首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Outside-out configuration of the patch clamp technique was used to test whether an intracellular application of G protein activator (GTPS) affects ATP-activated Ca2+-permeable channels in rat macrophages without any agonist in the bath solution. With 145 mm K+ (pCa 8.0) in the pipette solution, activity of channels permeable to a variety of divalent cations and Na+ was observed and general channel characteristics were found to be identical to those of ATP-activated ones. Absence of extracellular ATP makes it possible to avoid the influence of ATP receptor desensitization and to study the channel selectivity using a number of divalent cations (105 mm) and Na+ (145 mm) as the charge carriers. Permeability sequence estimated by extrapolated reversal potential measurements was: Ca2+ Ba2+ Mn2+ Sr2+ Na+ K+ = 68 30 26 10 3.5 1. Slope conductances (in pS) for permeant ions rank as follows: Ca2+ Sr2+ Na+ Mn2+ Ba2+ = 19 18 14 12 10. Unitary Ca2+ currents display a tendency to saturate with the Ca2+ concentration increase with apparent dissociation constant (K d ) of 10 mm. No block of Na+ permeation by extracellular Ca2+ in millimolar range was found. The data obtained suggest that (i) activation of some G protein is sufficient to gate the channels without the ATP receptor being occupied, (ii) the ATP receptor activation results in the gating of a special channel with the properties that differ markedly from those of the receptoroperated or voltage-gated Ca2+-permeable channels on the other cell types.DeceasedThe authors are grateful to K. Kiselyov and A. Mamin for technical assistance. The work was supported by the Russian Basic Research Foundation, Grant N 93-04-21722 and was made possible in part by Grant N R4A000 from the International Science Foundation.  相似文献   

2.
The effect of chemical modifiers of amino acid residues on the proton conductivity of H+-ATPase in inside out submitochondrial particles has been studied. Treatment of submitochondrial particles prepared in the presence of EDTA (ESMP) with the arginine modifiers, phenylglyoxal or butanedione, or the tyrosine modifier, tetranitromethane, caused inhibition of the ATPase activity. Phenylglyoxal and tetranitromethane also caused inhibition of the anaerobic release of respiratory H+ in ESMP as well as in particles deprived of F1 (USMP). Butanedione treatment caused, on the contrary, acceleration of anaerobic proton release in both particles. The inhibition of proton release caused by phenylglyoxal and tetranitromethane exhibited in USMP a sigmoidal titration curve. The same inhibitory pattern was observed with oligomycin and withN,N-dicyclohexylcarbodiimide. In ESMP, relaxation of H+ exhibited two first-order phases, both an expression of the H+ conductivity of the ATPase complex. The rapid phase results from transient enhancement of H+ conduction caused by respiratory H+ itself. Oligomycin,N,N-dicyclohexylcarbodiimide, and tetranitromethane inhibited both phases of H+ release, and butanedione accelerated both. Phenylglyoxal inhibited principally the slow phase of H+ conduction. In USMP, H+ release followed simple first-order kinetics. Oligomycin depressed H+ release, enhanced respiratory H+, and restored the biphasicity of H+ release. Phenylglyoxal and tetranitromethane inhibited H+ release in USMP without modifying its first-order kinetics. Butanedione treatment caused biphasicity of H+ release from USMP, introducing a very rapid phase of H+ release. Addition of soluble F1 to USMP also restored biphasicity of H+ release. A mechanism of proton conduction by F o is discussed based on involvement of tyrosine or other hydroxyl residues, in series with the DCCD-reactive acid residue. There are apparently two functionally different species of arginine or other basic residues: those modified by phenylglyoxal, which facilitate H+ conduction, and those modified by butanedione, which retard H+ diffusion.  相似文献   

