首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to investigate antimicrobial properties of ethanolic extract of 13 propolis (EEP) samples from different regions of Serbia against 39 microorganisms (14 resistant or multiresistant to antibiotics), and to determine synergistic activity between antimicrobials and propolis. Antimicrobial activity of propolis samples was evaluated by agar diffusion and agar dilution method. The synergistic action of propolis with antimicrobial drugs was assayed by the disc diffusion method on agar containing subinhibitory concentrations of propolis. Obtained results indicate that EEP, irrespectively of microbial resistance to antibiotics, showed significant antimicrobial activities against Gram-positive bacteria (MIC 0.078%–1.25% of EEP) and yeasts (0.16%–1.25%), while Gram-negative bacteria were less susceptible (1.25&%ndash;>5%). Enterococcus faecalis was the most resistant Gram-positive bacterium, Salmonella spp. the most resistant Gram-negative bacteria, and Candida albicans the most resistant yeast. EEP showed synergism with selected antibiotics, and displayed ability to enhance the activities of antifungals. The shown antimicrobial potential of propolis alone or in combination with certain antibiotics and antifungals is of potential medical interest.  相似文献   

2.
The well-known anti-infective properties of propolis are determined by its chemical composition, which in turn is influenced by geographical factors and reflects the botanical diversity in the vicinity of the beehive. Although there are several reports on the anti-infective properties of crude propolis, few are aimed at identifying specific compound(s) responsible for the observed activities. Using South African propolis as an example, the application of high performance thin layer chromatography-bioautography in tandem with mass spectrometry was investigated for the rapid identification of antimicrobial and anti-quorum sensing (anti-QS) compounds. Pinocembrin was found to be responsible for the observed antifungal activity of the propolis against Candida albicans. Three compounds were found to be active against all of the evaluated Gram-positive and Gram-negative bacteria. The identity of the first was confirmed as pinobanksin, one remains unidentified, while the third corresponds to either pinobanksin 3-O-pentanoate or 2-methylbutyrate. The identification of caffeic acid as the anti-QS component was confirmed quantitatively using the violacein inhibitory assay.  相似文献   

3.
Propolis means a gum that is gathered by bees from various plants. It is known for its biological properties, having antibacterial, antifungal and healing properties. The aims of this study were to evaluate the antimicrobial activity of four different Anatolian propolis samples on different groups of microorganisms including some oral pathogens and comparison between their chemical compositions. Ethanol extracts of propolis (EEP) were prepared from four different Anatolian propolis samples and examined whether EEP inhibit the growth of the test microorganisms or not. For the antimicrobial activity assays, minimum inhibitory concentrations (MIC) were determined by using macrodilution method. The MIC values of the most effective propolis (TB) were 2 microg/ml for Streptococcus sobrinus and Enterococcus faecalis, 4 microg/ml for Micrococcus luteus, Candida albicans and C. krusei, 8 microg/ml for Streptococcus mutans, Staphylococcus aureus, Staphylococcus epidermidis and Enterobacter aerogenes, 16 microg/ml for Escherichia coli and C. tropicalis and 32 microg/ml for Salmonella typhimurium and Pseudomonas aeruginosa. The chemical compositions of EEP's were determined by high-temperature high-resolution gas chromatography coupled to mass spectrometry. The main compounds of four Anatolian propolis samples were flavonoids such as pinocembrin, pinostropin, isalpinin, pinobanksin, quercetin, naringenin, galangine and chrysin. Although propolis samples were collected from different regions of Anatolia all showed significant antimicrobial activity against the Gram positive bacteria and yeasts. Propolis can prevent dental caries since it demonstrated significant antimicrobial activity against the microorganisms such as Streptococcus mutans, Streptococcus sobrinus and C. albicans, which involves in oral diseases.  相似文献   

4.
Terpenes with antimicrobial activity from Cretan propolis   总被引:1,自引:0,他引:1  
Five terpenes, the diterpenes: 14,15-dinor-13-oxo-8(17)-labden-19-oic acid and a mixture of labda-8(17),13E-dien-19-carboxy-15-yl oleate and palmitate as well as the triterpenes, 3,4-seco-cycloart-12-hydroxy-4(28),24-dien-3-oic acid and cycloart-3,7-dihydroxy-24-en-28-oic acid were isolated from Cretan propolis. Moreover, 18 known compounds were also isolated, seven of them for the first time as propolis components. All structures were established on the basis of spectroscopic analysis and chemical evidence. All isolated compounds were tested for antimicrobial activity against some Gram-positive and Gram-negative bacteria as well as against some human pathogenic fungi showing a broad spectrum of antimicrobial activity.  相似文献   

