首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Sustained increases in intracellular cGMP concentrations ([cGMP]i) inhibit cell growth and induce apoptosis. We now report that a cGMP-specific phosphodiesterase, PDE5, plays a dominant role in regulating [cGMP]i transitions that inhibit cell growth and control susceptibility to apoptosis in pulmonary endothelium. Atrial natriuretic peptide (ANP) activates guanylyl cyclase A/B and induces a rapid [cGMP]i rise 2-5 min after its application, in both pulmonary arterial endothelial cells (PAECs) and pulmonary microvascular endothelial cells (PMVECs). However, increased [cGMP]i in PAECs is transient and decays within 10 min due to cytosolic PDE5 hydrolytic activity. Increased [cGMP]i in PMVECs is sustained for >3 h due to the absence of PDE5. Indeed, at any ANP concentration, the sustained (30 min) [cGMP]i rise is greater in PMVECs than in PAECs, unless PAECs are also treated with the PDE5 inhibitor zaprinast. Using RT-PCR, Western blot analysis, immunoprecipitation, and DEAE chromatography, we resolved the expression and activity of PDE 5A1/A2 only in PAECs. Similarly, PDE5 expression was restricted to extra-alveolar endothelium in vivo. ANP induced growth inhibition and apoptosis in PMVECs, but similar effects were not seen in PAECs unless ANP treatment was combined with zaprinast. ANP blocked the VEGF-induced proliferation and migration in PMVECs. Collectively, these data suggest that PDE5-regulated [cGMP]i controls endothelial cell growth and apoptosis, representing a mechanism of heterogeneity between two endothelial phenotypes.  相似文献   

2.
8-Chloroadenosine, an active dephosphorylated metabolite of the antineoplastic agent 8-chloroadenosine 3',5'-monophosphate (8-Cl-cAMP), induces growth inhibition in multiple carcinomas. Here we report that 8-chloroadenosine inhibits growth in human promyelocytic leukemia HL-60 cells by a G(0)/G(1) phase arrest and terminates cell differentiation along the granulocytic lineage. The mechanism of 8-chloroadenosine-induced G(0)/G(1) arrest is independent of apoptosis. The expressions of cyclin D1 and c-myc in HL-60 are suppressed by 8-chloroadenosine, whereas the cyclin-dependent kinases inhibitor p21(WAF1/CIP1) is up-regulated. 8-Chloroadenosine has less effect on the expressions of cyclin-dependent kinase (cdk)2 and cdk4, G(1) phase cyclin-dependent kinases, and only moderately induces the expression of transforming growth factor beta1 (TGFbeta1) and the mitotic inhibitor p27(KIP1). Telomerase activity is reduced in extracts of 8-chloroadenosine treated HL-60 cells, but 8-chloroadenosine does not directly inhibit the catalytic activity of telomerase in vitro. Therefore, anti-proliferation of HL-60 cells by 8-chloroadenosine involves coordination of cyclin D1 suppression, reduction of telomerase activity, and up-regulation of p21(WAF1/CIP1) that arrest cell-cycle progression at G(0)/G(1) phase and terminate cell differentiation.  相似文献   

3.
We have previously found that bone morphogenetic protein-2 (BMP-2), a member of the transforming growth factor-beta family, induces cell-cycle arrest in the G1 phase and apoptotic cell death of HS-72 mouse hybridoma cells. In this study, we show that BMP-2 did not alter expression of cyclin D, cyclin E, cyclin-dependent kinase 2 (CDK2), CDK4, p27KIP1, p16INK4a, or p15INK4b, but enhanced expression of p21(CIP1/WAF1). Accumulation of p21(CIP1/WAF1) resulted in increased binding of p21(CIP1/WAF1) to CDK4 and concomitantly caused a profound decrease in the in vitro retinoblastoma protein (Rb) kinase activity of CDK4. Furthermore, the ectopic expression of human papilloma virus type-16 E7, an inhibitor of p21(CIP1/WAF1) and Rb, reverted G1 arrest induced by BMP-2. Expression of E6/E7, without increasing the p53 level, blocked inhibition of Rb phosphorylation and G1 arrest, but did not attenuate cell death in BMP-treated HS-72 cells. Taken together, these results suggest that inhibition of Rb phosphorylation by p21(CIP1/WAF1) is responsible for BMP-2-mediated G1 arrest and that BMP-2-induction of apoptosis might be independent of Rb hypophosphorylation.  相似文献   

