首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
The chondroitin lyase II gene from Bacteroides thetaiotaomicron has previously been cloned in Escherichia coli on a 7.8-kilobase (kb) fragment (pA818). In E. coli, the chondroitin lyase II gene appeared to be expressed from a promoter that was about 0.5 kb from the beginning of the gene. However, when a subcloned 5-kb fragment from pA818 which contained the chondroitin lyase II gene and the promoter from which the gene is expressed in E. coli was introduced into B. thetaiotaomicron on a multicopy plasmid (pEG800), the chondroitin lyase specific activity of B. thetaiotaomicron was not altered. Further evidence that the promoter that is recognized in E. coli may not be the promoter from which the chondroitin lyase II gene is transcribed in B. thetaiotaomicron was obtained by making an insertion in the B. thetaiotaomicron chromosome at a point which is 1 kb upstream from the chondroitin lyase II gene. This insertion stopped synthesis of the chondroitin lyase II gene product, as would be predicted if the gene was part of an operon and was transcribed in B. thetaiotaomicron from a promoter that was at least 1 kb upstream from the chondroitin lyase II gene. A region of pA818 which was adjacent to the chondroitin lyase II gene and which included the region used to make the insertional mutation was found to code for chondro-4-sulfatase, an enzyme that breaks down one of the products of the chondroitin lyase reaction. The upstream insertion mutant of B. thetaiotaomicron which stopped synthesis of chondroitin lyase II had no detectable chondro-4-sulfatase activity. This mutant was still able to grow on chondroitin sulfate, although the rate of growth was slower than that of the wild type.  相似文献   

2.
Three species of colonic bacteria can ferment the mucopolysaccharide chondroitin sulfate: Bacteroides ovatus, Bacteroides sp. strain 3452A (an unnamed DNA homology group), and B. thetaiotaomicron. Proteins associated with the utilization of chondroitin sulfate by B. thetaiotaomicron have been characterized previously. In this report we compare chondroitin lyases and chondroitin sulfate-associated outer membrane polypeptides of B. ovatus and Bacteroides sp. strain 3452A with those of B. thetaiotaomicron. All three species produce two soluble cell-associated chondroitin lyases, chondroitin lyase I and II. Purified enzymes from the three species have similar pH optima, Km values, and molecular weights. However, peptide mapping experiments show that the chondroitin lyases from B. ovatus and Bacteroides sp. strain 3452A are not identical to those of B. thetaiotaomicron. A cloned gene that codes for the chondroitin lyase II from B. thetaiotaomicron hybridized on a Southern blot with DNA from B. ovatus or Bacteroides sp. strain 3452A only when low-stringency conditions were used. Antibody to chondroitin lyase II from B. thetaiotaomicron did not cross-react with chondroitin lyase II from B. ovatus or Bacteroides sp. strain 3452A. Chondroitin lyase activity in all three species was inducible by chondroitin sulfate. B. ovatus and Bacteroides sp. strain 3452A, like B. thetaiotaomicron, have outer membrane polypeptides that appear to be regulated by chondroitin sulfate, but the chondroitin sulfate-associated outer membrane polypeptides differ in molecular weight. Despite these differences, the ability of intact bacteria to utilize chondroitin sulfate, as indicated by growth yields in carbohydrate-limited continuous culture and the rate at which the chondroitin lyases were induced, was the same for all three species.  相似文献   

3.
Three species of colonic bacteria can ferment the mucopolysaccharide chondroitin sulfate: Bacteroides ovatus, Bacteroides sp. strain 3452A (an unnamed DNA homology group), and B. thetaiotaomicron. Proteins associated with the utilization of chondroitin sulfate by B. thetaiotaomicron have been characterized previously. In this report we compare chondroitin lyases and chondroitin sulfate-associated outer membrane polypeptides of B. ovatus and Bacteroides sp. strain 3452A with those of B. thetaiotaomicron. All three species produce two soluble cell-associated chondroitin lyases, chondroitin lyase I and II. Purified enzymes from the three species have similar pH optima, Km values, and molecular weights. However, peptide mapping experiments show that the chondroitin lyases from B. ovatus and Bacteroides sp. strain 3452A are not identical to those of B. thetaiotaomicron. A cloned gene that codes for the chondroitin lyase II from B. thetaiotaomicron hybridized on a Southern blot with DNA from B. ovatus or Bacteroides sp. strain 3452A only when low-stringency conditions were used. Antibody to chondroitin lyase II from B. thetaiotaomicron did not cross-react with chondroitin lyase II from B. ovatus or Bacteroides sp. strain 3452A. Chondroitin lyase activity in all three species was inducible by chondroitin sulfate. B. ovatus and Bacteroides sp. strain 3452A, like B. thetaiotaomicron, have outer membrane polypeptides that appear to be regulated by chondroitin sulfate, but the chondroitin sulfate-associated outer membrane polypeptides differ in molecular weight. Despite these differences, the ability of intact bacteria to utilize chondroitin sulfate, as indicated by growth yields in carbohydrate-limited continuous culture and the rate at which the chondroitin lyases were induced, was the same for all three species.  相似文献   