5.
Nisin Z and thymol were tested, alone and in combination, for antibacterial activity against Listeria monocytogenes ATCC 7644 and Bacillus subtilis ATCC 33712. The antibacterial effect of nisin Z, produced by Lactococcus lactis KE3 isolated from the traditional Moroccan fermented milk, was greatly potentiated by sub-inhibitory concentrations of thymol in both bacterial strains. Our data showed that the concentration of nisin required for effective control of food-borne pathogenic bacteria could be considerably lowered by the use of thymol in combination. The use of low concentrations of nisin could lead to a less favourable condition for the occurrence of nisin-resistant bacterial sub-populations.  相似文献   

6.
Coprisin is a 43-mer defensin-like peptide from the dung beetle, Copris tripartitus. CopA3 (LLCIALRKK-NH2), a 9-mer peptide containing a single free cysteine residue at position 3 of its sequence, was derived from the α-helical region of coprisin and exhibits potent antibacterial and anti-inflammatory activities. The single cysteine implies a tendency for dimerization; however, it remains unknown whether this cysteine residue is indispensible for CopA3’s antimicrobial activity. To address this issue, in the present study we synthesized eight cysteine-substituted monomeric CopA3 analogs and two dimeric analogs, CopA3 (Dimer) and CopIK (Dimer), and evaluated their antimicrobial effects against bacteria and fungi, as well as their hemolytic activity toward human erythrocytes. Under physiological conditions, CopA3 (Mono) exhibits a 6/4 (monomer/dimer) molar ratio in HPLC area percent, indicating that its effects on bacterial strains likely reflect a CopA3 (Mono)/CopA3 (Dimer) mixture. We also report the identification of CopW, a new cysteine-free nonapeptide derived from CopA3 that has potent antimicrobial activity with virtually no hemolytic activity. Apparently, the cysteine residue in CopA3 is not essential for its antimicrobial function. Notably, CopW also exhibited significant synergistic activity with ampicillin and showed more potent antifungal activity than either wild-type coprisin or melittin.  相似文献   

7.
AIMS: This study compared in vitro activities of Actichelated propolis (a multicomposite material obtained with mechano-chemichal activation) and of a hydroalcoholic extract of propolis. METHODS AND RESULTS: Minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC), determined by means of microdilution broth method, against five strains of Staphylococcus aureus, Streptococcus pyogenes, Haemophilus influenzae, Enterococcus spp., Escherichia coli, Proteus mirabilis and Pseudomonas aeruginosa, showed a greater potency of Actichelated propolis (MIC range: 0.016-4 mg flavonoids ml(-1)) in respect to the hydroalcoholic extract (MIC range: 0.08-21.4 mg flavonoids ml(-1)). Concentrations of Actichelated propolis active against adenovirus, influenza virus, parainfluenza virus and herpes virus type 1 were at least 10 times lower than those of the hydroalcoholic extract. Preincubation of Strep. pyogenes and H. influenzae with subinhibitory concentrations of Actichelated propolis (1/4 and 1/8 x MIC) significantly reduced the number of bacteria that adhered to human buccal cells. CONCLUSIONS: Actichelated propolis has proven to possess antibacterial and antiviral activity higher than a hydroalcoholic extract, being also able to interfere on bacterial adhesion to human oral cells. SIGNIFICANCE AND IMPACT OF THE STUDY: This new formulation of propolis showing better antimicrobial and physical characteristics could improve the application of propolis in respiratory tract infections.  相似文献   

