首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Employing [32P]ADP-ribosylation by pertussis toxin we have identified a G protein that is located in the rough endoplasmic reticulum of canine pancreas and therefore termed it GRER. Identification of GRER is based on the following data. A 41-kDa polypeptide was the only polypeptide that was [32P]ADP-ribosylated by pertussis toxin in pancreas rough microsomes. Guanosine 5'-(gamma-thio)triphosphate (GTP gamma S) and 1 mM ATP, 6 mM MgCl2, 10 mM NaF (AMF) inhibited ADP-ribosylation of this polypeptide. The [32P]ADP-ribosylated 41-kDa polypeptide was immunoprecipitated by antisera which specifically recognized the C-terminal residues of the alpha subunits of Gi and transducin, indicating that the 41-kDa polypeptide is immunologically related to the alpha subunits of heterotrimeric G proteins. Treatment with GTP gamma S resulted in a reduction in the sedimentation rate of the [32P]ADP-ribosylated, detergent-solubilized GRER. It also induced the release of the [32P]ADP-ribosylated 41-kDa polypeptide from rough microsomes in the absence of detergent, unlike ADP-ribosylated alpha subunits of plasma membrane-associated G proteins. These data are consistent with an oligomeric nature of GRER. The codistribution of GRER with an endoplasmic reticulum marker protein during subcellular fractionation and the lack of plasma membrane contamination of the rough microsomal fraction, combined with the isodensity of GRER with rough microsomes as well as the isodensity of GRER with "stripped" microsomes after extraction of rough microsomes with EDTA and 0.5 M KCl, localized GRER to the rough endoplasmic reticulum. Preliminary experiments suggest that GRER appears not to be involved in translocation of proteins across the rough endoplasmic reticulum membrane.  相似文献   

2.
To test the effects of hydrostatic pressure on the coupling of receptors to guanyl nucleotide binding reglatory proteins (G proteins) in transmembrane signaling, pertussis toxin (PTX)-catalyzed [32P]ADP-ribosylation was used to probe the guanyl nucleotide-binding proteins Gi and G(o) in brain membranes from four marine teleosts. These macrourids, Coryphaenoides pectoralis, Coryphaenoides cinereus, Coryphaenoides filifer and Coryphaenoides armatus, span depths from 200 to 5400 m. Pertussis toxin specifically labelled proteins of 39-41 kDa. The PTX-catalyzed [32P]ADP-ribosylation reaction was linear for 7 h. Added guanyl nucleotides (guanosine 5'-diphosphate (GDP) and guanosine 5'-O-(3-thiotriphosphate)(GTP[S])) at concentrations up to 1000 microM did not affect ribosylation at atmospheric pressure. Under basal conditions the Gi/G(o) protein population appears to be uncoupled from receptors and bound with GDP. Pressures up to 476 atm were tested in the absence and presence of added guanyl nucleotides, 100 microM GDP and 100 microM GTP[S]. [32P]ADP-ribosylation in brain membranes from the deeper-occurring C. cinereus, C. filifer and C. armatus was not inhibited by increased pressure in the presence of 100 microM GDP. Increasing pressure decreased ribosylation in brain membranes of C. pectoralis. In the presence of 100 microM GTP[S], increased pressure inhibited ribosylation in all species. Pressure appears to enhance the efficacy of GTP[S] in dissociating the heterotrimeric holoprotein.  相似文献   

3.
A rapid and inexpensive method has been developed for the synthesis of 32P-labeled guanosine 5'-triphosphate (GTP). When yolk platelets isolated from brine shrimp cysts are incubated with 32PPi at pH 5.8 and in the presence of 10 mM MgCl2 and 5 mM dithiothreitol, the primary compound formed is [beta,gamma-32P]GTP. The synthetic reaction is catalyzed by the yolk platelet enzyme, GTP : GTP guanylyltransferase, which has been demonstrated to be important in the biosynthesis of diguanosine 5'-tetraphosphate (Gp4G), the major purine nucleotide in brine shrimp yolk platelets and encysted embryos.  相似文献   

