首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The 1983 book, Risk Assessment in the Federal Government: Managing the Process, recommended developing consistent inference guidelines for cancer risk assessment. Over the last 15 years, extensive guidance have been provided for hazard assessment for cancer and other endpoints. However, as noted in several recent reports, much less progress has occurred in developing consistent guidelines for quantitative dose response assessment methodologies. This paper proposes an approach for dose response assessment guided by consideration of mode of action (pharmacodynamics) and tissue dosimetry (pharmacokinetics). As articulated here, this systematic process involves eight steps in which available information is integrated, leading first to quantitative analyses of dose response behaviors in the test species followed by quantitative analyses of relevant human exposures. The process should be equally appropriate for both cancer and noncancer endpoints. The eight steps describe the necessary procedures for incorporating mechanistic data and provide multiple options based upon the mode of action by which the chemical causes the toxicity. Given the range of issues involved in developing such a procedure, we have simply sketched the process, focusing on major approaches for using toxicological data and on major options; many details remain to be filled in. However, consistent with the revised carcinogen risk assessment guidance (USEPA, 1996c), we propose a process that would ultimately utilize biologically based or chemical specific pharmacokinetic and pharmacodynamic models as the backbone of these analyses. In the nearer term, these approaches will be combined with analysis of data using more empirical models including options intended for use in the absence of detailed information. A major emphasis in developing any harmonized process is distinguishing policy decisions from those decisions that are affected by the quality and quantity of toxicological data. Identification of data limitations also identifies areas where further study should reduce uncertainty in the final risk evaluations. A flexible dose response assessment procedure is needed to insure that sound toxicological study results are appropriately used to influence risk management decision-making and to encourage the conduct of toxicological studies oriented toward application for dose response assessments.  相似文献   

3.
Breast cancer risk from radiation exposure has been analyzed in the cohort of Japanese a-bomb survivors using empirical models and mechanistic two-step clonal expansion (TSCE) models with incidence data from 1958 to 1998. TSCE models rely on a phenomenological representation of cell transition processes on the path to cancer. They describe the data as good as empirical models and this fact has been exploited for risk assessment. Adequate models of both types have been selected with a statistical protocol based on parsimonious parameter deployment and their risk estimates have been combined using multi-model inference techniques. TSCE models relate the radiation risk to cell processes which are controlled by age-increasing rates of initiating mutations and by changes in hormone levels due to menopause. For exposure at young age, they predict an enhanced excess relative risk (ERR) whereas the preferred empirical model shows no dependence on age at exposure. At attained age 70, the multi-model median of the ERR at 1 Gy decreases moderately from 1.2 Gy−1 (90% CI 0.72; 2.1) for exposure at age 25 to a 30% lower value for exposure at age 55. For cohort strata with few cases, where model predictions diverge, uncertainty intervals from multi-model inference are enhanced by up to a factor of 1.6 compared to the preferred empirical model. Multi-model inference provides a joint risk estimate from several plausible models rather than relying on a single model of choice. It produces more reliable point estimates and improves the characterization of uncertainties. The method is recommended for risk assessment in practical radiation protection.  相似文献   

4.
One of the lasting controversies in phylogenetic inference is the degree to which specific evolutionary models should influence the choice of methods. Model‐based approaches to phylogenetic inference (likelihood, Bayesian) are defended on the premise that without explicit statistical models there is no science, and parsimony is defended on the grounds that it provides the best rationalization of the data, while refraining from assigning specific probabilities to trees or character‐state reconstructions. Authors who favour model‐based approaches often focus on the statistical properties of the methods and models themselves, but this is of only limited use in deciding the best method for phylogenetic inference—such decision also requires considering the conditions of evolution that prevail in nature. Another approach is to compare the performance of parsimony and model‐based methods in simulations, which traditionally have been used to defend the use of models of evolution for DNA sequences. Some recent papers, however, have promoted the use of model‐based approaches to phylogenetic inference for discrete morphological data as well. These papers simulated data under models already known to be unfavourable to parsimony, and modelled morphological evolution as if it evolved just like DNA, with probabilities of change for all characters changing in concert along tree branches. The present paper discusses these issues, showing that under reasonable and less restrictive models of evolution for discrete characters, equally weighted parsimony performs as well or better than model‐based methods, and that parsimony under implied weights clearly outperforms all other methods.  相似文献   

