首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.

Background

Although enzyme replacement therapy (ERT) is available for several lysosomal storage disorders, the benefit of this treatment to the skeletal system is very limited. Our previous work has shown the importance of the Toll-like receptor 4/TNF-alpha inflammatory pathway in the skeletal pathology of the mucopolysaccharidoses (MPS), and we therefore undertook a study to examine the additive benefit of combining anti-TNF-alpha therapy with ERT in a rat model of MPS type VI.

Methodology/Principal Findings

MPS VI rats were treated for 8 months with Naglazyme® (recombinant human N-acetyl-galactosamine-4-sulfatase), or by a combined protocol using Naglazyme® and the rat-specific anti-TNF-alpha drug, CNTO1081. Both protocols led to markedly reduced serum levels of TNF-alpha and RANKL, although only the combined treatment reduced TNF-alpha in the articular cartilage. Analysis of cultured articular chondrocytes showed that the combination therapy also restored collagen IIA1 expression, and reduced expression of the apoptotic marker, PARP. Motor activity and mobility were improved by ERT, and these were significantly enhanced by combination treatment. Tracheal deformities in the MPS VI animals were only improved by combination therapy, and there was a modest improvement in bone length. Ceramide levels in the trachea also were markedly reduced. MicroCT analysis did not demonstrate any significant positive effects on bone microarchitecture from either treatment, nor was there histological improvement in the bone growth plates.

Conclusions/Significance

The results demonstrate that combining ERT with anti-TNF- alpha therapy improved the treatment outcome and led to significant clinical benefit. They also further validate the usefulness of TNF-alpha, RANKL and other inflammatory molecules as biomarkers for the MPS disorders. Further evaluation of this combination approach in other MPS animal models and patients is warranted.  相似文献   

3.
A 25-year-old female was referred for short stature and joint deformities. Except for previous corneal transplantation, her medical history was unremarkable. Initial physical examination revealed the presence of a coarse facies, short neck, kyphosis, restricted joint movements and deformities, and cardiac murmur besides a normal intellect. Urine glycosaminoglycan levels were high, and blood enzyme assay indicated significantly low alpha-L-iduronidase levels. Mucopolysaccharidosis I (MPS I) was diagnosed and prompted the onset of enzyme replacement therapy (ERT), which significantly improved articular complaints, while cardiac pathology remained stable. At the eighteenth month of ERT, sudden vision loss developed. She spontaneously recovered her vision in a month. MPS I is a progressive disease, in which tissue accummulation of heparan and dermatan sulphate result from defective activity or lack of alpha-L-iduronidase. ERT in MPS I usually presents favourable outcomes or at least stabilization of symptoms. This present case qualifies as the first report ofa MPS I patient developing sudden vision loss under ERT. We suggest that further research studies are warranted for defining the efficiency and possible limitations of ERT.  相似文献   

4.
5.
6.
7.
An improved method has been developed for the detection of heterozygotes for feline and human mucopolysaccharidosis VI. Arylsulfatase-A and -B activities were assayed in leukocyte extracts following separation of the enzymes by batch chromatography on DEAE cellulose. Determination of arylsulfatase-B specific activities did not permit accurate heterozygote identification, whereas the arylsulfatase-A to arylsulfatase-B activity ratio discriminated all 16 obligate heterozygotes for the feline and human disorders.  相似文献   

8.
Enzyme replacement therapy (ERT) is the worldwide standard of care for a number of mucopolysaccharidosis (MPS) diseases. We report a kinetic study of plasmatic dermatan sulfate (DS) in a 3-year-old subject affected by a severe form of MPS II during the first 10 months of ERT with Idursulfase. A strong increase in the DS plasmatic concentration was measured immediately after the first enzyme infusion, with a maximum after 3 h, followed by a continuous decrease in the 8–15 days following the beginning of treatment. After this, a constant plasmatic content of DS concentration was observed. Overall, during the 10-month treatment period, ERT reduced the plasmatic concentration of DS up to ~80–85 %, but it was unable to totally remove it from the blood. We can suppose that immediately after the first enzyme administrations, a large amount of abnormal DS is removed from tissues reaching the blood compartment and eliminated via the urine, and thereafter only minimal changes are observed. The persistency of the residual amounts of DS with the actually recommended dosage in our Patient may suggest the opportunity to promote further studies with increased enzyme dosages to completely remove the accumulation of lysosomal DS.  相似文献   