4.
Endogenous phosphorylation was studied with highly purified fractions of the plasma membrane and the endoplasmic reticulum of SV40-transformed mouse fibroblasts using [gamma-32P]ATP and [gamma-32P]GTP as precursors. With ATP maximum overall incorporation of 32P into both membrane fractions occurred at pH 7.8 in the presence of 10 mM MgCl2 after incubation for 1 min. GTP could be utilized only by the plasma membrane fraction showing maximum incorporation of 32P at pH 7.8 and 10 mM MgCl2 after incubation for 3 min. The pattern of phosphoproteins of the plasma membrane is represented by more than 15 proteins whereas the endoplasmic reticulum essentially contained only one phosphorylated component of 35 000 molecular weight. The comparison of ATP- and GTP-specific phosphorylation of the plasma membrane revealed GTP to be a less efficient precursor yielding a similar phosphoprotein pattern with one significant difference: the GTP-specific main component exhibited a molecular weight of about 100 000 and the ATP-specific main component a molecular weight of 110 000. The relative distribution of individual phosphoproteins in the pattern of the plasma membrane was dependent on pH but not on MgCl2 concentration or time of incubation. Increasing concentrations of plasma membrane protein altered the patterns of phosphoproteins dramatically: At high protein concentrations the ATP-specific main component (Mr = 110 000) was no more phosphorylated whereas with GTP the main component Mr = 100 000 was essentially the sole phosphorylated protein.  相似文献   

5.
Nucleoside-diphosphate (NDP) kinase-associated [alpha-32P]GTP-incorporating proteins from HeLa S3 cells have been biochemically characterized. Two distinct NDP-kinases (F-I and F-II) had been partially purified from HeLa S3 cells by Sephacryl S-300 gel filtration and DEAE-cellulose column chromatography. The [alpha-32P]GTP-incorporating proteins (approx. Mr 20,000) could be separated from NDP-kinases (approx. Mr 80,000) by 5-25% glycerol density-gradient centrifugation analysis after treatment with 7 M urea in the presence of 1 mM EDTA. [alpha-32P]GTP incorporation into these two proteins (G1 and G2) from NDP-kinases required 5 mM Mg2+ and was highly inhibited by either GDP or GTP analogues, such as guanylyl imidodiphosphate and guanylyl methylenediphosphate. [3H]GDP, but no other nucleoside 5'-diphosphates, was also bound to these two proteins in the presence of Mg2+ (5 mM). Moreover, incubation of [alpha-32P]GTP with either G1 or G2 in the presence of Mg2+ (5 mM) resulted in the formation of [32P]GDP and Pi. The data presented here indicated that the guanine nucleotide-binding activity, the GTPase activity, and the molecular weight (approx. Mr 20,000) of NDP-kinase-associated proteins from HeLa S3 cells are similar to those reported for ras oncogene products (p21 proteins).  相似文献   

6.
Cholera toxin elicited 5- to 7-fold stimulation of adenylyl cyclase activity. Half-maximal activation was at 4.42 micrograms/ml cholera toxin. Cholera toxin-mediated activation was time dependent. At 0.1 mM ATP, both guanosine triphosphate (GTP) and nicotinamide adenine dinucleotide (NAD+) were required for cholera toxin activation of luteal adenylyl cyclase. The concentrations of GTP and NAD+ required for half-maximal activation were 1 and 200 microM, respectively. The GTP requirement could be eliminated by increasing the ATP concentration to 1.0 mM. Guanosine-5'-O-(2-thiodiphosphate) [GDP beta S] did not support cholera toxin activation of the luteal enzyme. Cholera toxin treatment increased GTP-stimulated activity, did not significantly alter guanyl-5'-yl imidodiphosphate [GMP-P(NH)P]-stimulated activity, and depressed NaF-stimulated activity. Furthermore, toxin treatment resulted in a 3.4-fold reduction in the Kact values for ovine luteinizing hormone (oLH) to activate adenylyl cyclase. A similar reduction in Kact values for oLH was obtained when concentration-effect curves performed in the presence of GMP-P(NH)P were compared to those performed in the presence of GTP. In addition, luteal membranes treated with cholera toxin and [32P]NAD+ were subjected to autoradiographic analysis following sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This treatment resulted in the [32P] adenosine diphospho (ADP)-ribosylation of a 45,000-dalton protein doublet, corresponding to the alpha subunit of the stimulatory guanine nucleotide-binding regulatory component (Ns). As with activation of adenylyl cyclase activity, cholera toxin-specific [32P] ADP-ribosylation was time dependent and increased with increasing concentrations of cholera toxin. GTP, GMP-P(NH)P, and NaF, but not GDP beta S, were capable of supporting [32P] ADP-ribosylation of the protein doublet. oLH did not alter the ability of cholera toxin to ADP-ribosylate the protein activation of luteal adenylyl cyclase activity is due to the ADP-ribosylation of the alpha subunit of Ns and the concomitant inhibition of a GTPase associated with adenylyl cyclase.  相似文献   