5.
Methods for Life Cycle Impact Assessment have to cope with two critical aspects, the uncertainty in values and the (unknown) system behaviour. LCA methodology should cope explicitly with these subjective elements. A structured aggregation procedure is proposed that differentiates between the technosphere and the ecosphere and embeds them in the valuesphere. LCA thus becomes a decision support system that models and combines these three spheres. We introduce three structurally identical types of LCA, each based on one coherent but different set of values. These sets of values can be derived from the Cultural Theory and are labeled as ‘egalitarian’, ‘individualistic’, and ‘hierarchic’. Within Life Cycle Impact Assessment, a damage oriented assessment model is complemented with both a newly developed precautionary indicator designed to address unknown damage and an indicator for the manageability of environmental damages. The indicators for unknown damage and for manageability complete the set of indicators judged to be relevant by decision makers. The weights given to these indicators are also value-dependent. The framework proposed here answers the criticisms that present LCA methodology does not strictly enough separate subjective from objective elements and that it fails to accurately model environmental impacts.  相似文献   

6.
Computational modeling is being used increasingly in neuroscience. In deriving such models, inference issues such as model selection, model complexity, and model comparison must be addressed constantly. In this article we present briefly the Bayesian approach to inference. Under a simple set of commonsense axioms, there exists essentially a unique way of reasoning under uncertainty by assigning a degree of confidence to any hypothesis or model, given the available data and prior information. Such degrees of confidence must obey all the rules governing probabilities and can be updated accordingly as more data becomes available. While the Bayesian methodology can be applied to any type of model, as an example we outline its use for an important, and increasingly standard, class of models in computational neuroscience—compartmental models of single neurons. Inference issues are particularly relevant for these models: their parameter spaces are typically very large, neurophysiological and neuroanatomical data are still sparse, and probabilistic aspects are often ignored. As a tutorial, we demonstrate the Bayesian approach on a class of one-compartment models with varying numbers of conductances. We then apply Bayesian methods on a compartmental model of a real neuron to determine the optimal amount of noise to add to the model to give it a level of spike time variability comparable to that found in the real cell.  相似文献   

7.
Wildlife population assessment: past developments and future directions   总被引:6,自引:0,他引:6  
We review the major developments in wildlife population assessment in the past century. Three major areas are considered: mark-recapture, distance sampling, and harvest models. We speculate on how these fields will develop in the next century. Topics for which we expect to see methodological advances include integration of modeling with Geographic Information Systems, automated survey design algorithms, advances in model-based inference from sample survey data, a common inferential framework for wildlife population assessment methods, improved methods for estimating population trends, the embedding of biological process models into inference, substantially improved models for conservation management, advanced spatiotemporal models of ecosystems, and greater emphasis on incorporating model selection uncertainty into inference. We discuss the kind of developments that might be anticipated in these topics.  相似文献   

8.
Methods for Life Cycle Impact Assessment have to cope with two critical aspects, the uncertainty in values and the (unknown) system behaviour. LCA methodology should cope explicitly with these subjective elements. A structured aggregation procedure is proposed that differentiates between the technosphere and the ecosphere and embeds them in the valuesphere. LCA thus becomes a decision support system that models and combines these three spheres. We introduce three structurally identical types of LCA, each based on one coherent but different set of values. These sets of values can be derived from the Cultural Theory and are labeled as ‘egalitarian’, ‘individualistic’, and ‘hierarchic’. Within Life Cycle Impact Assessment, a damage oriented assessment model is complemented with both a newly developed precautionary indicator designed to address unknown damage and an indicator for the manageability of environmental damages. The indicators for unknown damage and for manageability complete the set of indicators judged to be relevant by decision makers. The weights given to these indicators are also value-dependent. The framework proposed here answers the criticisms that present LCA methodology does not strictly enough separate subjective from objective elements and that it fails to accurately model environmental impacts.  相似文献   