9.
10.
Mucopolysaccharidosis type VI (MPS VI) is an autosomal recessive lysosomal disorder caused by a mutation in the ARSB gene, which encodes arylsulfatase B (ARSB), and is characterized by glycosaminoglycan accumulation. Some pathogenic mutations have been identified in or near the substrate-binding pocket of ARSB, whereas many missense mutations present far from the substrate-binding pocket. Each MPS VI patient shows different severity of clinical symptoms. To understand the relationship between mutation patterns and the severity of MPS VI clinical symptoms, mutations located far from the substrate-binding pocket must be investigated using mutation knock-in mice. Here, I generated a knock-in mouse model of human ARSB Y85H mutation identified in Japanese MPS VI patients using a CRISPR-Cas9-mediated approach. The generated mouse model exhibited phenotypes similar to those of MPS VI patients, including facial features, mucopolysaccharide accumulation, and smaller body size, suggesting that this mouse will be a valuable model for understanding MPS VI pathology.  相似文献   

11.
Fabry disease is an X-linked disorder of glycosphingolipid metabolism that results in progressive accumulation of neutral glycosphingolipids, (predominately globotriaosylceramide; GL-3) in lysosomes, as well as other cellular compartments and the extracellular space. Our aim was to characterize the cardiac phenotype of male knock-out mice that are deficient in alpha-galactosidase A activity, as a model for Fabry disease and test the efficacy of Enzyme Replacement Therapy with agalsidase-beta. Male mice (3-4 months of age) were characterized with awake blood pressure and heart rate measurements, cardiac echocardiography and electrocardiography measurements under light anesthesia, histological studies and molecular studies with real-time polymerase chain reaction. The Fabry knock-out mouse has bradycardia and lower blood pressure than control wild type (CB7BL/6J) mice. In Fabry knock-out mice, the cardiomyopathy associated mild hypertrophy at echography with normal systolic LV function and mild diastolic dysfunction. Premature atrial contractions were more frequent in without conduction defect. Heart weight normalized to tibial length was increased in Fabry knock-out mice. Ascending aorta dilatation was observed. Molecular studies were consistent with early stages of cardiac remodeling. A single dose of agalsidase-beta (3 mg/kg) did not affect the LV hypertrophy, function or heart rate, but did improve the mRNA signals of early cardiac remodeling. In conclusion, the alpha-galactosidase A deficient mice at 3 to 4 months of age have cardiac and vascular alterations similar to that described in early clinical stage of Fabry disease in children and adolescents. Enzyme replacement therapy affects cardiac molecular remodeling after a single dose.  相似文献   

