首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Absence of MyoD Increases Donor Myoblast Migration into Host Muscle   总被引:2,自引:0,他引:2  
Donor myoblast migration is a major limiting factor in the success of myoblast transfer therapy, a potential treatment for Duchenne muscular dystrophy. A possible strategy to promote the migration of donor myoblasts into host muscle is to enhance their proliferation and delay their fusion, two properties that are major characteristics of myoblasts in regenerating skeletal muscle in MyoD null (-/-) mice. Here we investigate whether the migration of MyoD (-/-) donor myoblasts into host muscle is enhanced in vivo. Sliced muscle grafts from male MyoD (-/-) or normal control (Balb/c) mice were transplanted into the muscles of female normal (Balb/c) host mice. Muscles were sampled at 1, 3, and 12 weeks after grafting, and the fate of male donor myoblasts within female host muscles determined by in situ hybridization with the mouse Y-chromosome-specific Y-1 probe. MyoD (-/-) donor myoblasts migrated into host muscle continuously over 1, 3, and 12 weeks after grafting, in contrast with Balb/c donor myoblasts, whose overall numbers and migratory distances did not increase significantly after 1 week. These results strongly support a role for elevated donor myoblast proliferation and/or their delayed fusion in enhancing migration into host muscle in vivo, and endorse the use of either genetically engineered donor myoblasts, or the administration of exogenous myoblast mitogens to improve donor myoblast migration in myoblast transfer therapy.  相似文献   

2.
Myoblast transfer therapy (MTT) is a potential cell therapy for myopathies such as Duchenne Muscular Dystrophy and involves the injection of cultured muscle precursor cells ('myoblasts') isolated from normal donor skeletal muscles into dystrophic host muscle. The failure of donor myoblast survival following MTT is widely accepted as being due to the immune response of the host. The role of complement as one possible mechanism for the initial, very rapid death of myoblasts following MTT was investigated. Donor male myoblasts were injected into the tibialis anterior (TA) muscles of female host mice that were: (i) untreated; (ii) depleted of C3 complement (24 h prior to MTT) using cobra venom factor (CVF); and/or (iii) deficient in C5 complement. Quantification of surviving male donor myoblast DNA was performed using the Y-chromosome specific (Y1) probe on slot blots for samples taken at 0 h, 1 h, 24 h, 1 week and 3 weeks after MTT. Peripheral depletion of C3 was confirmed using double immunodiffusion, and local depletion of C3 in host TA muscles was confirmed by immunostaining of muscle samples. Cobra venom factor treatment significantly increased the initial survival of donor myoblasts, but there was a marked decline in myoblast numbers after 1 h and little long-term benefit by 3 weeks. Strain specific variation in the immediate survival of donor male myoblasts following MTT in untreated C57BL/10Sn, DBA-1 and DBA-2 (C5-deficient) female hosts was observed. Cobra venom factor depletion of C3 increased initial donor male myoblast survival (approximately twofold at 0 h) in C57BL/10Sn and DBA-1 host mice and approximately threefold in DBA-2 hosts at 0 h and 1 h after MTT. The rapid and extensive number (approximately 90%) of donor male myoblasts in untreated DBA-2 mice (that lack C5) indicates that activation of the membrane attack complex (MAC) plays no role in this massive initial cell death. The observation that myoblast survival was increased in all mice treated with CVF suggests that CVF may indirectly enhance donor myoblast survival by a mechanism possibly involving activated C3 fragments.  相似文献   

3.
Sustained cell proliferation in denervated skeletal muscle of mice   总被引:1,自引:0,他引:1  
Summary Cellular proliferation in skeletal muscle was measured throughout the first 4 weeks after denervation. Twenty four mice had one leg denervated, and 4 groups of 6 of these mice were injected with tritiated thymidine once daily for 7 days, either during the first, second, third or fourth week after denervation. Autoradiographic labelling of muscle and connective tissue nuclei in denervated muscles was compared with innervated muscles from the opposite innervated legs of the same mice. Labelling of connective tissue and muscle (myonuclear and satellite cell) nuclei was significantly higher in denervated muscles, compared with innervated muscles on the unoperated side. There were no significant differences among labelling of nuclei in muscles denervated for 1, 2, 3 or 4 weeks. However, connective tissue labelling after 1 week of denervation was significantly higher than at later times. This study shows that nuclei of muscle and connective tissue cells proliferate and turnover at high levels for at least one month after denervation.  相似文献   