8.
With the increasing emergence of resistant fungi, the discovery and development of novel antifungal therapeutics were urgently needed. Compared with conventional antibiotics, the limited propensity of AMPs to induce resistance in pathogens has attracted great interest. In the present study, the antifungal activity and its mechanism-of-action of polybia-MPI, a cationic peptide from the venom of Social wasp Polybia Paulista was investigated. We demonstrated that polybia-MPI could potently inhibit the growth of Candida albicans (C. albicans) and Candida glabrata (C. glabrata). The 50% inhibitory concentrations (IC50) of Polybia-MPI against cancer cells were much higher than the MICs against the tested C. albicans and C. glabrata cells, indicating that polybia-MPI had high selectivity between the fungal and mammalian cells. Our results also indicated that membrane disturbance mechanism was involved in the antifungal activity. Furthermore, polybia-MPI could inhibit the bio film forming of C. glabrata, which was frequently associated with clinically significant biofilm. These results suggest that polybia-MPI has great advantages in the development of antifungal agents.  相似文献   

9.
For the first time in this study, curcumin was utilized as an organic component reacting with Cu (II) ion (Cu2+) as an inorganic component for fabrication of curcumin based Cu hybrid nanostructure (Cu-hNs). We also systematically examined the catalytic effect towards guaiacol and antimicrobial activities of Cu-hNs towards fish pathogen bacteria. For the characterization of Cu-hNs, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray spectroscopy (EDX) and Fourier transform infrared spectrometry (FT-IR) analysis were used. We claimed that hydroxyl group might react with Cu2+ in phosphate solution (PO4-3) to form Cu-hNs. However, more uniform and spherical Cu-hNs were not seen owing to absence of more reactive functional groups like amine and carboxyl groups on structure of curcumin. In addition to our findings, synthesis of Cu-hNs were carried out in the various pH values to evaluate the effect of pHs on formation of Cu-hNs. The Cu-hNs exhibited remarkable catalytic activity throught the Fenton reaction in the presence of hydrogen peroxide (H2O2) and effective antimicrobial activities against Gram-positive/negative fish pathogen bacteria. In this study, cheap and efficient synthesis of nanoflowers (NFs) using plant extracts is proposed for biomedical applications rather than expensive molecules such as amino acids and DNA.  相似文献   

10.
The biochemical mechanisms that marine sponges have developed as a chemical defense to protect themselves against micro and subsequent macrobiofouling process might comprise a potential alternative for the preventing attack of biofilm forming bacteria. The present study investigated the antimicrobial activity of a series of major secondary metabolites isolated from the sponges Fasciospongia cavernosa and Axinella donnani against fouling bacteria. Secomanoalide (1), dehydromanoalide (2) and cavernosine (3) have been isolated from F. cavernosa. Their structures were determined by MS, 1H NMR spectra analyses and by comparison with those reported in the literature. The most promising activity was exhibited by the metabolites from A. donnani, that is, cerebroside (5) against three strains Aeromonas hydrophila subsp. salmonicida A449 and Erythrobacter litoralis. Our investigation revealed that combined metabolites 1, 2 and 3 retained strong activity but individual metabolite had moderate activity indicating that activity probably results from synergistic interactions between multiple compounds. The antibacterial screening of compounds 3, 5 and synergistic effect of 13 against fouling bacteria has been studied for the first time. Further, isolation of manoalide related compounds and their synergistic screening can be accelerated for the development of new biofilm inhibitors.  相似文献   

11.
Relatively little is known about the microbial ecology of biofilm communities or the diversity of antimicrobial molecules that they produce to regulate these communities. This study tested whether the production of antimicrobial activity in biofilm cultures is enhanced towards competing bacteria found in those biofilms. First, the production of antimicrobial activity of marine bacteria grown in biofilms was tested. Fourteen of the 105 marine isolates tested were found to produce antimicrobial factors when grown in biofilms. The antimicrobial activity produced by these isolates in biofilms was more potent and inhibited a broader range of target bacteria grown in biofilms compared to shaken liquid cultures. In a separate experiment, we found that cultivation in biofilms containing produced metabolites from an ‘inducer’ bacterium stimulated the production of antimicrobial molecules by ‘producer’ bacteria that were active against the ‘inducer’ bacterium. Overall, the study suggests that surface attached marine bacteria can target their antimicrobial activity towards competing bacteria in biofilms.  相似文献   