4.
We investigated the role of wild-type (wt)-p53 as an inducer of apoptotic cell death in human hepatoma cell lines. Following the retrovirus-mediated transduction of the wt-p53 gene, Hep3B cells lacking the endogenous p53 expression began to die through apoptosis in 4 h. They showed a maximal apoptotic death at 12 h, whereas HepG2 cells expressing endogenous p53 did not. However, the transduction of the wt-p53 gene elicited growth suppression of both Hep3B and HepG2 cells. P21(WAF1/CIP1), a p53-inducible cell cycle inhibitor, was induced, not only in Hep3B cells undergoing apoptosis, but also in HepG2 cells. The kinetics of the p21(WAF1/CIP1) induction, DNA fragmentation, and growth suppression of the Hep3B cells showed that DNA fragmentation and growth suppression progressed rapidly following p21(WAF1/CIP1) accumulation. N-acetyl-cysteine or glutathione, potent antioxidants, strongly inhibited the DNA fragmentation, but did not reduce the elevated level of p21(WAF1/CIP1). These findings suggested that p21(WAF1/CIP1) was not a critical mediator for the execution of p53-mediated apoptosis, although it contributed to the growth inhibition of cells undergoing apoptosis. Furthermore, p53-mediated apoptosis could be repressed by antioxidants.  相似文献   

5.
High expression of the epidermal growth factor receptor (EGFR) has been implicated in the development of squamous-cell carcinomas of head and neck (SCCHN). ZD1839 ('Iressa') is an orally active, selective EGFR-TKI (EGFR-tyrosine kinase inhibitor) that blocks signal transduction pathways implicated in proliferation and survival of cancer cells, and other host-dependent processes promoting cancer growth. We have demonstrated that ZD1839 induces growth arrest in SCCHN cell lines by inhibiting EGFR-mediated signaling. Cell cycle kinetic analysis demonstrated that ZD1839 induces a delay in cell cycle progression and a G1 arrest together with a partial G2/M block; this was associated with increased expression of both p27(KIP1) and p21(CIP1/WAF1) cyclin-dependent kinase (CDK) inhibitors. The activity of CDK2, the main target of CIP/KIP CDK inhibitors, was reduced in a dose-dependent fashion after 24 h of ZD1839 treatment and this effect correlated to the increased amount of p27(KIP1) and p21(CIP1/WAF1) proteins associated with CDK2-cyclin-E and CDK2-cyclin-A complexes. In addition, ZD1839-induced growth inhibition was significantly reduced in cell transfectants expressing p27(KIP1) or p21(CIP1/WAF1) antisense constructs. Overall, these results as well as the timing of the effect of ZD1839 on G1 arrest and p27(KIP1) and p21(CIP1/WAF1) upregulation, suggest a mechanistic connection between these events.  相似文献   

6.
7.
Activins transduce their signals by binding to activin type I receptors and activin type II receptors, both of which contain a serine/threonine kinase domain. In this study, we established stable transfectants expressing two types of activin receptors, ActRI and ActRIB, to clarify the role of these receptors in activin signalling for growth inhibition in HS-72 mouse B-cell hybridoma cells. Over-expression of ActRI suppressed activin A-induced cell-cycle arrest in the G1 phase caused by inhibition of retinoblastoma protein phosphorylation through induction of p21CIP1/WAF1, a cyclin-dependent kinase inhibitor, and subsequent apoptosis. In contrast, HS-72 clones that over-expressed ActRIB significantly facilitated activin A-induced apoptosis. These results indicate that ActRI and ActRIB are distinct from each other and that the ActRI/ActRIB expression ratio could regulate cell-cycle arrest in the G1 phase and subsequent apoptosis in HS-72 cells induced by activin A.  相似文献   