7.
ADP-ribosylation of rat adipocyte plasma membrane proteins was investigated following incubation of membranes with [alpha-32P]NAD and cholera toxin in the presence and absence of various guanine nucleotides. In membranes incubated without guanine nucleotides, cholera toxin induced incorporation of 32P into three discrete proteins of 48, 45, and 41 kDa. In membranes containing 100 microM GTP or GDP, toxin-catalyzed incorporation of 32P into the 41-kDa protein was inhibited. GMP and Gpp(NH)p (100 microM) allowed moderate incorporation of 32P into the 41-kDa protein. Toxin-catalyzed labeling of all proteins was rapid, reaching maximal levels between 5 and 10 min. Toxin-catalyzed ADP-ribosylation of the 48- and 45-kDa proteins was stimulated by GTP, reaching maximal levels at 10(-5) M GTP. Inhibition of toxin-dependent labeling of the 41-kDa protein required GTP concentrations above 10(-7) M with complete inhibition occurring between 10(-5) and 10(-4) M GTP. Cholera toxin catalyzed ADP-ribosylation was increased up to 2-fold in membranes supplemented with adipocyte cytosol. These results indicate that cholera toxin catalyzes ADP-ribosylation of three distinct adipocyte plasma membrane proteins, each of which is regulated by the amount and type of added guanine nucleotides.  相似文献   

8.
Membrane proteins from rabbit and human platelets were separated by SDS/polyacrylamide-gel electrophoresis and the resolved polypeptides blotted on nitrocellulose. A family of GTP-binding proteins, termed Gn proteins, was detected by incubation of these blots with [alpha-32P]GTP in the presence of Mg2+. A major Gn protein with a molecular mass of 27 kDa (Gn27) and lesser amounts of 23, 24 and 25 kDa Gn proteins were observed in platelet membranes; much smaller amounts were in the platelet soluble fraction. Binding of [alpha-32P]GTP by platelet Gn proteins was blocked by GDP, GTP or guanosine 5'-[gamma-thio]triphosphate, but not by GMP or adenosine 5'-[beta gamma-imido]triphosphate. Rabbit and human red-cell membranes contained only Gn27. When rat tissues were analysed for Gn proteins, the largest amounts were found in brain, which contained two membrane-bound forms (Gn27 and Gn26) and a soluble form (Gn26).  相似文献   

9.
The physiological correlation between nucleoside-diphosphate kinases (NDP-kinases) and the 21-kDa guanine nucleotide-binding proteins (G1 and G2) which are copurified with the enzymes from the cell membrane fractions of Ehrlich ascites tumor cells has been biochemically investigated in vitro. We found that: incubation of the phosphoenzyme (enzyme-bound high-energy phosphate intermediate) of NDP-kinases (F-I and F-II) with one of the nucleoside 5'-diphosphates in the presence of 1 mM Mg2+ or 0.25 mM Ca2+ results in the rapid formation of nucleoside 5'-triphosphates without strict base specificity; GDP on the guanine nucleotide-binding proteins (G1, G2 and recombinant v-rasH p21) acts as a phosphate acceptor for the high-energy phosphates of the phosphoenzyme in the presence of 0.25 mM Ca2+; and [32P]GTP is preferentially formed from the 32P-labelled phosphoenzyme F-I and GDP-bound G1 or GDP-bound recombinant v-rasH p21 protein, even if any other nucleoside 5'-diphosphates are present in the reaction mixture. Although [32P]GTP formed was bound with the guanine nucleotide-binding proteins, it was immediately hydrolyzed by the proteins themselves in the presence of 5 mM Mg2+, but not in the presence of 0.25 mM Ca2+. Available evidence suggests that NDP-kinase may be responsible for the activation of the guanine nucleotide-binding proteins (G1, G2 and p21 proteins) through phosphate transfer by the enzyme.  相似文献   