12.
The condensation reaction of equivalent amounts of 2-cyanomethyl benzooxazole or its derivatives with variously substituted aromatic aldehydes gave 2-cyano-styryl benzooxazole or its derivatives. The subsequent reaction of the 2-cyano-styryl benzooxazoles with 2(4)-methyl substituted heterocyclic quaternary salts afforded meso-substituted styryl-2(4)-polymethine cyanines. The condensation reaction of 2-cyanomethyl benzooxazole or its derivatives with alpha-nitroso-beta-naphthol followed by reaction with 2(4)-methyl substituted heterocyclic quaternary salts gave meso-substituted aza-2(4)-polymethine cyanines. The reaction of 2-cyanomethyl benzooxazole or its derivatives with N-methyl heterocyclic quaternary salts followed by the reaction with 2-methylquinolinium methiodide afforded the corresponding meso-substituted trimethine cyanine dyes. Elemental analyses, visible absorption, IR, (1)H NMR spectroscopy, and mass spectra established the structures of these compounds. The relationship between the structure and properties of these dyes has been studied and the solvatochromic behavior of some selected cyanine dyes in organic solvents is discussed. Finally, the antimicrobial activity of selected novel dyes was investigated in vitro using a wide spectrum of microbial strains.  相似文献   

13.
Labdane diterpene andrographolide (1) is a major constituent of Andrographis paniculata and known to exhibit wide spectrum of biological activities. In this study, regioselective monoesters of (1) have been synthesized by using Amano lipase AK (Pseudomonas fluorescens) as a biocatalyst. Amano lipase AK was able to execute highly efficient esterification of hydroxyl group attached to C-14 carbon of (1) in presence of acyl donors. Among the various synthesized derivatives including two novel compounds such as andrographolide-14-propionate (3) and andrographolide-14-caproate (5) displayed antimicrobial activity against Staphylococcus aureus with low minimal inhibitory concentration (MIC) 4?µg/mL and 16?µg/mL respectively. Furthermore, they have shown low hemolysis activity at their respective MIC and increase in the permeability of the bacterial cell membrane as delineated by FITC uptake and SEM imaging studies.  相似文献   

14.
Ten phenylpropanoic acid esters were isolated from an ethanolic extract of Korean propolis. Their structures were elucidated by spectroscopic methods including NMR and ESI-MS. Caffeic acid esters with catechol moiety exhibited significant ABTS and DPPH radical scavenging activity and protective effect against DNA damage by a Fenton reaction.  相似文献   

15.
Twenty different streptomycete isolates were obtained from soils of southeast Serbia. Five isolates identified as Streptomyces hygroscopicus (SH100, SH101, SH102, SH103, and SH104) showed strong activity against Botrytis cinerea, a parasite found in domestic vines. These isolates were extensively studied for their in vitro antimicrobial activity against Gram-positive bacteria, Gram-negative bacteria, yeasts and fungi, and also antiviral activity against Herpes simplex. The results indicated that the obtained isolates were highly active against Botrytis cinerea, Candida albicans, and Herpes simplex, with an inhibition zone at ≥31 mm. The structure of the bioactive components was determined using elemental analysis, as well as UV/VIS, FTIR, and TLC.  相似文献   

16.
Wu G  Li X  Fan X  Wu H  Wang S  Shen Z  Xi T 《Peptides》2011,32(6):1139-1145
In this study, the activity of S-thanatin (an analog of antimicrobial peptide derived from thanatin) against different bacterial pathogens frequently which can cause therapeutic problems was tested. The result showed minimal inhibitory concentrations (MICs) of S-thanatin against all isolates of the Escherichia coli, Klebsiella pneumoniae, Enterobacter cloacae, Enterobacter aerogenes, Klebsiella ornithinolytica and Klebsiella oxytoca were in the range of 4-16 μg/ml, no matter which antibiotic the bacterial was resistant or susceptible, while almost all MICs to Gram-positive bacterial were >128 μg/ml except Enterococcus faecium. S-thanatin was more effective toward Gram-negative strains, especially for Enterobacter and Klebsiella. The MICs of S-thanatin were no significantly different in the same species regardless of antibiotic sensitive or -resistant isolates to single or multiple antibiotic (P > 0.05). Likewise, no notable difference could be observed between E. coli, K. pneumoniae, E. cloacae, E. aerogenes, K. ornithinolytica which were sensitive to S-thanatin (P > 0.05). It was implied that the antimicrobial activity of S-thanatin was independent on multi-drug resistance spectrum of bacteria.  相似文献   