3.
Structural analogues of the NADP+ were studied as potential coenzymes and inhibitors for NADP+ dependent malic enzyme from Zea mays L. leaves. Results showed that 1, N6-etheno-nicotinamide adenine dinucleotide phosphate ( NADP+), 3-acetylpyridine-adenine dinucleotide phosphate (APADP+), nicotinamide-hypoxanthine dinucleotide phosphate (NHDP+) and -nicotinamide adenine dinucleotide 2: 3-cyclic monophosphate (23NADPc+) act as alternate coenzymes for the enzyme and that there is little variation in the values of the Michaelis constants and only a threefold variation in Vmax for the five nucleotides. On the other hand, thionicotinamide-adenine dinucleotide phosphate (SNADP+), 3-aminopyridine-adenine dinucleotide phosphate (AADP+), adenosine 2-monophosphate (2AMP) and adenosine 2: 3-cyclic monophosphate (23AMPc) were competitive inhibitors with respect to NADP+, while -nicotinamide adenine dinucleotide 3-phosphate (3NADP+), NAD+, adenosine 3-monophosphate (3AMP), adenosine 2: 5-cyclic monophosphate (25AMPc), 5AMP, 5ADP, 5ATP and adenosine act as non-competitive inhibitors. These results, together with results of semiempirical self-consistent field-molecular orbitals calculations, suggest that the 2-phosphate group is crucial for the nucleotide binding to the enzyme, whereas the charge density on the C4 atom of the pyridine ring is the major factor that governs the coenzyme activity.Abbreviations NADP+ 1, N6-etheno-nicotinamide adenine dinucleotide phosphate - NHDP+ nicotinamide-hypoxanthine dinucleotide phosphate - APADP+ 3-acetylpyridine-adenine dinucleotide phosphate - SNADP+ thionicotinamide-adenine dinucleotide phosphate - AADP+ 3-aminopyridine-adenine dinucleotide phosphate - 23NADPc+ -nicotinamide adenine dinucleotide 2: 3-cyclic monophosphate - 3NADP+ -nicotinamide adenine dinucleotide 3-phosphate - 2AMP adenosine 2-monophosphate - 3AMP adenosine 3-monophosphate - 23AMPc adenosine 2: 3 monophosphate cyclic - A adenosine - RuBP ribulose 1,5-bisphosphate - SCF-MO Self-Consistent Field-Molecular Orbitals (method)  相似文献   

4.
The Archaebacterium Haloferax volcanii concentrates K+ up to 3.6 M. This creates a very large K+ ion gradient of between 500- to 1,000-fold across the cell membrane. H. volcanii cells can be partially depleted of their internal K+ but the residual K+ concentration cannot be lowered below 1.5 M. In these conditions, the cells retain the ability to take up potassium from the medium and to restore a high internal K+ concentration (3 to 3.2 M) via an energy dependent, active transport mechanism with a K m of between 1 to 2 mM. The driving force for K+ transport has been explored. Internal K+ concentration is not in equilibrium with m suggesting that K+ transport cannot be accounted for by a passive uniport process. A requirement for ATP has been found. Indeed, the depletion of the ATP pool by arsenate or the inhibition of ATP synthesis by N,N-dicyclohexylcarbodiimide inhibits by 100% K+ transport even though membrane potential m is maintained under these conditions. By contrast, the necessity of a m for K+ accumulation has not yet been clearly demonstrated. K+ transport in H. volcanii can be compared with K+ transport via the Trk system in Escherichia coli.Abbreviations CCCP Carbonylcyanide m-chlorophenyl-hydrazone - DCCD N,N-dicyclohexylcarbodiimide - MES 2-[N-morpholino] ethane sulfonic acid - MOPS 3-[N-morpholino] propane sulfonic acid - TRIS Tris (hydroxymethyl) aminomethane - TPP tetraphenyl phosphonium  相似文献   