10.
K Shiozaki  T Haga 《Biochemistry》1992,31(43):10634-10642
Muscarinic acetylcholine receptors (mAChR) purified from porcine atrium were reconstituted into lipid vesicles with GTP-binding regulatory proteins (G proteins, Gi, Go, or Gn) purified from porcine cerebrum. Apparent affinities of the reconstituted mAChR and G proteins for carbachol and GDP, respectively, were estimated from the effects of these ligands on the binding of [3H]-L-quinuclidinyl benzilate ([3H]QNB) to mAChR and [35S]guanosine 5'-O-(3-thiotriphosphate) ([35S]GTP gamma S) to G proteins in the presence of different concentrations of MgCl2. A total of 30-35% of reconstituted mAChRs exhibited low affinity for carbamylcholine, irrespective of the presence or absence of guanine nucleotides, and the remainder of the mAChRs showed high affinities for carbamylcholine in the absence of GTP or GDP and a low affinity in their presence. The affinity for carbamylcholine in the absence of guanine nucleotides, but not in their presence, increased with increases in MgCl2 concentration. Apparent Kd's for carbamylcholine were estimated to be approximately 100 microM in the presence of guanine nucleotides, 1.5 microM in the absence of guanine nucleotide and Mg2+ (< 0.1 microM), and 0.1 microM in the absence of guanine nucleotide and the presence of MgCl2 (10 mM). These results indicate that mAChRs may assume at least three different conformations that are characterized by different affinities for agonists. Furthermore, the data suggest that MgCl2 is not necessary for the formation of the mAChR-G protein complex, but can induce a conformational change in the complex. On the other hand, the presence of MgCl2 was necessary for carbamylcholine to influence the binding of guanine nucleotides.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Incubation of rat mast cells with compound 48/80 resulted in transient breakdown of phosphatidylinositol 4,5-bisphosphate, rapid generation of inositol polyphosphates, 45Ca inflow, and the arachidonic acid liberation mainly from phosphatidylcholine, eventually leading to histamine secretion. All of these processes of signaling from Ca-mobilizing receptors to degranulation were markedly inhibited by prior 2-h exposure of cells to islet-activating protein (IAP), pertussis toxin. A23187 caused 45Ca inflow and releases of arachidonic acid and histamine without inducing breakdown of inositol phospholipids. The effects of A23187, in contrast to those of compound 48/80, were not altered by the exposure of cells to IAP. Incubation of the supernatant fraction of mast cell homogenates with the active component of IAP caused the transfer of the ADP-ribosyl moiety of added [alpha-32P]NAD to a protein with Mr = 41,000. The IAP-catalyzed ADP-ribosylation of this protein was prevented by guanosine 5'-(3-O-thio)triphosphate, indicating that this IAP substrate resembles, in character, the alpha-subunit of the guanine nucleotide regulatory protein (Ni) involved in inhibition of adenylate cyclase. The degree of ADP-ribosylation of this IAP substrate was prevented progressively by pre-exposure of the homogenate-donor cells to increasing concentrations of IAP. The half-maximally effective concentrations of the toxin were 0.2 to 0.6 ng/ml for all the IAP-sensitive processes studied. Thus, the ADP-ribosylation of the Mr = 41,000 protein occurring during exposure of cells to IAP appears to be responsible for the inhibition of signaling observed. It is proposed that the alpha-subunit of Ni, or a like protein, mediates signal transduction arising from Ca-mobilizing receptors, probably prior to Ca2+ gating.  相似文献   