4.
Summary The development of therapies, based upon implantation of normal muscle cell precursors, for the treatment of skeletal muscle diseases such as Duchenne Muscular Dystrophy is in its infancy. Detailed analysis of the genetic and phenotypic contribution made by donor myoblasts to the regenerated muscle is critical. Using non-radioactivein situ hybridization of aY chromosome-specific DNA probe to sections of muscle, we have localized the position of male donor nuclei within female host muscles after myoblast implantation. These results were compared with the distribution of immunocytochemically-localized dystrophin and the expression of donor-specific glucose phosphate isomerase by isoelectric-focussing. We found consistent male-specific nuclear hybridization and a close spatial relationship between the distribution of male donor nuclei and dystrophin-positive muscle fibres within female, dystrophin-negative host muscles. This approach will be useful in the further analysis of myoblast implantation experiments.  相似文献   

5.
 Adult muscle development in Drosophila is intimately associated with the development of the nervous system and epidermis. During metamorphosis, myoblasts from the wing imaginal disc reach target sites on the developing pupal epidermis and begin the formation of multinucleate myofibres of the dorsal thorax. The paths taken by pupal myoblasts could be specified by the nervous system and/or the epidermis. Using genetically marked donor pupal wing and leg discs transplanted onto pupal hosts, we have generated animals that have ectopic wings or legs and have examined the formation of adult muscle types. We show that thoracic myoblasts migrate over both host and donor epidermis when the transplant site on the host is thoracic. However, when the transplant site is on the abdomen, thoracic myoblasts do not migrate over abdominal epidermis. Our results show that the epidermis plays an important role in determining the migration pattern of myoblasts. Since muscles are multinucleate cells that form by the fusion of myoblasts, one way in which their molecular characteristics could be achieved is by some myoblasts acting as ”founders”. These myoblasts could influence the pattern of gene expression of those nuclei that fuse with them. We have examined, again using disc transplant experiments, if myoblasts on discs have the capacity to express fibre-specific genes as distinct from this property being conferred by other extra-discs myoblasts. Our results demonstrate that disc-associated myoblasts can indeed fuse with each other to express fibre-specific genes. We synthesize the results presented here with those from earlier experiments to suggest a mechanism for muscle patterning in the adult thorax. Received: 8 January 1995 / Accepted in revised form: 22 January 1996  相似文献   

6.
Summary The interaction ofDrosophila syncytial blastoderm nuclei and cortical cytoplasm in the control of somatic developmental commitments was studied by transplanting genetically marked nuclei and surrounding cytoplasm between anterior and posterior flanks. After completion of cellularization the host egg was cut. Host anterior or posterior partial embryos were cultured in adult abdomens for 8–10 days, then the larval tissue removed and injected into larval hosts for metamorphosis. Differentiated ectodermal implants were recovered from emerged adults and characterized. One hundred sixteen clearly interpretable control and experimental implants were found. Of the 73 experimental implants 15 were derived from donor nuclei.Among the 15 donor implants, 14 autonomously formed donor site anterior (head and thoracic) or posterior (abdomen and genital) structures. This donor autonomy is interpreted to mean that nuclear and cytoplasmic factors necessary for anterior and posterior somatic commitments are present and transplantable prior to the completion of cellularization. Since donor nuclei injected directly into host flanks, or premixed with host cytoplasm, would have been well exposed to any host cytoplasmic factors, donor nuclei appear to have adopted anterior or posterior somatic commitments which are stable to significant cytoplasmic alterations.In 14 implants, host nuclei exposed to donor material altered somatic fate and formed donor type structures. These conversions are interpreted to imply that cytoplasmic factors controlling anterior or posterior somatic fates are present in the syncytial balstoderm embryo.  相似文献   