5.
Z. Ping  I. Yabe  S. Muto 《Protoplasma》1992,171(1-2):7-18
Summary K+, Cl, and Ca2+ channels in the vacuolar membrane of tobacco cell suspension cultures have been investigated using the patch-clamp technique. In symmetrical 100mM K+, K+ channels opened at positive vacuolar membrane potentials (cytoplasmic side as reference) had different conductances of 57 pS and 24 pS. K+ channel opened at negative vacuolar membrane potentials had a conductance of 43 pS. The K+ channels showed a significant discrimination against Na+ and Cl. The Cl channel opened at positive vacuolar membrane potentials for cytoplasmic Cl influx had a high conductance of 110pS in symmetrical 100mM Cl. When K+ and Cl channels were excluded from opening, no traces were found of Ca2+ channel activity for vacuolar Ca2+ release induced by inositol 1,4,5-trisphosphate or other events. However, we found a 19pS Ca2+ channel which allowed influx of cytoplasmic Ca2+ into the vacuole when the Ca2+ concentration on the cytoplasmic side was high. When Ca2+ was substituted by Ba2+, the conductance of the 19 pS channel became 30 pS and the channel showed a selectivity sequence of Ba2+Sr2+Ca2+Mg2+=10.60.60.21. The reversal potentials of the channel shifted with the change in Ca2+ concentration on the vacuolar side. The channel could be efficiently blocked from the cytoplasmic side by Cd2+, but was insensitive to La3+, Gd3+, Ni2+, verapamil, and nifedipine. The related ion channels in freshly isolated vacuoles from red beet root cells were also recorded. The coexistence of the K+, Cl, and Ca2+ channels in the vacuolar membrane of tobacco cells might imply a precise classification and cooperation of the channels in the physiological process of plant cells.  相似文献   

6.
Functionally active preparations of Na+,K+-ATPase isozymes from calf brain that contain catalytic subunits of three types (1, 2, and 3) were obtained using two approaches: a selective removal of contaminating proteins by the Jorgensen method and a selective solubilization of the enzyme with subsequent reconstitution of their membrane structure by the Esmann method. The ouabain inhibition constants were determined for the isozymes. The real isozyme composition of the Na+ pump from the grey matter containing glial cells and the brain stem containing neurons was determined. The plasma membranes of glial cells were shown to contain mainly Na+,K+-ATPase of the 11 type and minor amounts of isozymes of the 22(1) and the 31(2) type. The axolemma contains 21 and 31 isozymes. A carbohydrate analysis indicated that 11 enzyme preparations from the brain grey matter substantially differ from the renal enzymes of the same composition in the glycosylation of the 1 isoform. An enhanced sensitivity of the 3 catalytic subunit of Na+,K+-ATPase from neurons to endogenous proteolysis was found. A point of specific proteolysis in the amino acid sequence PNDNR492 Y493 was localized (residue numbering is that of the human 3 subunit). This sequence corresponds to one of the regions of the greatest variability in 1-, 2-, 3-, and 4-subunits, but at the same time, it is characteristic of the 3 isoforms of various species. The presence of the 3 isoform of tubulin (cytoskeletal protein) was found for the first time in the high-molecular-mass Na+,K+-ATPase 31 isozyme complex isolated from the axolemma of brain stem neurons, and its binding to the 3 catalytic subunit was shown.  相似文献   

7.
An enzyme releasing phosphocholine from glycerophosphocholine was purified to apparent homogeneity based upon SDS-PAGE. The enzyme was liberated from lyophilized bovine myelin by differential detergent extraction and final purification was accomplished with Q-Sepharose Fast Flow chromatography yielding an apparently homogenous protein. The molecular mass based upon PAGE was approximately 14 kDa. The enzyme was also capable of releasing p-nitrophenol from p-nitrophenyl-phosphocholine. Maximal activity was obtained with 0.2 mM ZnCl2 or 1 mM CoCl2. p-Nitrophenylphosphocholine and phosphocholine were competitive inhibitors of glycerophosphocholine hydrolysis with Ki's of 0.028 mM and 0.03 mM respectively. Glycerophosphocholine and phosphocholine were competitive inhibitors of p-nitrophenylphosphocholine hydrolysis with Ki's of 0.5 mM and 1.75 mM respectively.Abbreviations SDS-PAGE sodium dodecylsulfate polyacrylamide gel electrophoresis - GPC glycerophosphocholine - pNPPC p-nitrophenylphosphocholine - OG octyl--glucoside - PMSF phenylmethylsulfonylfluoride - CNPase 23-cyclic nucleotide 3-phosphodiesterase  相似文献   