9.
Methods for Life Cycle Impact Assessment have to cope with two critical aspects, the uncertainty in values and the (unknown) system behaviour. LCA methodology should cope explicitly with these subjective elements. A structured aggregation procedure is proposed that differentiates between the technosphere and the ecosphere and embeds them in the valuesphere. LCA thus becomes a decision support system that models and combines these three spheres. We introduce three structurally identical types of LCA, each based on one coherent but different set of values. These sets of values can be derived from the Cultural Theory and are labeled as ‘egalitarian’, ‘individualistic’, and ‘hierarchic’. Within Life Cycle Impact Assessment, a damage oriented assessment model is complemented with both a newly developed precautionary indicator designed to address unknown damage and an indicator for the manageability of environmental damages. The indicators for unknown damage and for manageability complete the set of indicators judged to be relevant by decision makers. The weights given to these indicators are also value-dependent. The framework proposed here answers the criticisms that present LCA methodology does not strictly enough separate subjective from objective elements and that it fails to accurately model environmental impacts.  相似文献   

10.
In 1966, Levins presented a philosophical discussion on making inference about populations using clusters of models. In this article we provide an overview of model inference in ecological risk assessment, discuss the benefits and trade-offs of increasing model realism, show the similarities and differences between Levins' model clusters and those used in ecological risk assessment, and present how risk assessment models can incorporate Levins' ideas of truth through independent lies. Two aspects of Levins' philosophy are directly relevant to risk assessment. First, confidence in our interpretation of risk is increased when multiple risk assessments yield similar qualitative results. Second, model clusters should be evaluated to determine if they maximize precision, generality, or realism or a mix of the three. In the later case, the evaluation of each model will differ depending on whether it is more general, precise, or realistic relative to the other models used. We conclude that risk assessments can be strengthened using Levins' idea, but that Levins' caution that model outcome should not be mistaken for truth is still applicable.  相似文献   

11.
This paper investigates hypotheses drawn from two sources: (1) Belsky, Steinberg, and Draper’s (1991) attachment theory model of the development of reproductive strategies, and (2) recent life history models and comparative data suggesting that environmental risk and uncertainty may be potent determinants of the optimal tradeoff between current and future reproduction. A retrospective, self-report study of 136 American university women aged 19–25 showed that current recollections of early stress (environmental risk and uncertainty) were related to individual differences in adult time preference and adult sexual behavior, and that individual differences in time preference were related to adult attachment organization and sexual behavior. These results are consistent with the hypothesis that perceptions of early stress index environmental risk and uncertainty and mediate the attachment process and the development of reproductive strategies. On this view individual differences in time preference are considered to be part of the attachment theoretical construct of an internal working model, which itself is conceived as an evolved algorithm for the contingent development of alternative reproductive strategies.  相似文献   

12.
A flexible framework for conducting nationwide multimedia, multipathway and multireceptor risk assessments (3MRA) under uncertainty was developed to estimate protective chemical concentration limits in a source area. The framework consists of two components: risk assessment and uncertainty analysis. The risk component utilizes linked source, fate/transport, exposure and risk assessment models to estimate the risk exposures for the receptors of concern. Both human and ecological receptors are included in the risk assessment framework. The flexibility of the framework is based on its ability to address problems varying in spatial scales from site-specific to regional and even national levels; and its ability to accommodate varying types of source, fate/transport, exposure and risk assessment models. The uncertainty component of the 3MRA framework is based on a two-stage Monte Carlo methodology. It allows the calculation of uncertainty in risk estimates, and the incorporation of the effects of uncertainty on the determination of regulatory concentration limits as a function of variability and uncertainty in input data, as well as potential errors in fate and transport and risk and exposure models. The framework can be adapted to handle a wide range of multimedia risk assessment problems. Two examples are presented to illustrate its use, and to demonstrate how regulatory decisions can be structured to incorporate the uncertainty in risk estimates.  相似文献   

13.
An “expansive” risk assessment approach is illustrated, characterizing dose–response relationships for salmonellosis in light of the full body of evidence for human and murine superorganisms. Risk assessments often require analysis of costs and benefits for supporting public health decisions. Decision-makers and the public need to understand uncertainty in such analyses for two reasons. Uncertainty analyses provide a range of possibilities within a framework of present scientific knowledge, thus helping to avoid undesirable consequences associated with the selected policies. And, it encourages the risk assessors to scrutinize all available data and models, thus helping avoid subjective or systematic errors. Without the full analysis of uncertainty, decisions could be biased by judgments based solely on default assumptions, beliefs, and statistical analyses of selected correlative data. Alternative data and theories that incorporate variability and heterogeneity for the human and murine superorganisms, particularly colonization resistance, are emerging as major influences for microbial risk assessment. Salmonellosis risk assessments are often based on conservative default models derived from selected sets of outbreak data that overestimate illness. Consequently, the full extent of uncertainty of estimates of annual number of illnesses is not incorporated in risk assessments and the presently used models may be incorrect.  相似文献   