8.
Cyclin-dependent kinase 2 (Cdk2) activity is thought to be involved in cell death-associated chromatin condensation and other manifestations of apoptotic death. Here we show that during TNFalpha-induced apoptosis, PKCdelta is activated in a caspase-3-dependent manner and phosphorylates p21(WAF1/CIP1), a specific cyclin-dependent kinase inhibitor, on (146)Ser. This residue is located near a cyclin-binding motif (Cy2) that plays an important role in the interaction between p21(WAF1/CIP1) and Cdk2, and its phosphorylation modulates the ability of p21(WAF1/CIP1) to associate with Cdk2. The phosphorylation of p21(WAF1/CIP1) is temporally related to the activation kinetics of Cdk2 activity during the apoptosis. We propose that during TNFalpha-induced apoptosis, PKCdelta-mediated phosphorylation of p21(WAF1/CIP1) at (146)Ser attenuates the Cdk2 binding of p21(WAF1/CIP1) and thereby upregulates Cdk2 activity.  相似文献   

9.
The present study investigates the potential role of the Ca2+-calmodulin-dependent type I phosphodiesterase (PDE)-cGMP-protein kinase G (PKG) pathway in spontaneous [Ca2+]i oscillations in GH3 cells using fura-2 single cell videoimaging. Vinpocetine (2.5-50 microM), a selective inhibitor of type I PDE, induced a concentration-dependent inhibition of spontaneous [Ca2+]i oscillations in these pituitary cells, and at the same time produced an increase of the intracellular cGMP content. The cell permeable cGMP analog N2,2'-O-dibutyryl-cGMP (dB-cGMP) (1 mM) caused a progressive reduction of the frequency and the amplitude of spontaneous [Ca2+]i oscillations when added to the medium. KT5823 (400 nM), a selective inhibitor of cGMP-dependent protein kinase (PKG), produced an increase of baseline [Ca2+]i and the disappearance of spontaneous [Ca2+]i oscillations. When KT5823 was added before vinpocetine, the PKG inhibitor counteracted the [Ca2+]i lowering effect of the cGMP catabolism inhibitor. Finally, the removal of extracellular Ca2+ or the blockade of L-type voltage-sensitive calcium channels (VSCC) by nimodipine produced a decrease of cytosolic cGMP levels. Collectively, the results of the present study suggest that spontaneous [Ca2+]i oscillations in GH3 cells may be regulated by the activity of type I PDE-cGMP-PKG pathway.  相似文献   

10.
11.
对重组蛋白上皮调节蛋白(epiregulin,EPI)抑制表皮癌细胞A431的生长机制进行了初步的探讨。通过Northern杂交发现,细胞受到重组蛋白质刺激后,其周期蛋白激酶的抑制因子p21^WAF1/CIP1的mRNA含量有较明显的提高。报告基因分析表明,p21^WAF1/CIP1启动子区的转录因子STAT1结合序列对EPI的刺激有较强的反应。流式细胞仪的测定则表明,在EPI导致的细胞生长抑制中  相似文献   

12.
Regulation of adenylyl cyclase type V/VI and cAMP-specific, cGMP-inhibited phosphodiesterase (PDE) 3 and cAMP-specific PDE4 by cAMP-dependent protein kinase (PKA) and cGMP-dependent protein kinase (PKG) was examined in gastric smooth muscle cells. Expression of PDE3A but not PDE3B was demonstrated by RT-PCR and Western blot. Basal PDE3 and PDE4 activities were present in a ratio of 2:1. Forskolin, isoproterenol, and the PKA activator 5,6-dichloro-1-beta-D-ribofuranosyl benzimidazole 3',5'-cyclic monophosphate, SP-isomer, stimulated PDE3A phosphorylation and both PDE3A and PDE4 activities. Phosphorylation of PDE3A and activation of PDE3A and PDE4 were blocked by the PKA inhibitors [protein kinase inhibitor (PKI) and H-89] but not by the PKG inhibitor (KT-5823). Sodium nitroprusside inhibited PDE3 activity and augmented forskolin- and isoproterenol-stimulated cAMP levels; PDE3 inhibition was reversed by blockade of cGMP synthesis. Forskolin stimulated adenylyl cyclase phosphorylation and activity; PKI blocked phosphorylation and enhanced activity. Stimulation of cAMP and inhibition of inositol 1,4,5-trisphosphate-induced Ca(2+) release and muscle contraction by isoproterenol were augmented additively by PDE3 and PDE4 inhibitors. The results indicate that PKA regulates cAMP levels in smooth muscle via stimulatory phosphorylation of PDE3A and PDE4 and inhibitory phosphorylation of adenylyl cyclase type V/VI. Concurrent generation of cGMP inhibits PDE3 activity and augments cAMP levels.  相似文献   