12.
1. Some of the actions of pertussis toxin on the rabbit luteal adenylyl cyclase system were analyzed. 2. Incubation of luteal membranes with pertussis toxin and [32P]NAD resulted in the [32P]ADP-ribosylation of a 40,000 Da protein that is distinct from the proteins ADP-ribosylated by cholera toxin. 3. Pertussis toxin specific [32P]ADP-ribosylation was time-dependent and dependent upon the concentration of pertussis toxin present during the incubation. 4. Pertussis toxin mediated [32P]ADP-ribosylation was enhanced by ATP, ADP, adenylyl imidodiphosphate, GTP, guanosine-5'-O-(2-thiodiphosphate), guanosine-5'-O-(3-thiotriphosphate), and NaF but not AMP or guanylyl imidodiphosphate [GMP-P(NH)P]. 5. Treatment of luteal membranes with NAD and pertussis toxin prevents GTP and enkephalin but not GMP-P(NH)P mediated inhibition of forskolin stimulated adenylyl cyclase, demonstrating the existence of a functional Gi in the rabbit corpus luteum.  相似文献   

13.
Besides botulinum C2 toxin, Clostridium botulinum type C produces another ADP-ribosyltransferase, which we termed 'C3'. ADP-ribosyltransferase C3 has a molecular mass of 25 kDa and modifies 21-24 kDa protein(s) in platelet and brain membranes. C3 was about 1000 times more potent than botulinum C1 toxin in ADP-ribosylation of membrane proteins. C3-catalysed ADP-ribosylation of the 21-24 kDa protein(s) was decreased by stable guanosine triphosphates, with the potency order GTP[S] much greater than p[NH]ppG greater than p[CH2]ppG. GTP[S] inhibited the ADP-ribosylation caused by C3 by maximally 70-80%, with half-maximal and maximal effects occurring at 0.3 and 10 microM-GTP[S] respectively. The concomitant addition of GTP decreased the inhibitory effect of GTP[S]. GTP[S]-induced inhibition of ADP-ribosylation was resistant to washing of pretreated platelet membranes. The data suggest that the novel botulinum ADP-ribosyltransferase C3 modifies eukaryotic 21-24 kDa guanine nucleotide-binding protein(s).  相似文献   

14.
Detection of G Proteins in Purified Bovine Brain Myelin   总被引:5,自引:5,他引:0  
Following a previous report on detection of muscarinic receptors in myelin with the implied presence of G proteins, we now demonstrate by more direct means the presence of such proteins and their quantification. Using [35S]guanosine 5'-O-(3-thiotriphosphate) ([35S]GTP gamma S) as the binding ligand, purified myelin from bovine brain was found to contain approximately half the binding activity of whole white matter (138 +/- 9 vs. 271 +/- 18 pmol/mg of protein). Scatchard analysis of saturation binding data revealed two slopes, a result suggesting at least two binding populations. This binding was inhibited by GTP and its analog but not by 5'-adenylylimidodiphosphate [App(NH)p], GMP, or UTP. Following sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) of myelin proteins and blotting on nitrocellulose, [alpha-32P]GTP bound to three bands in the 21-27-kDa range in a manner inhibited by GTP and GTP gamma S but not App(NH)p. ADP-ribosylation of myelin with [32P]NAD+ and cholera toxin labeled a protein of 43 kDa, whereas reaction with pertussis toxin labeled two components of 40 kDa. Cholate extract of myelin subjected to chromatography on a column of phenyl-Sepharose gave at least three major peaks of [35S]GTP gamma S binding activity. SDS-PAGE and immunoblot analyses of peak I indicated the presence of Go alpha, Gi alpha, and Gs alpha. Further fractionation of peak II by diethyl-aminoethyl-Sephacel chromatography gave one [35S]GTP gamma S binding peak with the low-molecular-mass (21-27 kDa) proteins and a second showing two major protein bands of 36 and 40 kDa on SDS-PAGE.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Mg2+ increased but Na+ and GTP decrease [3H]substance P (SP) binding to rat cerebral cortical membranes and to 10 mM 3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulfonate (CHAPS)-solubilized membrane fraction. To determine the binding parameters that are modified by the cations and GTP, inhibition experiments of [3H]SP binding by unlabeled SP were performed in both of the preparations. Nonlinear least-squares regression analysis of data in the membrane fraction indicated that optimal fitting of the inhibition curves in the presence of 10 mM MgCl2 was attained with a two-site model, corresponding to a "high-affinity (H)" and a "low-affinity (L)" state. By omitting MgCl2, or by addition of NaCl and GTP, the [3H]SP specific binding was decreased, the H state disappeared, and the L state and a new "super-low affinity (SL)" state observed. The SP/[3H]SP inhibition curves in the cerebral cortical membranes by in vivo treatment with pertussis toxin (islet-activating protein) were similar to that in the presence of GTP in control membranes. The effects of MgCl2, NaCl, and GTP were greater in the CHAPS-solubilized fraction than in the membrane fraction. In contrast to the membrane fraction, the inhibition curves of [3H]SP binding by unlabeled SP in the presence of MgCl2 in the CHAPS-solubilized fraction were best fitted to a one-site model. The KD value was relatively close to that of the low-affinity state in the membrane fraction. Even with the addition of NaCl or GTP, or by reducing MgCl2 concentration to 1 mM, although the inhibition curves consistently fit the one-site model, the KD values changed only slightly.  相似文献   