14.
This paper discusses a number of methods for adjusting treatment effect estimates in clinical trials where differential effects in several subpopulations are suspected. In such situations, the estimates from the most extreme subpopulation are often overinterpreted. The paper focusses on the construction of simultaneous confidence intervals intended to provide a more realistic assessment regarding the uncertainty around these extreme results. The methods from simultaneous inference are compared with shrinkage estimates arising from Bayesian hierarchical models by discussing salient features of both approaches in a typical application.  相似文献   

15.
To facilitate decision support in freshwater ecosystem protection and restoration management, habitat suitability models can be very valuable. Data driven methods such as artificial neural networks (ANNs) are particularly useful in this context, seen their time-efficient development and relatively high reliability. However, specialized and technical literature on neural network modelling offers a variety of model development criteria to select model architecture, training procedure, etc. This may lead to confusion among ecosystem modellers and managers regarding the optimal training and validation methodology. This paper focuses on the analysis of ANN development and application for predicting macroinvertebrate communities, a species group commonly used in freshwater assessment worldwide. This review reflects on the different aspects regarding model development and application based on a selection of 26 papers reporting the use of ANN models for the prediction of macroinvertebrates. This analysis revealed that the applied model training and validation methodologies can often be improved and moreover crucial steps in the modelling process are often poorly documented. Therefore, suggestions to improve model development, assessment and application in ecological river management are presented. In particular, data pre-processing determines to a high extent the reliability of the induced models and their predictive relevance. This also counts for the validation criteria, that need to be better tuned to the practical simulation requirements. Moreover, the use of sensitivity methods can help to extract knowledge on the habitat preference of species and allow peer-review by ecological experts. The selection of relevant input variables remains a critical challenge as well. Model coupling is a missing crucial step to link human activities, hydrology, physical habitat conditions, water quality and ecosystem status. This last aspect is probably the most valuable aspect to enable decision support in water management based on ANN models.  相似文献   

16.
Models of protein evolution currently come in two flavors: generalist and specialist. Generalist models (e.g. PAM, JTT, WAG) adopt a one-size-fits-all approach, where a single model is estimated from a number of different protein alignments. Specialist models (e.g. mtREV, rtREV, HIVbetween) can be estimated when a large quantity of data are available for a single organism or gene, and are intended for use on that organism or gene only. Unsurprisingly, specialist models outperform generalist models, but in most instances there simply are not enough data available to estimate them. We propose a method for estimating alignment-specific models of protein evolution in which the complexity of the model is adapted to suit the richness of the data. Our method uses non-negative matrix factorization (NNMF) to learn a set of basis matrices from a general dataset containing a large number of alignments of different proteins, thus capturing the dimensions of important variation. It then learns a set of weights that are specific to the organism or gene of interest and for which only a smaller dataset is available. Thus the alignment-specific model is obtained as a weighted sum of the basis matrices. Having been constrained to vary along only as many dimensions as the data justify, the model has far fewer parameters than would be required to estimate a specialist model. We show that our NNMF procedure produces models that outperform existing methods on all but one of 50 test alignments. The basis matrices we obtain confirm the expectation that amino acid properties tend to be conserved, and allow us to quantify, on specific alignments, how the strength of conservation varies across different properties. We also apply our new models to phylogeny inference and show that the resulting phylogenies are different from, and have improved likelihood over, those inferred under standard models.  相似文献   

17.

In assessments of detrimental health risks from exposures to ionising radiation, many forms of risk to dose–response models are available in the literature. The usual practice is to base risk assessment on one specific model and ignore model uncertainty. The analysis illustrated here considers model uncertainty for the outcome all solid cancer incidence, when modelled as a function of colon organ dose, using the most recent publicly available data from the Life Span Study on atomic bomb survivors of Japan. Seven recent publications reporting all solid cancer risk models currently deemed plausible by the scientific community have been included in a model averaging procedure so that the main conclusions do not depend on just one type of model. The models have been estimated with different baselines and presented for males and females at various attained ages and ages at exposure, to obtain specially computed model-averaged Excess Relative Risks (ERR) and Excess Absolute Risks (EAR). Monte Carlo simulated estimation of uncertainty on excess risks was accounted for by applying realisations including correlations in the risk model parameters. Three models were found to weight the model-averaged risks most strongly depending on the baseline and information criteria used for the weighting. Fitting all excess risk models with the same baseline, one model dominates for both information criteria considered in this study. Based on the analysis presented here, it is generally recommended to take model uncertainty into account in future risk analyses.