8.
Summary The purified (H+ATPase from corn roots plasma membrane inserted spontaneously into preformed bilayer from soybean lipids. The yield of the protein insertion, as measured from its H+-pumping activity, increased as a function of lipids and protein concentrations. In optimum conditions, all the (H+)ATPase molecules were closely associated with liposomes, exhibiting a high H+-pumping activity (150,000% quenching· min–1·mg–1 protein of the probe 9-amino-6-chloro-2-methoxyacridine). The insertion was achieved within a few seconds. No latency of the (H+)ATPase hydrolytic activity was revealed when lysophosphatidylcholine was added to permeabilize the vesicles. This indicated that the (H+)ATPase molecules inserted unidirectionally, the catalytic sites being exposed outside the vesicles (inside-out orientation), and thus freely accessible to Mg-ATP. The nondelipidated (H+)ATPase could also functionally insert into bilayer from PCPEPG or PCPEPI, due to the presence of both hydrophobic defects promoted by PE, and negative phospholipids specifically required by the (H+)ATPase from corn roots. The detergent octylglucoside facilitated the delipidated (H+)ATPase reinsertion probably by promoting both a proper protein conformation and hydrophobic defects in the bilayer. Lysophosphatidylcholine facilitated the delipidated protein insertion only when hydrophobic defects were already present, and thus seemed only capable to ensure a proper protein conformation  相似文献   

9.
The regulation of total creatine content in a myoblast cell line   总被引:5,自引:0,他引:5  
Total cellular creatine content is an important bioenergetic parameter in skeletal muscle. To understand its regulation we investigated creatine transport and accumulation in the G8 cultured skeletal myoblast line. Like other cell types, these contain a creatine transporter, whose activity, measured using a radiolabelling technique, was saturable (Km = 110 ± 25 M) and largely dependent on extracellular [Na+]. To study sustained influences on steady state creatine concentration we measured total cellular creatine content using a fluorimetric method in 48 h incubations. We found that the total cellular creatine content was relatively independent of extracellular creatine concentration, consistent with high affinity sodium-dependent uptake balanced by slow passive efflux. Accordingly, in creatine-free incubations net creatine efflux was slow ( 5 ± 1 % of basal creatine content per day over 6 days), while creatine content in 48 h incubations was reduced by 28 ± 13% of control by the Na+,K+-ATPase inhibitor ouabain. Creatine accumulation after 48 h was stimulated by treatment with the mixed - and -adrenergic agonist noradrenaline, the -adrenergic agonist isoproterenol, the 2-agonist clenbuterol and the cAMP analogue N6,2-O-dibutyryladenosine 3,5-cyclic monophosphate, but was unaffected by the 1 adrenergic agonist methoxamine. The noradrenaline enhancement of creatine accumulation at 48 h was inhibited by the mixed - and -antagonist labetalol and by the -antagonist propranolol, but was unaffected by the 2 antagonist phentolamine; greater inhibition was caused by the 2 antagonist butoxamine than the 1 antagonist atenolol. Creatine accumulation at 48 h was increased to 230 ± 6% of control by insulin and by 140 ± 13% by IGF-I (both at 3 nM). Creatine accumulation at 48 h was also increased to 280 ± 40% of control by 3,3,5-triiodothyronine (at 70 M) and to 220 ± 35% of control by amylin (60 nM). As 3,3,5-triiodothyronine, amylin and isoproterenol all stimulate the Na+,K+-ATPase, we suggest that they stimulate Na+-creatine cotransport indirectly by increasing the transmembrane [Na+] concentration gradient and membrane potential.Abbreviations IGF-I insulin-like growth factor I - IGF-II insulin-like growth factor II - T3 3,3,5-triiodothyronine - CGRP calcitonin gene-related peptide  相似文献   

10.
Summary Hyperpolarization of voltage-clampedParamecium tetraurelia in K+ solutions elicits a complex of Ca2+ and K+ currents. The tail current that accompanies a return to holding potential (–40 mV) contains two K+ components. The tail current elicited by a step to –110 mV of 50-msec duration contains fast-decaying (3.5 msec) and slow-decaying (20 msec) components. The reversal potential of both components shifts by 55–57 mV/10-fold change in external [K+], suggesting that they represent pure K+ currents. The dependence of the relative amplitudes of the two tail currents on duration of hyperpolarization suggests that the slow K+ current activates slowly and is sustained, whereas the fast current activates rapidly during hyperpolarization and then rapidly inactivates. Iontophoretic injection of a Ca2+ chelator, EGTA, specifically reduces slow tail-current amplitude without affecting the fast tail component. Both K+ currents are inhibited by extracellular TEA+ in a concentration-dependent, noncooperative manner, whereas the fast K+ current alone is inhibited by 0.7mm quinidine.  相似文献   