4.
5.
We constructed a shuttle vector, pE5-2, which can replicate in both Bacteroides spp. and Escherichia coli. pE5-2 contains a cryptic Bacteroides plasmid (pB8-51), a 3.8-kilobase (kb) EcoRI-D fragment from the 41-kb Bacteroides fragilis plasmid pBF4, and RSF1010, an IncQ E. coli plasmid. pE5-2 was mobilized by R751, an IncP E. coli plasmid, between E. coli strains with a frequency of 5 X 10(-2) to 3.8 X 10(-1) transconjugants per recipient. R751 also mobilized pE5-2 from E. coli donors to Bacteroides uniformis 0061RT and Bacteroides thetaiotaomicron 5482 with a frequency of 0.9 X 10(-6) to 2.5 X 10(-6). The Bacteroides transconjugants contained only pE5-2 and were resistant to clindamycin and erythromycin. Thus, the gene for clindamycin and erythromycin resistance must be located within the Eco RI-D fragment of BF4. A second recombinant plasmid, pSS-2, which contained 33 kb of pBF4 (including the EcoRI-D fragment and contiguous regions) could also be mobilized by R751 between E. coli strains. In some transconjugants, a 5.5-kb (+/- 0.3 kb) segment of the pBF4 portion of pSS2 was inserted into one of several sites on R751. In some other transconjugants this same 5.5-kb segment was integrated into the E. coli chromosome. This segment could transfer a second time onto R751. Transfer was RecA independent. The transferred segment included the entire EcoRI-D fragment, and thus the clindamycin-erythromycin resistance determinant, from pBF4.  相似文献   

6.
Bacteroides thetaiotaomicron, an obligate anaerobe normally found in high concentrations in the human colon, is one of the few colon bacteria that can ferment host mucopolysaccharides such as chondroitin sulfate. Previously, we found that a directed insertional mutation in the gene that codes for the chondroitinase II gene of B. thetaiotaomicron did not affect growth on chondroitin sulfate despite the fact that chondroitinase II accounts for 70% of the total cellular chondroitinase activity. Thus, the chondroitinase II gene did not seem to contribute significantly to growth on chondroitin sulfate when the bacteria were grown in laboratory medium. To determine whether this enzyme is important for bacteria growing in the intestinal tract, we tested the ability of a strain that does not produce chondroitinase II to colonize the intestinal tracts of germfree mice and to compete with wild-type B. thetaiotaomicron. The mutant used in these experiments carried a 0.5-kilobase deletion in the chondroitinase II gene and was constructed so that, unlike the original insertion mutant, it contained no exogenous DNA. The deletion mutant colonized the intestinal tracts of germfree mice at the same levels as the wild type. When a mixture of the deletion mutant and wild type was used to colonize germfree mice, the percent wild type, measured by colony hybridization with the deleted 0.5-kilobase fragment as the hybridization probe, did not rise to 100% even after periods as long as 9 weeks. In most experiments, the percent wild type did not rise significantly above the percent in the original mixture.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Bacteroides thetaiotaomicron, an obligate anaerobe normally found in high concentrations in the human colon, is one of the few colon bacteria that can ferment host mucopolysaccharides such as chondroitin sulfate. Previously, we found that a directed insertional mutation in the gene that codes for the chondroitinase II gene of B. thetaiotaomicron did not affect growth on chondroitin sulfate despite the fact that chondroitinase II accounts for 70% of the total cellular chondroitinase activity. Thus, the chondroitinase II gene did not seem to contribute significantly to growth on chondroitin sulfate when the bacteria were grown in laboratory medium. To determine whether this enzyme is important for bacteria growing in the intestinal tract, we tested the ability of a strain that does not produce chondroitinase II to colonize the intestinal tracts of germfree mice and to compete with wild-type B. thetaiotaomicron. The mutant used in these experiments carried a 0.5-kilobase deletion in the chondroitinase II gene and was constructed so that, unlike the original insertion mutant, it contained no exogenous DNA. The deletion mutant colonized the intestinal tracts of germfree mice at the same levels as the wild type. When a mixture of the deletion mutant and wild type was used to colonize germfree mice, the percent wild type, measured by colony hybridization with the deleted 0.5-kilobase fragment as the hybridization probe, did not rise to 100% even after periods as long as 9 weeks. In most experiments, the percent wild type did not rise significantly above the percent in the original mixture.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
By analyzing outer membrane proteins of Bacteroides thetaiotaomicron on two-dimensional polyacrylamide gels, we were able to identify 10 protein spots that were associated with growth on chondroitin sulfate but not with growth on glucuronic acid or other monosaccharides. These proteins were distinct from the outer membrane polypeptides that were associated with growth on two other negatively charged polysaccharides, polygalacturonic acid and heparin. Of the 10 protein spots that were associated with growth on chondroitin sulfate, 4 could be detected on immunoblots with antiserum that had been raised against outer membranes from bacteria grown on chondroitin sulfate and then cross-adsorbed with membranes from bacteria grown on glucose. Synthesis of these four proteins appeared to be regulated coordinately with synthesis of the two enzymes that degrade chondroitin sulfate, chondroitin lyase I and II. Although one of the four proteins (Mr 110,000) was similar in molecular weight to the chondroitin lyases, the cross-adsorbed antiserum which detected this outer membrane protein did not cross-react with either of these two enzymes.  相似文献   