7.
Myoblasts from embryonic, fetal, and adult quail and chick muscles were transplanted into limb buds of chick embryos to determine if myoblasts can form muscle fibers in heterochronic limbs and to define the conditions that affect the ability of transplanted cells to populate newly developing limb musculature. Myoblasts from each developmental stage were either freshly isolated and transplanted or were cultured prior to transplantation into limb buds of 4- to 5-day (ED4-5) chick embryos. Transplanted myoblasts, regardless of the age of the donor from which they were derived, formed muscle fibers within embryonic limb muscles. Transplanted cloned myoblasts formed muscle fibers, although there was little evidence that the number of transplanted myoblasts significantly increased following transplantation or that they migrated any distance from the site of injection. The fibers that formed from transplanted clonal myoblasts often did not persist in the host limb muscles until ED10. Diminished fiber formation from myoblasts transplanted into host limbs was observed whether myoblasts were cloned or cultured at high density. However, when freshly isolated myoblasts were transplanted, the fibers they formed were numerous, widely dispersed within the limb musculature, and persisted in the muscles until at least ED10. These results indicate that transplanted myoblasts of embryonic, fetal, and adult origin are capable of forming fibers during early limb muscle formation. They also indicate that even in an embryonic chick limb where proliferation of endogenous myoblasts and muscle fiber formation is rapidly progressing, myoblasts that are cultured in vitro do not substantially contribute to long-term muscle fiber formation after they are transplanted into developing limbs. However, when the same myoblasts are freshly isolated and transplanted without prior cell culture, substantial numbers of fibers form and persist after transplantation into developing limbs. Thus, these studies demonstrate that the extent to which transplanted myoblasts fuse to form fibers which persist in host musculature depends upon whether donor myoblasts are freshly isolated or maintained in vitro prior to injection.  相似文献   

8.
Two physiologically distinct types of muscles, the direct and indirect flight muscles, develop from myoblasts associated with the Drosophila wing disc. We show that the direct flight muscles are specified by the expression of Apterous, a Lim homeodomain protein, in groups of myoblasts. This suggests a mechanism of cell-fate specification by labelling groups of fusion competent myoblasts, in contrast to mechanisms in the embryo, where muscle cell fate is specified by single founder myoblasts. In addition, Apterous is expressed in the developing adult epidermal muscle attachment sites. Here, it functions to regulate the expression of stripe, a gene that is an important element of early patterning of muscle fibres, from the epidermis. Our results, which may have broad implications, suggest novel mechanisms of muscle patterning in the adult, in contrast to embryonic myogenesis.  相似文献   

9.
Summary Intact and denervated extensor digitorum longus (EDL) muscles of 20-day-old inbred Lewis-Wistar rats were labelled with 3H-thymidine. Ninety minutes after the injection of the isotope 4.0% of the nuclei were labelled in the intact (i.e. innervated) and 9.6% in the muscles, denervated 3 days before administration of the isotope. The labelled EDL muscles were grafted into the bed of the previously removed EDL muscles of inbred animals and these isografts were studied 30 days later.In the EDL muscles, regenerated from innervated isografts only occasionally labelled endothelial cells were found whereas in the muscles regenerated from denervated isografts also parenchymal muscle nuclei were regularly labelled. The incidence of labelled nuclei in the regenerated EDL muscles was, however, about 20 times lower than in the donor EDL muscles. The present experiments provide a direct proof of utilization of donor satellite cell nuclei for regeneration in grafted muscle tissue. With respect to the low incidence of labelled nuclei in regenerated EDL muscles, other sources of cells apparently also contribute to the regeneration process.  相似文献   