13.
It is well-known that p38 mitogen-activated protein kinase (p38MAPK) participates in cellular responses to mitogenic stimuli, environmental and genotoxic stresses, and apoptotic agents. Although there are several reports on p38MAPK in relation to cell growth and apoptosis, the exact mechanism of p38MAPK-mediated cell growth regulation remains obscure. Here, we examined possible roles of p38MAPK in the sodium arsenite-induced cell growth inhibition in NIH3T3 cells. Sodium arsenite induced transient cell growth delay with marked activation of p38MAPK. In addition, arsenite induced CDK inhibitor p21(CIP1/WAF1) and enhanced its binding to the CDK2, which resulted in inhibition of CDK2 activity. The levels of cyclin D1 expression and the CDK4 kinase activity were also significantly reduced. pRB was hypophosphorylated by sodium arsenite. SB203580, a specific inhibitor of p38MAPK, blocked arsenite-induced growth inhibition as well as the arsenite-induced p21(CIP1/WAF1) expression. Expression of dominant negative p38MAPK also blocked arsenite-induced p21(CIP1/WAF1) expression. Inhibited-CDK2 activity was also completely reversed by SB203580 or expression of dominant negative p38MAPK, while the decreased-cyclin D1 protein by the compound was not restored. These data demonstrate a possible link between the activation of p38MAPK and induction of p21(CIP1/WAF1), suggesting that the activation of p38MAPK is, at least in part, related to the cell growth inhibition by sodium arsenite.  相似文献   

14.
Osteoclasts, bone-resorbing multinucleated cells, develop from monocyte-macrophage lineage cells in the presence of osteoclast differentiation factor (ODF, also called RANKL/TRANCE/OPGL) and macrophage colony-stimulating factor (M-CSF). M-CSF-dependent bone marrow macrophages (M-BMMPhis) from mouse bone marrow cells have been shown to differentiate into osteoclast-like multinucleated cells (OCLs) in the presence of soluble ODF/RANKL (sODF/RANKL) and M-CSF within 3 days. In this study, we found that stimulation of M-BMMPhis with sODF/RANKL induced a transient expression of cyclin-dependent kinase inhibitors (CDK inhibitors) p21(WAF1/CIP1) and p27(KIP1) by 24 h. The CDK inhibitor proteins disappeared by 48 h. Tumor necrosis factor alpha (TNF-alpha), which is reported to stimulate OCL differentiation, stimulated p21(WAF1/CIP1) and p27(KIP1) expression in M-BMMPhis as well. However, M-CSF alone did not stimulate the expression of the two CDK inhibitors. To clarify the role of p21(WAF1/CIP1) and p27(KIP1) in osteoclastogenesis, accumulation of these CDK inhibitors was aborted by antisense oligonucleotides. Treatment with p21(WAF1/CIP1) antisense oligonucleotide alone, or p27(KIP1) antisense oligonucleotide alone, showed a limited inhibitory effect on OCL formation. However, treatment with a mixture of these two antisense oligonucleotides strongly inhibited OCL formation. These results suggest that a combined modulation of the CDK inhibitors p21(WAF1/CIP1) and p27(KIP1) may be involved in osteoclast differentiation induced by ODF/RANKL.  相似文献   