11.
The lipid composition and fluidity of jejunal brush-border membrane vesicles (BBMV) have been studied in spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto (WKY) rats. The activities of both Na+-dependent D-glucose cotransport and Na+-H+ antiport have also been determined. A significant increase in the level of free cholesterol was observed in jejunal BBMV from SHR compared to WKY rats. Since phospholipid values did not change in either group of animals, a significant enhancement in the free cholesterol/phospholipid ratio was observed in SHR. A decrease in the levels of phosphatidylethanolamine together with an increase in the values of phosphatidylserine was observed in hypertensive rats. Although the content of phosphatidylcholine (PC) and sphingomyelin (SM) was not singificantly altered in SHR, the ratio PC/SM significantly increased in these animals when compared to WKY rats. The major fatty acids present in bursh-border membranes prepared from SHR and WKY rats were palmitic (160), stearic (180), oleic (181, n-9) and linoleic (182, n-6), and the fatty acid composition was not modified by the hypertension. A decreased fluorescence polarization, i.e., increased membrane fluidity, was observed in SHR, which was not correlated to the increased ratio of cholesterol/phospholipid found in the brush-border membrane isolated from these animals. These structural changes found in SHR were associated to an enhancement in both Na+-dependent D-glucose transport and Na+-H+ antiport activity in the jejunal BBMV of SHR.Abbreviations BBMV brush-border membrane vesicles - DPH 1,6-diphenyl-1,3,5-hexatriene - FC free cholesterol - PC phosphatidylcholine - PE phosphatidylethanolamine - PI phosphatidylinositol - PS phosphatidylserine - SM sphingomyelin - SHR spontaneously hypertensive rat - p steady-state fluoroscence polarization - rs steady-state fluorescence anisotropy - WKY Wistar Kyoto  相似文献   

12.
The cRNA for Torpedo californica Na+/K+-ATPase -subunit (cRNA) was injected into Xenopus oocytes alone or with the cRNA for the Na+/K+-ATPase -subunit (cRNA). When cRNA was injected alone, the amount of the -subunit that accumulated in oocytes increased with increasing amounts of injected cRNA. When cRNA and cRNA were injected simultaneously, less -subunit accumulated than when cRNA was injected alone, whereas the Na+/K+-ATPase activity increased markedly. The decrease in the accumulation of the -subunit was dose-dependent upon the cRNA. The mutant -subunit unable to assemble with the -subunit accumulated in oocytes independently of cRNA, suggesting that post-translational control mechanisms may serve to reduce the accumulation of the -subunit.This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports and Culture of Japan (No. 05259226, No. 06454149).  相似文献   

13.
This review summarizes our experiments on the significance of the -subunit in the functional expression of Na+/K+-ATPase. The -subunit acts like a receptor for the -subunit in the biogenesis of Na+/K+-ATPase and facilitates the correct folding of the -subunit in the membrane. The -subunit synthesized in the absence of the -subunit is subjected to rapid degradation in the endoplasmic reticulum. Several assembly sites are assigned in the sequence of the -subunit from the cytoplasmic NH2-terminal domain to the extracellular COOH-terminus: the NH2-terminal region of the extracellular domain, the conservative proline in the third disulfide loop, the hydrophobic amino acid residues near the COOH-terminus and the cysteine residues forming the second and the third disulfide bridges. Upon assembly, the -subunit confers a resistance to trypsin on the -subunit. The conformations induced in the -subunit of Na+/K+-ATPase by Na+/K+- and H+/K+-ATPase -subunits are somehow different from each other and are named the NK-type and KH-type, respectively. The extracellular domain of the -subunit is involved in the folding of the -subunit leading to trypsin-resistant conformations. The sequences from Cys150 to the COOH-terminus of the Na+/K+-ATPase -subunit and from Ile89 to the COOH–terminus of the H+/K+-ATPase -subunit are necessary to form trypsin-resistant conformations of the NK- and HK-type. respectively. The first disulfide loop of the extracellular domain of the -subunits is critical in the expression of functional Na+/K+-ATPase.  相似文献   