10.
Fusion of mononucleate myoblasts to form multinucleated myotubes increases when skeletal muscle cells are grown in progressively higher oxygen concentrations (5%, 20%, and 40% oxygen). At four days of growth fusion of myoblasts (as expressed by the percent of all muscle nuclei that are located in myotubes) is 57 ± 2% in 5% oxygen, 68 ± 1% in 20% oxygen, and 78 ± 2% in 40% oxygen (P<0.001). However, at a concentration of 40%, oxygen depresses the rate of cell division and thereby affects the number of myoblasts available for fusion. Thus, oxygen concentration significantly modifies growth of skeletal muscle in vitro. Its net effect on myotube formation results from the interaction of its separate effects to enhance cell fusion and to depress cell proliferation.  相似文献   

11.
Muscles are formed by fusion of individual postmitotic myoblasts to form multinucleated syncytial myotubes. The process requires a well-coordinated transition from proliferation, through migratory alignment and cycle exit, to breakdown of apposed membranes. Connexin43 protein and cell-cycle inhibitor levels are correlated, and gap junction blockers can delay muscle regeneration, so a coordinating role for gap junctions has been proposed. Here, wild-type and dominant-negative connexin43 variants (wtCx43, dnCx43) were introduced into rat myoblasts in primary culture through pIRES-eGFP constructs that made transfected cells fluoresce. GFP-positive cells and vitally-stained nuclei were counted on successive days to reveal differences in proliferation, and myotubes were counted to reveal differences in fusion. Individual transfected cells were injected with Cascade Blue, which permeates gap junctions, mixed with FITC-dextran, which requires cytoplasmic continuity to enter neighbouring cells. Myoblasts transfected with wtCx43 showed more gap-junctional coupling than GFP-only controls, began fusion sooner as judged by the incidence of cytoplasmic coupling, and formed more myotubes. Myoblasts transfected with dnCx43 remained proliferative for longer than either GFP-only or wtCx43 myoblasts, showed less coupling, and underwent little fusion into myotubes. These results highlight the critical role of gap-junctional coupling in myotube formation.  相似文献   

12.
During anuran metamorphosis, larval-type myotubes in both trunk and tail are removed by apoptosis, and only trunk muscles are replaced by newly formed adult-type myotubes. In the present study, we clarified the regulatory mechanisms for specific developmental fates of adult and larval muscles. Two distinct (adult and larval) types of myoblasts were found to exist in the trunk, but no or very few adult myoblasts were found in the tail. Each type of myoblast responded differently to metamorphic trigger, 3,3',5-triiodo-L-thyronine (T(3)) in vitro. T(3)-induced cell death was observed in larval myoblasts but not in adult myoblasts. These results suggest that the fates (life or death) of trunk and tail muscles are determined primarily by the differential distribution of adult myoblasts within the muscles. However, a transplantation study clarified that each larval and adult myoblast was not committed to fuse into particular myotube types, and they could form heterokaryon myotubes in vivo. Cell culture experiments suggested that the following two mechanisms are involved in the specification of myotube fate: (1) Heterokaryon myotubes could escape T(3)-induced death only when the proportion of adult nuclei number was higher than 70% in the myotubes. Apoptosis was not observed in any larval nuclei within the surviving heterokaryon myotubes, suggesting the conversion of larval nuclei fate. (2) Differentiation of adult myoblasts was promoted by the factor(s) released from larval myoblasts in a cell type-specific manner. Taken together, the developmental fate of myotubes is determined by the ratio of nuclei types, and the formation of adult nuclei-rich myotubes was specifically enhanced by larval myoblast factor(s).  相似文献   