15.
p21(Cip1/WAF1) inhibits cell-cycle progression by binding to G1 cyclin/CDK complexes and proliferating cell nuclear antigen (PCNA) through its N- and C-terminal domains, respectively. The cell-cycle inhibitory activity of p21(Cip1/WAF1) is correlated with its nuclear localization. Here, we report a novel cytoplasmic localization of p21(Cip1/WAF1) in peripheral blood monocytes (PBMs) and in U937 cells undergoing monocytic differentiation by in vitro treatment with vitamin D3 or ectopic expression of p21(Cip1/WAF1), and analyze the biological consequences of this cytoplasmic expression. U937 cells which exhibit nuclear p21(Cip1/WAF1) demonstrated G1 cell-cycle arrest and subsequently differentiated into monocytes. The latter event was associated with a cytoplasmic expression of nuclear p21(Cip1/WAF1), concomitantly with a resistance to various apoptogenic stimuli. Biochemical analysis showed that cytoplasmic p21(Cip1/WAF1) forms a complex with the apoptosis signal-regulating kinase 1 (ASK1) and inhibits stress-activated MAP kinase cascade. Expression of a deletion mutant of p21(Cip1/WAF1) lacking the nuclear localization signal (DeltaNLS-p21) did not induce cell cycle arrest nor monocytic differentiation, but led to an apoptosis-resistant phenotype, mediated by binding to and inhibition of the stress-activated ASK1 activity. Thus, cytoplasmic p21(Cip1/WAF1) itself acted as an inhibitor of apoptosis. Our findings highlight the different functional roles of p21(Cip1/WAF1), which are determined by its intracellular distribution and are dependent on the stage of differentiation.  相似文献   

16.
We present evidence that pyrrolidine dithiocarbamate (PDTC) inhibits growth of p53-negative pancreatic adenocarcinoma cell lines via cell cycle arrest in the S-phase, while it has no effect on primary fibroblast proliferation. Growth inhibition of cancer cells is dependent on ROS and ERK1/2 induction as indicated by a significantly reduced PDTC-associated growth inhibition by the free radical scavenger N-acetyl-L-cysteine (NAC) or the MEK/ERK1/2 inhibitor (PD98059). Moreover, ERK1/2 induction is dependent on ROS production as demonstrated by a complete removal of PDTC-mediated ERK1/2 phosphorylation by NAC. p21(WAF1/CIP1) activation has a central role in growth inhibition by PDTC, as revealed by P21(WAF1/CIP1) silencing experiments with antisense oligonucleotide, and occurs via increased mRNA stability largely mediated by ROS/ERK induction. Conversely, PDTC does not affect P21(WAF1/CIP1) gene expression in primary fibroblasts, although it is able to activate p53 and the p53-regulated antioxidant SESN2. These results suggest that the resistance of fibroblasts to the cytotoxic action of PDTC may be related to the up-regulation of p53-dependent antioxidant genes. Finally, in vivo studies on PaCa44 cells subcutaneously xenografted in nude mice show that treatment with 100 or 200 mg/kg PDTC reduces of 30% or 60% the tumour volume, respectively, and does not cause any apparent form of toxicity.  相似文献   

17.
Rat-1 cells are used in many studies on transformation, cell cycle, and apoptosis. Whereas UV treatment of Rat-1 cells results in apoptosis, X-ray treatment does not induce either apoptosis or a cell cycle block. X-ray treatment of Rat-1 cells results in both an increase of p53 protein and expression of the p53-inducible gene MDM2 but not the protein or mRNA of the p53-inducible p21(WAF1/CIP1) gene, which in other cells plays an important role in p53-mediated cell cycle block. The lack of p21(WAF1/CIP1) expression appears to be the result of hypermethylation of the p21(WAF1/CIP1) promoter region, as p21(WAF1/CIP1) protein expression could be induced by growth of Rat-1 cells in the presence of 5-aza-2-deoxycytidine. Furthermore, sequence analysis of bisulfite-treated DNA demonstrated extensive methylation of cytosine residues in CpG dinucleotides in a CpG-rich island in the promoter region of the p21(WAF1/CIP1) gene. Stable X-ray-induced p53-dependent p21(WAF1/CIP1) expression and cell cycle block were restored to a Rat-1 clone after transfection with a P1 artificial chromosome (PAC) DNA clone containing a rat genomic copy of the p21(WAF1/CIP1) gene. The absence of expression of the p21(WAF1/CIP1) gene may contribute to the suitability of Rat-1 cells for transformation, cell cycle, and apoptosis studies.  相似文献   