12.
Mucopolysaccharidosis type IIIA (MPS IIIA) is a lysosomal storage disorder caused by a deficiency in sulphamidase (NS), a lysosomal enzyme required for the degradation of heparan sulphate glycosaminoglycans (gags). The MPS IIIA mouse is a naturally occurring model that accurately reflects the human pathology and disease course. It displays primarily central nervous system pathology accompanied by widespread accumulation of gag in somatic tissues. MPS IIIA mice exhibit greater bodyweight gain than normal littermates and attain a higher mature bodyweight. In this study, gastrointestinal morphology and function was characterised in the IIIA mouse. Stomach and duodenum weight increased in MPS IIIA mice and duodenum length also increased. An increased submucosal thickness was observed in MPS IIIA intestine compared to normal mice and lysosomal storage of gag was observed in this region. Storage was also observed in the lamina propria of the villus tip. All other morphometric measurements including villus height and crypt depth fell within the normal range. The gastric emptying half‐life of solid and liquid meals decreased with age in normal mice whereas the T½ of solid meals did not alter with age in MPS IIA mice such that they were elevated above normal by 38 weeks of age. Sucrase activity was higher than normal in MPS IIIA at all ages tested. These abnormalities in GI structure and function observed in MPS IIIA may contribute to weight gain in this disorder. J. Cell. Physiol. 219: 259–264, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
BACKGROUND: One of the major barriers to the clinical application of hematopoietic stem cell (HSC) gene therapy has been relatively low gene transfer efficiency. Other inadequacies of current transduction protocols are related to their multi-step procedures, e.g., using tissue-culture flasks, roller bottles or gas-permeable bags for clinical application. METHODS: In comparison with a conventional bag transduction protocol, a 'closed' hollow-fiber bioreactor system (HBS) was exploited to culture and transduce human peripheral blood CD34(+) progenitor cells (PBPC(MPS)) from patients with mucopolysaccharidosis type I (MPS I) using an amphotropic retroviral vector based on a murine Moloney leukemia virus LN prototype. Both short-term colony-forming cell (CFC) and long-term culture initiating cell (LTCIC) assays were employed to determine transduction frequency and transgene expression in committed progenitor cells and primitive progenitors with multi-lineage potentials. RESULTS: A novel ultrafiltration-transduction method was established to culture and transduce enzyme-deficient PBPC(MPS) over a 5-day period without loss in viability and CD34 identity (n = 5). Significantly higher transduction efficiencies were achieved in primary CFC that derived from the HBS (5.8-14.2%) in comparison with those from gas-permeable bags (undetectable to 1.7%; p < 0.01). Up to 15-fold higher-than-normal enzyme activity was found in selected PBPC(MPS)-LP1CD transductants. Moreover, higher gene transfer (4.4-fold) and expression in very primitive progenitors were observed in products from the HBS compared with bag experiments as indicated by CFC derived from primitive LTCIC. Remarkably, with relatively modest gene transfer levels in LTCIC from HBS experiments, the expression of the IDUA transgene corrected the enzyme-deficiency in 5-week long-term cultures (LTC). CONCLUSIONS: MPS I progenitor cells achieved normalized enzyme levels in LTC after transduction in a HBS system. These studies demonstrate the advantages of a bioreactor-transduction system for viral-mediated stem cell gene transfer.  相似文献   

14.
Molecular genetic analysis of the gene for arylsulfatase B (ASB) was conducted in ten Russian patients with type VI mucopolysaccharidosis (MPS VI) of different severity. Eight exons from the translated region of the ASB gene of each patient were amplified and sequenced using the nonradioactive method. Fourteen mutant alleles were identified in the sample studied by means of DNA analysis; 13 of them had not been described before. All patients except for one, who was an offspring of a consanguineous marriage, were genetic compounds with respect to the mutations found. Polymorphic sites A/G 1072 and A/G 1126, which were earlier revealed in exon 5 of the ASB gene, were found in five out of ten patients studied. The spectrum of mutant alleles of the ASB gene was highly specific and agreed with the characteristics of the population genetic load.  相似文献   

15.
Mucopolysaccharidosis type II (MPS II; Hunter syndrome) is an X-linked inherited disorder caused by a deficiency of the enzyme iduronate-2-sulfatase (IDS), which results in the lysosomal accumulation of glycosaminoglycans (GAG) such as dermatan and heparan sulfate. Here, we report the generation of IDS knockout mice, a model of human MPS II, and an analysis of the resulting phenotype. We also evaluated the effect of gene therapy with a pseudotyped, recombinant adeno-associated virus 2/8 vector encoding the human IDS gene (rAAV-hIDS) in IDS-deficient mice. IDS activity and GAG levels were measured in serum and tissues after therapy. Gene therapy completely restored IDS activity in plasma and tissue of the knockout mice. The rescued enzymatic activity completely cleared the accumulated GAGs in all the tissues analyzed. This model can be used to explore the therapeutic potential of IDS replacement and other strategies for the treatment of MPS II. Additionally, AAV2/8 vectors have promising future clinical applications for the treatment of patients with MPS II.  相似文献   