9.
Bacteroides thetaiotaomicron can utilize a variety of polysaccharides, including charged mucopolysaccharides such as chondroitin sulfate (CS) and hyaluronic acid (HA). Since the enzymes (chondroitin lyases I and II) that catalyze the first step in breakdown of CS and HA are located in the periplasm, we had proposed that the first step in utilization of these polysaccharides was binding to one or more outer membrane proteins followed by translocation into the periplasm, but no such outer membrane proteins had been shown to play a role in CS or HA utilization. Previously we have isolated a transposon-generated mutant, CS4, which was unable to grow on CS or HA but retained the ability to grow on disaccharide components of CS. This phenotype suggested that the mutation in CS4 either blocked the transport of the mucopolysaccharides into the periplasmic space or blocked the depolymerization of the mucopolysaccharides into disaccharides. We have mapped the CS4 mutation to a single gene, csuF, which is capable of encoding a protein of 1,065 amino acids and contains a consensus signal sequence. Although CsuF had a predicted molecular weight and pI similar to those of chondroitin lyases, it did not show significant sequence similarity to the Bacteroides chondroitin lyase II, a Proteus chondroitin ABC lyase, or two hyaluronidases from Clostridium perfringens and Streptococcus pyogenes, nor was any CS-degrading enzyme activity associated with csuF expression in Bacteroides species or Escherichia coli. The deduced amino acid sequence of CsuF exhibited features suggestive of an outer membrane protein. We obtained antibodies to CsuF and demonstrated that the protein is located in the outer membrane. This is the first evidence that a nonenzymatic outer membrane protein is essential for utilization of CS and HA.  相似文献   

10.
We used two approaches to determine whether the mucopolysaccharide chondroitin sulfate is an important source of carbon and energy for Bacteroides thetaiotaomicron in the intestinal tracts of germfree mice. First, we tested the ability of three mutants that grew poorly or not at all on chondroitin sulfate to colonize the intestinal tract of a germfree mouse and to compete with wild-type B. thetaiotaomicron in this model system. One mutant (CG10) was rapidly outcompeted by the wild type. However, since this mutant was unable to grow on chondroitin sulfate because it could not grow on N-acetyl-galactosamine, one of its monosaccharide components, this mutant might also be unable to utilize glycoprotein mucins. Two mutants (46-1 and 46-4) were isolated that grew poorly on chondroitin sulfate but normally on both component sugars. One of them was outcompeted by the wild type, but the percent wild type increased more slowly than with CG10. In one experiment, the percent wild type never reached 100%. The other (46-4) was not outcompeted by the wild type. These results indicate that, although chondroitin sulfate may be a carbon source in the animal, it is not of major importance. Our second approach was to determine by immunoblot analysis whether a 28-kilodalton outer membrane protein that is produced by B. thetaiotaomicron only when it is grown on chondroitin sulfate or hyaluronic acid was being produced at induced level by B. thetaiotaomicron growing in the ceca of exgermfree mice. There was no evidence for induction of this protein in vivo. Thus, the immunoblot results are consistent with results of the mutant competition experiments.  相似文献   