16.
Cycle-purified microtubule protein from mammalian brain incorporated [32P]Pi upon incubation with [gamma-32P]GTP under the conditions used to promote assembly. This phosphorylation also occurred in the same proteins when phosphorylated with [gamma-32P]ATP and was only slightly stimulated by cAMP. GTP was a much less effective substrate than ATP. The transfer of phosphoryl groups from [gamma-32P]GTP to endogenous proteins followed a linear time-course and was stimulated by low concentrations of ATP and, more efficiently, by ADP. These data are in agreement with the predictions derived from a mechanism of phosphorylation by which [gamma-32P]GTP does not act as a phosphoryl donor for the protein kinase activity but, instead, only as a repository of high group transfer potential phosphoryl groups used to make [gamma-32P]ATP, from contaminating ADP, by means of the nucleoside diphosphate kinase activity. Using 100 mM fluoride, which suppressed protein phosphorylation without inhibiting the nucleoside diphosphate kinase activity, formation of [gamma-32P]ATP was detected. Fluoride was also able to protect microtubules from a slow depolymerization which was found to occur during long-term incubation of microtubules. This indicates that the phosphorylation observed in the presence of GTP is sufficient to destabilize microtubules.  相似文献   

17.
ADP-ribosylation of transducin by pertussis toxin   总被引:8,自引:0,他引:8  
Transducin, the guanyl nucleotide-binding regulatory protein of retinal rod outer segments that couples the photon receptor, rhodopsin, with the light-activated cGMP phosphodiesterase, can be resolved into two functional components, T alpha and T beta gamma. T alpha (39 kDa), which is [32P]ADP-ribosylated by pertussis toxin and [32P]NAD in rod outer segments and in purified transducin, was also labeled by the toxin after separation from T beta gamma (36 kDa and approximately 10 kDa); neither component of T beta gamma was a pertussis toxin substrate. Labeling of T alpha was enhanced by T beta gamma and was maximal at approximately 1:1 molar ratio of T alpha : T beta gamma. Limited proteolysis by trypsin of T alpha in the presence of guanyl-5'-yl imidodiphosphate (Gpp(NH)p) resulted in the sequential appearance of proteins of 38 and 32 kDa. The amino terminus of both 38- and 32-kDa proteins was leucine, whereas that of T alpha could not be identified and was assumed to be blocked. The 32-kDa peptide was not a pertussis toxin substrate. Labeling of the 38-kDa protein was poor and was not enhanced by T beta gamma. Trypsin treatment of [32P]ADP-ribosyl-T alpha produced a labeled 37-38-kDa doublet followed by appearance of radioactivity at the dye front. It appears, therefore, that, although the 38-kDa protein was poor toxin substrate, it contained the ADP-ribosylation site. Without rhodopsin, labeling of T alpha (in the presence of T beta gamma) was unaffected by Gpp(NH)p, guanosine 5'-O-(thiotriphosphate) (GTP gamma S), GTP, GDP, and guanosine 5'-O-(thiodiphosphate) (GDP beta S) but was increased by ATP. When photolyzed rhodopsin and T beta gamma were present, Gpp(NH)p and GTP gamma S decreased [32P]ADP-ribosylation by pertussis toxin. Thus, pertussis toxin-catalyzed [32P]ADP-ribosylation of T alpha was affected by nucleotides, rhodopsin and light in addition to T beta gamma. The amino terminus of T alpha, while it does not contain the pertussis toxin ADP-ribosylation site, appeared critical to its reactivity.  相似文献   