13.
Morphology and functional capacity of homotopically transplanted extensor digitorum longus muscles (EDL) of adult SCID mice that received 1 × 106 myoblasts [stably transfected to express nuclear localizing β-galactosidase under the control of the myosin light-chain 3F promoter/enhancer] 2 days posttransplantation were evaluated 9 weeks after transplantation, to determine whether the injection of exogenous myoblasts had an effect on muscle regeneration. Regenerated muscles that received exogenous myoblasts were compared to similarly transplanted muscles that received (a) no further treatment, or (b) sham injection of the vehicle (without myoblasts) and to unoperated EDL. Nine weeks after myoblast transfer, myofibers containing donor-derived nuclei could be identified after staining with X-gal solution. Judging from its size and poor functional performance compared to muscles subjected to transplantation only, sham injection provided a secondary trauma to the regenerating muscle from which it failed to fully recover. In comparison to the sham-injected muscle, the myoblast-injected muscles weighed 61% more and had 50% more myofibers and 82% more cross-sectional area occupied by myofibers at the muscles' widest girths. Their absolute twitch and tetanic tensions were threefold and twofold greater, respectively, and their specific twitch and tetanic tensions were 71% and 50% greater, respectively, than those of sham-injected muscles. In many parameters, the regenerating muscle subjected to myoblast transfer equaled or exceeded those of muscles that were transplanted only received only one trauma). Absolute twitch and tetanic tensions were 73% and 65% greater, respectively, and specific twitch tensions of the muscles receiving myoblasts were 50% greater than forces generated by muscles subjected to whole-muscle transplantation only. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 185–198, 1997  相似文献   

14.
Summary Autoradiographic experiments using 3H-thymidine were designed to analyse cell proliferation which occurs in skeletal muscle after denervation and after tenotomy. In mouse tibialis anterior and tongue muscles during the first 24 h after denervation or tenotomy labelling levels were low and did not differ significantly from sham operated control muscles. By 48 h after denervation and tenotomy of tibialis anterior muscles, increased levels of labelling occurred in both muscle and connective tissue nuclei. Daily pulse labelling for 7 days after denervation produced a labelling level which was 8 times that of sham operated controls, 25–30% of the total nuclear population being labelled. Denervated muscles had twice the level of labelling compared to tenotomised muscles. These results provide conclusive evidence that both denervation and tenotomy stimulate cell proliferation in skeletal muscle and it is suggested that the increased numbers of labelled muscle nuclei are likely to be the result of mitotic activity in muscle satellite cells.  相似文献   

15.
Rat myoblast nuclei were labeled with various concentrations of bromodeoxyuridine (BrdU), an analogue of thymidine, for 24 or 48 hr. Almost every myoblast was labeled with BrdU at concentrations between 10(-7) M and 10(-5) M. When the cells were labeled with 0.5 microM or more, the percentage of labeled cells remained over 90% and 80% at 2 and 5 days, respectively. However, when the cells were labeled with BrdU concentration lower than 10(-7) M the percentage of labeled nuclei decreased more rapidly with time. The BrdU-labeled cells were mixed with an unlabeled population to determine whether their capacity to fuse was reduced. At a BrdU concentration of 0.5 x 10(-6) M, labeled myoblasts fused to a similar extent as unlabeled myoblasts, and a high percentage of marked cells were still perceptively labeled after 5 days. In contrast, the fusion capacity of myoblasts incubated with more than 10(-6) M BrdU was inhibited after only few rounds of DNA synthesis. These myoblasts were eventually able to fuse, however, when the BrdU diminished in the DNA due to cell division. These results indicate that labeling with BrdU at a concentration of 0.5 x 10(-6) M and an incorporation time of 48 hr is optimal to obtain perceptible immunocytochemical staining without affecting myoblast fusion. Such BrdU immunolabeling could be used as a nuclear marker for hybridization studies.  相似文献   

16.
In order to obtain more direct evidence for the occurrence of myoblast fusion in the developing amphibian embryo, the following transplantations were performed in vitro. The nuclei of early embryos. Ambystoma tigrinum and A. maculatum, were labeled with tritiated thymidine. Portions of prospective somite areas from these labeled donors were grafted homoplastically and orthotopically into unlabeled hosts of the same, or nearly the same, stage. The stages employed were: neurula, early tail bud, and late tail bud. Hosts were raised until they had developed into more advanced larval forms, fixed, sectioned, and prepared for radioautographic processing according to the customary procedures. The histological preparations contained varying numbers of multinucleate myotubes of a “composite” nature: that is, individual myotubes contained labeled nuclei of the donor, side by side with unlabeled nuclei of the host. There was no doubt that the mononucleate myoblasts of the grafts had fused with those of the host species to form the mutlinucleate composite myotubes. In addition to the above determinations, the method of thymidine labeling has proven to be a satisfactory method of tracing, in the context of the intact organism, somitic cell derivatives up to the feeding larval stage. Mesenchymal cells from the grafted labeled somitic tissues were consequently found in: dermatomic, sclerotomic and intermyotomic locations; the matrix of the dorsal fin; the limb bud; the abdominal muscles.  相似文献   