11.
We used two approaches to determine whether the mucopolysaccharide chondroitin sulfate is an important source of carbon and energy for Bacteroides thetaiotaomicron in the intestinal tracts of germfree mice. First, we tested the ability of three mutants that grew poorly or not at all on chondroitin sulfate to colonize the intestinal tract of a germfree mouse and to compete with wild-type B. thetaiotaomicron in this model system. One mutant (CG10) was rapidly outcompeted by the wild type. However, since this mutant was unable to grow on chondroitin sulfate because it could not grow on N-acetyl-galactosamine, one of its monosaccharide components, this mutant might also be unable to utilize glycoprotein mucins. Two mutants (46-1 and 46-4) were isolated that grew poorly on chondroitin sulfate but normally on both component sugars. One of them was outcompeted by the wild type, but the percent wild type increased more slowly than with CG10. In one experiment, the percent wild type never reached 100%. The other (46-4) was not outcompeted by the wild type. These results indicate that, although chondroitin sulfate may be a carbon source in the animal, it is not of major importance. Our second approach was to determine by immunoblot analysis whether a 28-kilodalton outer membrane protein that is produced by B. thetaiotaomicron only when it is grown on chondroitin sulfate or hyaluronic acid was being produced at induced level by B. thetaiotaomicron growing in the ceca of exgermfree mice. There was no evidence for induction of this protein in vivo. Thus, the immunoblot results are consistent with results of the mutant competition experiments.  相似文献   

12.
Bacteroides-Escherichia coli shuttle vectors containing a nonmobilizable pBR322 derivative and either pBFTM10 (pDP1, pCG30) or pB8-51 (pEG920) were mobilized by IncP plasmid R751 or pRK231 (an ampicillin-sensitive derivative of RK2) between E. coli strains and from E. coli to Bacteroides recipients. IncI alpha R64 drd-ll transferred these vectors 1,000 times less efficiently than did the IncP plasmids. pDP1, pCG30, and pEG920 could be mobilized from B. uniformis donors to both E. coli and Bacteroides recipients by a conjugative Bacteroides Tcr (Tcr ERL) element which was originally found in a clinical Bacteroides fragilis strain (B. fragilis ERL). However, the shuttle vector pE5-2, which contains pB8-51 cloned in a restriction site that prevents its mobilization by IncP or IncI alpha plasmids, also was not mobilized at detectable frequencies from Bacteroides donors by the Tcr ERL element. The mobilization frequencies of pCG30, pDP1, and pEG920 by the Tcr ERL element in B. uniformis donors to E. coli recipients was about the same as those to isogenic B. uniformis recipients. Transfer of the shuttle vectors from B. uniformis donors to E. coli occurred at the same frequencies when the matings were done aerobically or anaerobically. Growth of the B. uniformis donors in tetracycline (1 microgram/ml) prior to conjugation increased the mobilization frequencies of the vectors to both E. coli and Bacteroides recipients 50 to 100 times.  相似文献   

13.
Bacteroides thetaiotaomicron, a gram-negative anaerobe found in human colons, could utilize chondroitin sulfate, a tissue mucopolysaccharide, as its sole source of carbohydrate. The enzymes responsible for the breakdown of chondroitin sulfate by B. thetaiotaomicron were similar to those produced by Proteus vulgaris and Flavobacterium heparinum and included a lyase (EC 4.2.2.4), which degraded chondroitin sulfate into sulfated disaccharides, sulfatases (EC 3.1.6.4), which removed the sulfate residues, and a glucuronidase, which broke the unsulfated disaccharides into monosaccharide components. Chondroitin sulfate lyase, the first enzyme in the breakdown sequence, was not extracellular. It appeared to be located in the periplasmic space since lyase activity was released by treatment with ethylenediaminetetraacetate and lysozyme. Moreover, sodium polyanethole sulfonate, a high-molecular-weight inhibitor of chondroitin lyase, did not inhibit breakdown of chondroitin sulfate by intact bacteria. The sulfatase and glucuronidase appeared to be intracellular. None of these enzymes was strongly bound to membranes, and none of the steps in the breakdown of chondroitin sulfate was sensitive to oxygen.  相似文献   