18.
《Life sciences》1993,52(25):PL285-PL290
Evidence is presented that the neuropeptide Y receptor is directly coupled to an inhibitory G protein existing in cultured bovine adrenal chromaffin cell membranes. Pertussis toxin catalyzes the [32P]ADP-ribosylation of a 41 kDa plasma membrane protein. 5′-Guanylylimidodiphosphate inhibited the [32P]ADP labelling of this protein in a dose-dependent manner whereas GTP had no effect. Preincubation of the plasma membranes with high concentrations of neuropeptide Y followed by a brief exposure to a low concentration of 5′-guanylylimidodiphosphate significant;y inhibited ADP-ribosylation beyond that observed with 5′-guanylimidodiphosphate alone. These result suggest that the neuropeptide Y receptor in bovine adrenal chromaffin cells is directly coupled to a 41 kDa PTX substrate (presumably the α subunit of an inhibitory G protein).  相似文献   

19.
The effects of Ca2+ and calmodulin on endogenously catalyzed ADP-ribosylation were investigated in adipocyte plasma membranes. Four specific proteins of 70, 65, 61 and 52 kDa were labeled with [32P]ADP-ribose and ADP-ribosylation of the proteins was highly dependent upon the conditions employed. ADP-ribosylation of the 70 kDa protein was observed only in membranes supplemented with Ca2+. Maximal incorporation of [32P] into the protein was achieved with free Ca2+ concentrations of 90 microM. Calcium-stimulated ADP-ribosylation of the 70 kDa protein was inhibited by calmodulin. Half-maximal inhibition was observed in membranes incubated with 1.2 microM calmodulin. The effect of calmodulin was characterized by an inhibition of the incorporation of [32P]ADP-ribose as opposed to a stimulation of its removal. ADP-ribosylation of the 61 kDa protein was not altered by added Ca2+ and/or calmodulin whereas ADP-ribosylation of the 65 kDa protein was partially (50%) inhibited by free Ca2+ concentrations between 10(-6) - 10(-5) M. These results provide evidence that the adipocyte plasma membrane contains ADP-ribosyltransferase activities and demonstrate that ADP-ribosylation of a 70 kDa protein is regulated by Ca2+ and calmodulin.  相似文献   

20.
We investigated the effects of R(-)-1-(benzo[b]thiophen-5-yl)-2-[2-(N,N-diethylamino)ethoxy]ethan ol hydrochloride (T-588), a novel cognitive enhancer, on trimeric GTP-binding proteins (G proteins) and cyclic AMP accumulation in rat cerebral cortex. T-588 (0.1-1.0 mM) inhibited the ADP-ribosylation of alpha subunit of Gs in a concentration-dependent manner. Auto-ADP-ribosylation of CTX was not inhibited by T-588. The stimulatory effect of guanosine 5'-(3-O-thio)triphosphate (GTPgammaS) on CTX-catalyzed ADP-ribosylation was attenuated by adding T-588 in assay mixture. ADP-ribosylation of Gi/Go by pertussis toxin was slightly inhibited by T-588. Isoproterenol-stimulated cyclic AMP accumulation was inhibited by adding 3 mM T-588 to rat cerebral cortical slices. Next, we investigated the effects of isoproterenol and T-588 on GTPgammaS binding. Membranes were first incubated with or without isoproterenol and T-588 in the presence of 0.2mM GTPgammaS, then cholate extract preparations were prepared from the washed membranes. Interestingly, the [32P]ADP-ribosylation of G(s alpha) was enhanced not only by isoproterenol but also by T-588. Although the obtained results are apparently inconsistent, T-588 seems to interact with G proteins, specifically Gs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号