18.
Cyclin-dependent kinase (CDK) inhibitor p21WAF1/CIP1(-/-)-null mice have an increased incidence of tumor formation. Here, we demonstrate that p21WAF1/CIP1 is unstable in HeLa cells treated with siRNA duplexes that target PKCδ. PKCδ phosphorylates p21WAF1/CIP1 at a serine residue (146Ser) located in its C-terminal domain. In cells treated with 12-O-tetradecanoylphorbol 13-acetate, the levels of both p21WAF1/CIP1 and its 146Ser-phosphorylated form increased significantly. We also show that a substitution, resulting from a single nucleotide polymorphism (SNP) at 149Asp found in certain cancer patients, strongly compromises PKCδ-mediated phosphorylation at 146Ser and results in cells that are relatively resistant to TNFα-induced apoptosis. Thus, post-translational phosphorylation of p21WAF1/CIP1 is important from an apoptotic cell death, and may also have patho-physiological relevance for the development of human cancer.  相似文献   

19.
Protein kinase CK2 is a ubiquitous protein that phosphorylates multiple substrates and is composed of catalytic (alpha, alpha') and regulatory (beta) subunits. Abundant evidence relates CK2 to the regulation of cell division. p21(WAF1/CIP1) is a potent inhibitor of cyclin-dependent kinases and of DNA replication and acts as a key inhibitor of cell cycle progression. In this work we examine the relation between these two important proteins. The interaction between the CK2 beta regulatory subunit of CK2 and p21(WAF1/CIP1) has been confirmed. Using a pull-down assay and fusion constructs of glutathione transferase with fragments of CK2 beta and other mutants, it was possible to define that the N-terminal (1-44) portion of CK2 beta contains a p21(WAF1/CIP1) binding site. CK2 reconstituted from recombinant alpha and beta subunits can phosphorylate p21(WAF1/CIP1) in vitro. This phosphorylation is greatly enhanced by histone H1. p21(WAF1/CIP1) can inhibit the phosphorylation of substrate casein by CK2. This inhibition, however, seems to be due to competition by p21(WAF1/CIP1) as an alternate substrate since in order to observe inhibition it is necessary that the concentration of p21 be of the same order of magnitude as the casein substrate concentration. This competition is not related to the binding of p21(WAF1/CIP1) to CK2 beta because it can also be observed when, in the absence of CK beta, CK alpha is used to phosphorylate casein in the presence of the p21.  相似文献   

20.
Platelet-derived growth factor (PDGF) is a potent mitogen for mesenchymal cells. PDGF AA functions as a "competent factor" that stimulates cell cycle entry but requires additional (progression) factors in serum to transit the cell cycle beyond the G1/S checkpoint. Unlike PDGF AA, PDGF B-chain (c-sis) homodimer (PDGF BB) and its viral counterpart v-sis can serve as both competent and progression factors. PDGF BB activates alpha- and beta-receptor subunits (alpha-PDGFR and beta-PDGFR) and induces phenotypic transformation in NIH 3T3 cells, whereas PDGF AA activates alpha-PDGFR only and fails to induce transformation. We showed previously that alpha-PDGFR antagonizes beta-PDGFR-mediated transformation through activation of stress-activated protein kinase-1/c-Jun NH2-terminal kinase-1, whereas both alpha-PDGFR and beta-PDGFR induce mitogenic signals. These studies revealed a striking feature of PDGF signaling; the specificity and the strength of the PDGF growth signal is modulated by alpha-PDGFR-mediated simultaneous activation of growth stimulatory and inhibitory signals, whereas beta-PDGFR mainly induces a growth-promoting signal. Here we demonstrate that PDGF BB activation of beta-PDGFR alone results in more efficient cell cycle transition from G1 to S phase than PDGF BB activation of both alpha-PDGFR and beta-PDGFR. PDGF AA activation of alpha-PDGFR or PDGF BB activation of both alpha- and beta-PDGFRs up-regulates expression of p21WAF1/CIP1, an inhibitor of cell cycle-dependent kinases and a downstream mediator of the tumor suppressor gene product p53. However, beta-PDGFR activation alone fails to induce p21WAF1/CIP1 expression. We also demonstrate that alpha-PDGFR-activated JNK-1 is a critical signaling component for PDGF induction of p21WAF1/CIP1 promoter activity. The ability of PDGF/JNK-1 to induce p21WAF1/CIP1 promoter activity is independent of p53, although the overall p21WAF1/CIP1 promoter activities are greatly reduced in the absence of p53. These results provide a molecular basis for differential regulation of the cell cycle and transformation by alpha- and beta-PDGFRs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号