17.
Methicillin-Resistant Staphylococcus aureus (MRSA) biofilms are involved in various nosocomial infections, being in the limelight of academic research. The current study aimed to determine the antimicrobial effects of melittin on planktonic and biofilm forms of S. aureus. Following the identification of MRSA and SCCmec types (using PCR method), Minimum Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC), and fractional inhibitory concentration index (FICi), for melittin and mupirocin were determined by broth microdilution assay. Melittin anti-biofilm activity was determined, using a microtiter-plate test (MtP) and scanning electron microscope (SEM) methods. The quorum sensing inhibitory activity of ½ MIC melittin was examined using a quantitative real-time RT-PCR method, and melittin cytotoxicity on Vero cells was examined by tetrazolium-based colorimetric (MTT) test. The Results of our study showed that Geometric means of MIC values of the melittin and mupirocin were 4.4 and 14.22 μg/ml respectively. The geometric mean of the FICi for both melittin-mupirocin was 0.75. No S. aureus biofilm was formed and hld gene (as a biofilm regulator) expression down-regulated. It seems that melittin can be useful in the treatment of S. aureus infections (especially MRSA) by reducing the hld expression. Furthermore, synergistic growth-inhibitory effects of mupirocin with melittin could be considered as a promising approach in the treatment of MRSA isolates.  相似文献   

18.
Honeybees collect propolis from practically any abundant plant source in the neighborhood of the hive, be it populus, eucalyptus, pine, sugarcane, cashew nut or orange trees. We have described that the origin plants of Turkish propolis are Populus sp., Eucalyptus sp. and Castanea sativa. In our previous study, propolis samples from Middle Anatolia displayed the typical pattern of “poplar” propolis: they contained pinobanksin, caffeic and ferulic acids and their esters. The propolis samples examined in this study were shown not to contain polar phenolics. The main components of Eucalyptus propolis were aromatic acids, mainly cinnamic acid and its esters, that are usually found in Eucalyptus species resins. The second distinct sample originated from West Anatolia. Although it contained low amounts of phenolic substances and aromatic acids, its main components were sugars and glycosides. The study revealed that there was no significant difference between propolis samples in antibacterial activity, however the yeasts were shown to be more sensitive to eucalyptus-propolis. Gram negative bacteria were susceptible to none of the samples tested.  相似文献   

19.
目的 研究水溶性蜂胶对感染根管内常见菌粪肠球菌的体外抑菌活性.方法 采用液体稀释法测定水溶性蜂胶对粪肠球菌的最低杀菌浓度(Minimal bactericidal concentrations,MBC).结果 蜂胶对粪肠球菌的MBC为0.156%.结论 蜂胶对感染根管内粪肠球菌具有良好的抑菌活性,将其用于感染根管消毒具...  相似文献   

20.
Kouidhi B  Zmantar T  Bakhrouf A 《Anaerobe》2010,16(6):566-571
Propolis is a multifunctional substance used by bees to maintain the safety of their hives. It is worldwide used for its potential therapeutic effects. In this study, Tunisian propolis ethanol extract (EEP) was tested for their anti-cariogenic, anti-biofilms and antiproliferative effects of many cell lines. The Tunisian EEP was evaluated in vitro against 33 oral pathogens including streptococci and enterococci using broth microdilution method. The anti-biofilms activity of EEP was assessed via Crystal Violet staining and MTT assays. The Tunisian EEP antiproliferative effect was evaluated on normal (MRC-5) and cancer cell lines (HT-29, A549, Hep-2, raw 264.7, Vero) by the ability of the cells to metabolically reduce MTT to a formazan dye. Our results revealed that Tunisian EEP possessed excellent protective effects against cariogenic and biofilms activity of oral streptococci. Furthermore, EEP showed a strong antiproliferative potencies against all studied cancer cell lines as judged by IC50 and its value ranges from 15.7 ± 3.4 to 200 ± 22.2 μg mL?1. These results suggest that EEP is able to inhibit cancer cell proliferation, cariogenic bacteria and oral biofilms formation. It could have a promising role in the future medicine and nutrition when used as antibiotic or food additive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号