16.
A sensitive and specific, monoclonal antibody-based immunoquantification assay has facilitated determination of the N-acetylgalactosamine-4-sulfatase (4-sulfatase) protein content in cultured fibroblasts from normal controls and mucopolysaccharidosis type VI (MPS VI) patients. The assay enabled the quantification of 4-sulfatase protein by using a panel of seven monoclonal antibodies and has shown that fibroblasts from 16 MPS VI patients contained less than or equal to 5% of the level determined for normal controls. Fibroblasts from the most severely affected patients contained the lowest levels of 4-sulfatase protein, usually with few epitopes detected, while fibroblasts from mildly affected patients had higher levels of 4-sulfatase protein, with all seven epitopes detected. The pattern of epitope expression is proposed to reflect the conformational changes in the 4-sulfatase protein that arise from different mutations in the 4-sulfatase gene. Immunoquantification in combination with a specific and highly sensitive 4-sulfated trisaccharide-based assay of enzyme activity in these MPS VI patient fibroblasts enabled the determination of residual 4-sulfatase catalytic efficiency (kcat/Km). The capacity of fibroblasts to degrade substrate (catalytic capacity) was calculated as the product of 4-sulfatase catalytic efficiency and the content of 4-sulfatase in fibroblasts. One patient, 2357, with no clinical signs of MPS VI but with reduced 4-sulfatase activity and protein (both 5% of normal) and dermatansulfaturia, had 5% of normal catalytic capacity. The other 15 MPS VI patient fibroblasts had 0%-1.4% of the catalytic capacity of fibroblasts from normal controls and were representative of the spectrum of MPS VI clinical phenotypes, from severe to mild.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Evolution of enzyme replacement therapy for lipid storage diseases   总被引:1,自引:0,他引:1  
  相似文献   

18.

Background

Mucopolysaccharidosis VI (MPS VI), due to recessively inherited 4‐sulfatase (4S) deficiency, results in lysosomal storage of dermatan sulfate in numerous tissues. Retinal involvement is limited to the retinal pigment epithelium (RPE). This study aimed to determine whether recombinant adeno‐associated virus (AAV)‐mediated delivery of 4S would reverse the RPE pathology seen in MPS VI cats.

Methods

AAV.f4S, containing the feline 4S cDNA, was delivered unilaterally to eyes of affected cats by subretinal or intravitreal injection. Contralateral eyes received AAV with the green fluorescent protein (GFP) reporter gene as control. At 2–11 months post‐injection, the cats were sacrificed and the treatment effects were evaluated histologically.

Results

By ophthalmoscopy and histological analyses, GFP was evident as early as 4 weeks and persisted through the latest time point (11 months). Untreated and AAV.GFP‐treated diseased retinas contained massively hypertrophied RPE cells secondary to accumulation of dilated lysosomal inclusions containing dermatan sulfate. MPS VI eyes treated subretinally with AAV.f4S had minimal RPE cell inclusions and, consequently, were not hypertrophied.

Conclusions

AAV‐mediated subretinal delivery of f4S provided correction of the disease phenotype in RPE cells of feline MPS VI, supporting the utility of AAV as a vector for the treatment of RPE‐specific as well as lysosomal storage diseases. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

19.
20.
Cell replacement therapy for type 1 diabetes   总被引:2,自引:0,他引:2  
Replacement of the insulin-producing pancreatic islet beta cells represents the ultimate treatment for type 1 diabetes. Recent advances in islet transplantation underscore the urgent need for developing alternatives to human tissue donors, which are scarce. Two possible approaches are the expansion of differentiated beta cells by reversible immortalization and the generation of insulin-producing cells from embryonic or adult stem cells. It is possible that new insights into endocrine pancreas development will ultimately lead to manipulation of progenitor-cell fate towards the beta-cell phenotype of insulin production, storage and regulated secretion. Both allogeneic and autologous surrogate beta cells are likely to require protection from recurring autoimmunity. This protection might take the form of tolerization, cell encapsulation, or cell engineering with immunoprotective genes. If successful, these approaches could lead to widespread cell replacement therapy for type 1 diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号