimates were based on an isolation by distance model. Mating system and contemporary pollen dispersal were estimated using 437 offspring of 20 mothers with different spatial distances and a correlated paternity analysis in the Meijendel population.

Key Results

Significant SGSs are found in both populations and they are not significantly different from each other. Combined SGS analysis indicated significant positive genetic correlations up to 27 m. Historical gene dispersal σg and neighbourhood size Nb were estimated to be 4–12 m [95 % confidence interval (CI): 3–25] and 42–73 plants (95 % CI: 28–322) in Meijendel and 10–31 m (95 % CI: 7–∞) and 57–198 plants (95 % CI: 28–∞) in Alkmaar with longer gene dispersal in lower density populations. Contemporary pollen dispersal follows a fat-tailed exponential-power distribution, implying pollen of wild carrots could be dispersed by insects over long distance. The estimated outcrossing rate was 96 %.

Conclusions

SGSs in wild carrots may be the result of high outcrossing, restricted seed dispersal and long-distance pollen dispersal. High outcrossing and long-distance pollen dispersal suggest high frequency of transgene flow might occur from cultivated to wild carrots and that they could easily spread within and between populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号