14.
Chondroitin sulfate lyase (EC 4.2.2.4) was present constitutively at low levels (0.06 to 0.08 U/mg of protein) in cells of Bacteroides thetaiotaomicron which were growing on glucose or other monosaccharides. When these uninduced bacteria were incubated with chondroitin sulfate A (5 mg/ml), chondroitin sulfate lyase specific activity increased more than 10-fold within 90 min. Synthesis of ribonucleic acid and of protein was required for induction, and induction was sensitive to oxygen. The disaccharides which resulted from chondroitinase action did not act as inducers, nor did tetrasaccharides or hexasaccharides obtained by digestion of chondroitin sulfate with bovine testicular hyaluronidase. None of these substances was taken up by uninduced cells; they may not have been able to penetrate the outer membrane. The smallest oligomer capable of acting as an inducer was the outer membrane. The smallest oligomer capable of acting as an inducer was the octassacharide. Oligomers larger than the octassacharide induced chondroitin lyase activity nearly as well as intact chondroitin sulfate.  相似文献   

15.
Randomly cloned fragments of DNA from Bacteroides thetaiotaomicron were used as hybridization probes for differentiation of B. thetaiotaomicron from closely related Bacteroides species. HindIII digestion fragments of DNA from B. thetaiotaomicron (type strain) were inserted into plasmid pBR322 and labeled with [alpha-32P]dCTP by nick translation. These labeled plasmids were screened for hybridization to HindIII digests of chromosomal DNA from type strains of the following human colonic Bacteroides species: B. thetaiotaomicron, Bacteroides ovatus, reference strain 3452-A (formerly part of B. distasonis), Bacteroides uniformis, Bacteroides fragilis, Bacteroides vulgatus, Bacteroides distasonis, Bacteroides eggerthii, and reference strain B5-21 (formerly B. fragilis subsp. a). Two of the five cloned fragments hybridized only to DNA from B. thetaiotaomicron. Each of these two fragments hybridized to the same DNA restriction fragment in five strains of B. thetaiotaomicron other than the strain from which the DNA was cloned. One of the cloned fragments (pBT2) was further tested for specificity by determining its ability to hybridize to DNA from 65 additional strains of colonic Bacteroides.  相似文献   

16.
Two novel chondroitinases, chondroitin ABC lyase (EC 4.2.2.4) and chondroitin AC lyase (EC 4.2.2.5), have been purified from Bacteroides stercoris HJ-15, which was isolated from human intestinal bacteria with glycosaminoglycan degrading enzymes. Chondroitin ABC lyase was purified to apparent homogeneity by a combination of QAE-cellulose, CM-Sephadex C-50, hydroxyapatite and Sephacryl S-300 column chromatography with a final specific activity of 45.7 micromol.min-1.mg-1. Chondroitin AC lyase was purified to apparent homogeneity by a combination of QAE-cellulose, CM-Sephadex C-50, hydroxyapatite and phosphocellulose column chromatography with a final specific activity of 57.03 micromol.min-1.mg-1. Chondroitin ABC lyase is a single subunit of 116 kDa by SDS/PAGE and gel filtration. Chondroitin AC lyase is composed of two identical subunits of 84 kDa by SDS/PAGE and gel filtration. Chondroitin ABC and AC lyases showed optimal activity at pH 7.0 and 40 degrees C, and 5.7-6.0 and 45-50 degrees C, respectively. Both chondroitin lyases were potently inhibited by Cu2+, Zn2+, and p-chloromercuriphenyl sulfonic acid. The purified Bacteroidal chondroitin ABC lyase acted to the greatest extent on chondroitin sulfate A (chondroitin 4-sulfate), to a lesser extent on chondroitin sulfate B (dermatan sulfate) and C (chondroitin 6-sulfate). The purified chondroitin AC lyase acted to the greatest extent on chondroitin sulfate A, and to a lesser extent on chondroitin C and hyaluronic acid. They did not act on heparin and heparan sulfate. These findings suggest that the biochemical properties of these purified chondroitin lyases are different from those of the previously purified chondroitin lyases.  相似文献   