  相似文献   

18.
The selection of the most appropriate model for an ecological risk assessment depends on the application, the data and resources available, the knowledge base of the assessor, the relevant endpoints, and the extent to which the model deals with uncertainty. Since ecological systems are highly variable and our knowledge of model input parameters is uncertain, it is important that models include treatments of uncertainty and variability, and that results are reported in this light. In this paper we discuss treatments of variation and uncertainty in a variety of population models. In ecological risk assessments, the risk relates to the probability of an adverse event in the context of environmental variation. Uncertainty relates to ignorance about parameter values, e.g., measurement error and systematic error. An assessment of the full distribution of risks, under variability and parameter uncertainty, will give the most comprehensive and flexible endpoint. In this paper we present the rationale behind probabilistic risk assessment, identify the sources of uncertainty relevant for risk assessment and provide an overview of a range of population models. While all of the models reviewed have some utility in ecology, some have more comprehensive treatments of uncertainty than others. We identify the models that allow probabilistic assessments and sensitivity analyses, and we offer recommendations for further developments that aim towards more comprehensive and reliable ecological risk assessments for populations.  相似文献   

19.
Landscape genetics lacks explicit methods for dealing with the uncertainty in landscape resistance estimation, which is particularly problematic when sample sizes of individuals are small. Unless uncertainty can be quantified, valuable but small data sets may be rendered unusable for conservation purposes. We offer a method to quantify uncertainty in landscape resistance estimates using multimodel inference as an improvement over single model‐based inference. We illustrate the approach empirically using co‐occurring, woodland‐preferring Australian marsupials within a common study area: two arboreal gliders (Petaurus breviceps, and Petaurus norfolcensis) and one ground‐dwelling antechinus (Antechinus flavipes). First, we use maximum‐likelihood and a bootstrap procedure to identify the best‐supported isolation‐by‐resistance model out of 56 models defined by linear and non‐linear resistance functions. We then quantify uncertainty in resistance estimates by examining parameter selection probabilities from the bootstrapped data. The selection probabilities provide estimates of uncertainty in the parameters that drive the relationships between landscape features and resistance. We then validate our method for quantifying uncertainty using simulated genetic and landscape data showing that for most parameter combinations it provides sensible estimates of uncertainty. We conclude that small data sets can be informative in landscape genetic analyses provided uncertainty can be explicitly quantified. Being explicit about uncertainty in landscape genetic models will make results more interpretable and useful for conservation decision‐making, where dealing with uncertainty is critical.  相似文献   

20.
Specification of an appropriate model is critical to valid statistical inference. Given the “true model” for the data is unknown, the goal of model selection is to select a plausible approximating model that balances model bias and sampling variance. Model selection based on information criteria such as AIC or its variant AICc, or criteria like CAIC, has proven useful in a variety of contexts including the analysis of open-population capture-recapture data. These criteria have not been intensively evaluated for closed-population capture-recapture models, which are integer parameter models used to estimate population size (N), and there is concern that they will not perform well. To address this concern, we evaluated AIC, AICc, and CAIC model selection for closed-population capture-recapture models by empirically assessing the quality of inference for the population size parameter N. We found that AIC-, AICc-, and CAIC-selected models had smaller relative mean squared errors than randomly selected models, but that confidence interval coverage on N was poor unless unconditional variance estimates (which incorporate model uncertainty) were used to compute confidence intervals. Overall, AIC and AICc outperformed CAIC, and are preferred to CAIC for selection among the closed-population capture-recapture models we investigated. A model averaging approach to estimation, using AIC, AICc, or CAIC to estimate weights, was also investigated and proved superior to estimation using AIC-, AICc-, or CAIC-selected models. Our results suggested that, for model averaging, AIC or AICc should be favored over CAIC for estimating weights.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号