17.
Rat satellite cells (RSC) were microinjected with purified calpastatin or m-calpain, and myoblasts from a C2C12 mouse line were microinjected with purified calpastatin. Microinjection with calpastatin completely prevented fusion of myoblasts from both sources, whereas microinjection with m-calpain significantly increased the rate of fusion of cultured RSC; 44% of the nuclei of RSC cultures were in multinucleated myotubes within 48 h after microinjection with m-calpain plus labeled dextran, whereas only 15% of the nuclei were in multinucleated myotubes after microinjection with dextran alone. Western analyses indicated that neither RSC nor C2C12 myoblasts contained detectable amounts of mu-calpain before fusion. The levels of calpastatin in C2C12 myoblasts increased as cells passed from the proliferative stage to the onset of fusion, and these levels increased substantially in both the C2C12 and the RSC cells as they progressed to the late or postfusion stage. Both RSC and C2C12 myoblasts contained an 80-kDa polypeptide that was labeled with an anti-m-calpain antibody in Western blots. The results are consistent with a role of the calpain system (m-calpain in these myoblast lines) in remodeling of the cytoskeletal/plasma membrane interactions during cell fusion.  相似文献   

18.
A cell culture consisting mainly of satellite cells and mononuclear myoblasts was derived from femoral muscles of infant (aged 3–7 days) and adult rats. Satellite cells identified by expression of the specific marker Pax7 accounted for approximately 80% of the isolated cell fraction. Mononuclear myoblasts represented by proliferating and postmitotic cell pools were identified immunocytochemically by the expression of markers Ki67 and desmin. Differentiation of satellite cells and myoblasts in the culture depended on the concentration of Ca2+ in the culture medium (F12 with different Ca2+ concentrations or DMEM). Differentiation of myogenic cells manifested in myoblasts fusion, formation of myotubes, and expression of myosin in myofibrils was observed only in the medium with a high Ca2+ concentration (2mM). Satellite cells and myoblasts from the muscles of newborn and adult rats did not differ noticeably in their capacity for differentiation.  相似文献   

19.
20.
Duchenne muscular dystrophy (DMD), the most common lethal genetic disorder in children, is an X-linked recessive muscle disease characterized by the absence of dystrophin at the sarcolemma of muscle fibers. We examined a putative endometrial progenitor obtained from endometrial tissue samples to determine whether these cells repair muscular degeneration in a murine mdx model of DMD. Implanted cells conferred human dystrophin in degenerated muscle of immunodeficient mdx mice. We then examined menstrual blood–derived cells to determine whether primarily cultured nontransformed cells also repair dystrophied muscle. In vivo transfer of menstrual blood–derived cells into dystrophic muscles of immunodeficient mdx mice restored sarcolemmal expression of dystrophin. Labeling of implanted cells with enhanced green fluorescent protein and differential staining of human and murine nuclei suggest that human dystrophin expression is due to cell fusion between host myocytes and implanted cells. In vitro analysis revealed that endometrial progenitor cells and menstrual blood–derived cells can efficiently transdifferentiate into myoblasts/myocytes, fuse to C2C12 murine myoblasts by in vitro coculturing, and start to express dystrophin after fusion. These results demonstrate that the endometrial progenitor cells and menstrual blood–derived cells can transfer dystrophin into dystrophied myocytes through cell fusion and transdifferentiation in vitro and in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号