17.
NBU1 is an integrated Bacteroides element that can he mobilized from Bacteroides donors to Bacteroides recipients. Previous studies have shown that a plasmid carrying the internal mobilization region of NBU1 could be transferred by conjugation from Bacteroides thetaiotaomicron to Escherichia coli. In this report, we show that NBU1 can integrate in E. coli. Whereas integration of NBU1 in B. thetaiotaomicron is site specific, integration of NBU1 in E. coli was relatively random, and the insertion frequency of NBU1 into the E. coli chromosome was 100 to 1,000 times lower than the frequency of integration in B. thetaiotaomicron. The frequency of NBU1 integration in E. coli could be increased about 10- to 70-fold, to a value close to that seen with B. thetaiotaomicron, if the primary integration site from B. thetaiotaomicron, BT1-1, was provided on a plasmid in the E. coli recipient or the NBU1 integrase gene, intN1, was provided on a high-copy-number plasmid to increase the amount of integrase available in the recipient. When the primary integration site was available in the recipient, NBU1 integrated site specifically in E. coli. Our results show that NBUs have a very broad host range and are capable of moving from Bacteroides spp. to distantly related species such as E. coli. Moreover, sequence analysis of NBU1 integration sites provided by integration events in E. coli has helped to identify some regions of the NBU1 attachment site that may play a role in the integration process.  相似文献   

18.
Shaya D  Hahn BS  Park NY  Sim JS  Kim YS  Cygler M 《Biochemistry》2008,47(25):6650-6661
Chondroitin sulfate ABC lyase (ChonABC) is an enzyme with broad specificity that depolymerizes via beta-elimination chondroitin sulfate (CS) and dermatan sulfate (DS) glycosaminoglycans (GAGs). ChonABC eliminates the glycosidic bond of its GAG substrates on the nonreducing end of their uronic acid component. This lyase possesses the unusual ability to act on both epimers of uronic acid, either glucuronic acid present in CS or iduronic acid in DS. Recently, we cloned, purified, and determined the three-dimensional structure of a broad specificity chondroitin sulfate ABC lyase from Bacteroides thetaiotaomicron (BactnABC) and identified two sets of catalytic residues. Here, we report the detailed biochemical characterization of BactnABC together with extensive site-directed mutagenesis resulting in characterization of the previously identified active site residues. BactnABC's catalysis is stimulated by Ca(2+) and Mg(2+) cations, particularly against DS. It displays extremely low activity toward hyaluronic acid and no activity toward heparin/heparan sulfate. Degradation of CS and DS by BactnABC yields only disaccharide products, pointing to an exolytic mode of action. The kinetic evaluations of the active-site mutants indicate that CS and DS substrates bind in the same active site, which is accompanied by a conformational change bringing the two sets of active site residues together. Conservative replacements of key residues suggest that His345 plays the role of a general base, initiating the degradation by abstracting the C5 bound proton from DS substrates, whereas either Tyr461 or His454 perform the equivalent role for CS substrates. Tyr461 is proposed, as well, to serve as general acid, completing the degradation of both CS and DS by protonating the leaving group.  相似文献   

19.
Replication control genes of plasmid pE194.   总被引:28,自引:17,他引:11       下载免费PDF全文
  相似文献   

20.
Two chondroitin lyases were isolated from the colon anaerobe Bacteroides thetaiotaomicron. Both enzymes had similar molecular weights (104,000 and 108,000) and similar isoelectric points (8.0 and 7.9, respectively). Both enzymes were active against chondroitin sulfates A, B, and C and unsulfated polysaccharides, such as chondroitin and hyaluronic acid, although one of the enzymes was twice as active against chondroitin as the other enzyme. Both had similar Km values for chondroitin sulfates A and C (40 to 70 micrograms/ml) and for chondroitin (300 to 400 micrograms/ml). Neither enzyme could degrade the highly sulfated mucopolysaccharide heparin, but heparin was a potent inhibitor of the activity of both enzymes. Although enzymes I and II were similar in many respects, a comparison of peptides resulting from partial digestion with N-chlorosuccinimide or papain demonstrated that the two proteins are not related.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号