首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Arbuscular mycorrhizas (AMs) are a unique example of symbiosis between two eukaryotes, soil fungi and plants. This association induces important physiological changes in each partner that lead to reciprocal benefits, mainly in nutrient supply. The symbiosis results from modifications in plant and fungal cell organization caused by specific changes in gene expression. Recently, much effort has gone into studying these gene expression patterns to identify a wider spectrum of genes involved. We aim in this review to describe AM symbiosis in terms of current knowledge on plant and fungal gene expression profiles.An erratum to this article can be found at  相似文献   

3.
Aphid endosymbionts in vivo in young hosts synthesized almost exclusively only one protein, symbionin. The synthesis of symbionin declined with age of the host and instead the endosymbiont began to express some of its own genes which were expressed in vitro but were repressed in vivo in young host. A prolonged treatment of young host with cycloheximide brought about a physiological state similar to that in old insect. Though in the very old insect symbionin was no longer produced by its endosymbiont, the host seemed to depend almost entirely upon the gene products of the endosymbiont.  相似文献   

4.
5.
Several different yeast species have been developed into systems for efficient heterologous gene expression. In this paper we review foreign gene expression in the dairy yeastKluyveromyces lactis. This yeast presents several advantageous properties in comparison to other yeast species. These include its impressive secretory capacities, its excellent fermentation characteristics on large scale, its food grade status and the availability of both episomal and integrative expression vectors. Moreover, in contrast to the methylotrophic yeasts that are frequently used for the expression of foreign genes,K. lactis does not require explosion-proof fermentation equipment. Here, we present an overview of the available tools for heterologous gene expression inK. lactis (available promoters, vector systems, etc). Also, the production of prochymosin, human serum albumin and pancreatic phospholipase byK. lactis is discussed in more detail, and used to rate the achievements ofK. lactis with respect to other micro-organisms in which these proteins have been produced.  相似文献   

6.
7.
Ectomycorrhizae are formed by mutualistic interactions between fungi and the roots of woody plants. During symbiosis the two organisms exchange carbon and nutrients in a specific tissue that is formed at the contact between a compatible fungus and plant. There is considerable variation in the degree of host specificity among species and strains of ectomycorrhizal fungi. In this study, we have for the first time shown that this variation is associated with quantitative differences in gene expression, and with divergence in nucleotide sequences of symbiosis-regulated genes. Gene expression and sequence evolution were compared in different strains of the ectomycorrhizal fungus Paxillus involutus; the strains included Nau, which is not compatible with birch and poplar, and the two compatible strains Maj and ATCC200175. On a genomic level, Nau and Maj were very similar. The sequence identity was 98.9% in the 16 loci analysed, and only three out of 1075 genes analysed by microarray-based hybridizations had signals indicating differences in gene copy numbers. In contrast, 66 out of the 1075 genes were differentially expressed in Maj compared to Nau after contact with birch roots. Thirty-seven of these symbiosis-regulated genes were also differentially expressed in the ATCC strain. Comparative analysis of DNA sequences of the symbiosis-regulated genes in different strains showed that two of them have evolved at an enhanced rate in Nau. The sequence divergence can be explained by a decreased selection pressure, which in turn is determined by lower functional constraints on these proteins in Nau as compared to the compatible strains.  相似文献   

8.
9.
10.
11.
12.
13.
Symbiotic bacteria of the genus Verminephrobacter (Betaproteobacteria) were detected in the nephridia of 19 out of 23 investigated earthworm species (Oligochaeta: Lumbricidae) by 16S rRNA gene sequence analysis and fluorescence in situ hybridization (FISH). While all four Lumbricus species and three out of five Aporrectodea species were densely colonized by a mono-species culture of Verminephrobacter, other earthworm species contained mixed bacterial populations with varying proportions of Verminephrobacter; four species did not contain Verminephrobacter at all. The Verminephrobacter symbionts could be grouped into earthworm species-specific sequence clusters based on their 16S rRNA and RNA polymerase subunit B (rpoB) genes. Closely related host species harboured more closely related symbionts than did distantly related hosts. Co-diversification of the symbiotic partners could not be demonstrated unambiguously due to the poor resolution of the host phylogeny [based on histone H3 and cytochrome c oxidase subunit I (COI) gene sequence analyses]. However, there was a pattern of symbiont diversification within four groups of closely related hosts. The mean rate of symbiont 16S rRNA gene evolution was determined using a relaxed clock model, and the rate was calibrated with paleogeographical estimates of the time of origin of Lumbricid earthworms. The calibrated rates of symbiont 16S rRNA gene evolution are 0.012-0.026 substitutions per site per 50 million years and thus similar to rates reported from other symbiotic bacteria.  相似文献   

14.
15.
The hydroid Myrionema ambionense, a fast-growing cnidarian (doubling time = 8 days) found in shallow water on tropical back-reefs, lives in symbiosis with symbiotic dinoflagellates of the genus Symbiodinium (hereafter also referred to as zooxanthellae). The symbionts live in vacuoles near the base of host digestive cells, whereas unhealthy looking zooxanthellae are generally located closer to the apical end of the host cell. Cytokinesis of zooxanthellae occurred at night, with a peak in number of symbionts with division furrows (mitotic index, MI = 12%-20%) observed at dawn. The MI of zooxanthellae decreased to near zero by the middle of the afternoon and remained there until the middle of the next night. Densities of live zooxanthellae living inside of host digestive cells peaked following cytokinesis, whereas densities of unhealthy looking symbionts were highest just before the division peak. Mitosis of host digestive cells was highest in the evening, also preceding the peak in zooxanthellar MI. This is the first study relating phased host cell division to diel zooxanthellar division in marine cnidarians. Food vacuoles were prevalent inside of digestive cells of field-collected hydroids within a few hours after sunset and throughout the night, coinciding with digestion of captured demersal plankton. Laboratory experiments showed that food vacuoles appeared in digestive cell cytoplasm within 2 h of feeding with nauplii of Artemia. The number and size of food vacuoles per digestive cell and the percentage of digestive cells with food vacuoles all decreased 5-7 h following feeding in laboratory experiments, and by mid-day in field-collected hydroids. Light and external food supply were important in maintaining phased division of the symbionts, with a lag in response time to both parameters of 11-36 h. Altering light and feeding during the night did not influence the level of the peak MI the next morning, though in one experiment the absence of light slowed final separation of daughter cells at the end of cytokinesis. In another experiment, hydroids starved for 3-7 d and "pulse-fed" Artemia nauplii for 1 h at the beginning of the dark period showed continued low symbiont division (< 5%) after 11 h, whether maintained in constant light or darkness, implying that most algal division is set more than 24 h prior to actual cytokinesis. Transferred to a 14:10 h light:dark cycle for another 24 h (36 h after feeding), the same hydroids exhibited a "normal" peak MI (ca. 15%) at dawn, but zooxanthellae from hydroids kept in constant darkness still showed a low MI. These results show that mitosis of symbiotic dinoflagellates requires three factors: external food; a minimum period of time following feeding (11-36 h), presumably for digestion; and a period of light following feeding, presumably to provide carbon skeletons necessary for completing cytokinesis.  相似文献   

16.
17.
Bacterial leaf symbiosis is a unique and intimate interaction between bacteria and flowering plants, in which endosymbionts are organized in specialized leaf structures. Previously, bacterial leaf symbiosis has been described as a cyclic and obligate interaction in which the endosymbionts are vertically transmitted between plant generations and lack autonomous growth. Theoretically this allows for co-speciation between leaf nodulated plants and their endosymbionts. We sequenced the nodulated Burkholderia endosymbionts of 54 plant species from known leaf nodulated angiosperm genera, i.e. Ardisia, Pavetta, Psychotria and Sericanthe. Phylogenetic reconstruction of bacterial leaf symbionts and closely related free-living bacteria indicates the occurrence of multiple horizontal transfers of bacteria from the environment to leaf nodulated plant species. This rejects the hypothesis of a long co-speciation process between the bacterial endosymbionts and their host plants. Our results indicate a recent evolutionary process towards a stable and host specific interaction confirming the proposed maternal transmission mode of the endosymbionts through the seeds. Divergence estimates provide evidence for a relatively recent origin of bacterial leaf symbiosis, dating back to the Miocene (5-23 Mya). This geological epoch was characterized by cool and arid conditions, which may have triggered the origin of bacterial leaf symbiosis.  相似文献   

18.
19.
摘要:【目的】益生菌粘附于肠道上皮细胞上是它的一种益生作用。本研究通过体内外实验,分析嗜酸乳杆菌NCFM对粘附相关基因的影响。【方法】利用GO (Gene Ontolog) 分类筛选Human Genome U133 Plus 2.0 Array基因表达谱芯片中的粘附相关基因,通过体外Caco-2细胞培养模型和体内小鼠粘附模型,采用Real-time PCR方法对粘附相关基因进行验证分析。【结果】经NCFM作用后,12个粘附相关基因呈上调表达。利用Real-time PCR验证,12个基因在体内和体外经嗜酸乳杆菌NCFM作用后亦均同样为上调表达,其中CCL2基因上调表达最为明显。【结论】经体内外研究表明,嗜酸乳杆菌NCFM粘附肠上皮细胞后能够引起宿主粘附相关基因出现特定表达变化,为今后深入揭示其粘附作用提供必要基础。  相似文献   

20.
Whiteflies possess bacterial symbionts Candidatus Portiera aleyrodidium that are housed in specialized cells called bacteriocytes and are faithfully transmitted via the ovary to insect offspring. In one whitefly species studied previously, Bemisia tabaci MEAM1, transmission is mediated by somatic inheritance of bacteriocytes, with a single bacteriocyte transferred to each oocyte and persisting through embryogenesis to the next generation. Here, we investigate the mode of bacteriocyte transmission in two whitefly species, B. tabaci MED, the sister species of MEAM1, and the phylogenetically distant species Trialeurodes vaporariorum. Microsatellite analysis supported by microscopical studies demonstrates that B. tabaci MED bacteriocytes are genetically different from other somatic cells and persist through embryogenesis, as for MEAM1, but T. vaporariorum bacteriocytes are genetically identical to other somatic cells of the insect, likely mediated by the degradation of maternal bacteriocytes in the embryo. These two alternative modes of transmission provide a first demonstration among insect symbioses that the cellular processes underlying vertical transmission of bacterial symbionts can diversify among related host species associated with a single lineage of symbiotic bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号