14.
Summary [13C5]-2-Deoxy-d-ribose, synthesized from [13C6]-d-glucose (98% 13C), was coupled with thymine to give [1,2,3,4,5-13C5]-thymidine (T) in an 18% overall yield. The thymidine was converted to the 3-phosphoramidite derivative and was then incorporated into a dodecamer 5-d(CGCGAATTCGCG)-3 by solid-phase DNA synthesis. Preparation of 0.24 mole of the labeled dodecamer, which is sufficient for a single NMR sample, consumed only 25 mg of glucose. By virtue of the 13C labels, all of the 1H-1H vicinal coupling constants in the sugar moieties were accurately determined by HCCH-E.COSY.  相似文献   

15.
Changes in demands for Na+ transport alter expression of the Na+,K+-ATPase subunit isoforms. In skeletal muscle, the effects of these changes on expression the 2 isoform, the major isoform expressed in differentiated muscle cell, is not known. Therefore, this study examines regulation of the -subunit isoforms by Na+ in the C2C12 skeletal muscle cell that expresses the 1 and 2 isoforms. Western blot analysis showed that in differentiating C2C12 muscle cell, but not in undifferentiated myoblast, veratridine, a Na+ channel activator, greatly increased expression of the 2 isoform; expression of 1 was unaltered. Because the level of -actinin was unaltered, the data suggest that veratridine treatment did not significantly alter the progression of cell differentiation. Furthermore, a reduction in Na+ transport by tetrodotoxin again failed to alter expression of a1. Thus, in C2C12 skeletal muscle cell, changes in Na+ transport alters expression of the 2, but not the 1 isoform. These results differ from those observed previously in muscle cells that express only the 1 isoform. Because mammalian skeletal muscle expresses both the 1- and 2-subunit isoforms, the differential regulation that was observed may be physiologically relevant in these muscle cells in vivo.  相似文献   

16.
Subfamilies of voltage-activated K+ channels (Kv1-4) contribute to controlling neuron excitability and the underlying functional parameters. Genes encoding the multiple subunits from each of these protein groups have been cloned, expressed and the resultant distinct K+ currents characterized. The predicted amino acid sequences showed that each subunit contains six putative membrane-spanning -helical segments (S1-6), with one (S4) being deemed responsible for the channels' voltage sensing. Additionally, there is an H5 region, of incompletely defined structure, that traverses the membrane and forms the ion pore; residues therein responsible for K+ selectivity have been identified. Susceptibility of certain K+ currents produced by the Shaker-related subfamily (Kv1) to inhibition by -dendrotoxin has allowed purification of authentic K+ channels from mammalian brain. These are large (Mr 400 kD), octomeric sialoglycoproteins composed of and subunits in a stoichiometry of ()4()4, with subtypes being created by combinations of subunit isoforms. Subsequent cloning of the genes for 1, 2 and 3 subunits revealed novel sequences for these hydrophilic proteins that are postulated to be associated with the subunits on the inner side of the membrane. Coexpression of 1 and Kv1.4 subunits demonstrated that this auxiliary protein accelerates the inactivation of the K+ current, a striking effect mediated by an N-terminal moiety. Models are presented that indicate the functional domains pinpointed in the channel proteins.  相似文献   

17.
Addition of Na+ to the K+-loadedVibrio alginolyticus cells, creating a 250-fold Na+ gradient, is shown to induce a transient increase in the intracellular ATP concentration, which is abolished by the Na+/H+ antiporter, monensin. The pNa-supported ATP synthesis requires an additional driving force supplied by endogenous respiration or, alternatively, by a K+ gradient (high [K+] inside). In the former case, ATP formation is resistant to the protonophorous uncoupler. Dicyclohexylcarbodiimide and diethylstilbestrol, but not vanadate, completely inhibit Na+ pulse-induced ATP formation. The data agree with the assumption that Na+-ATP-synthase is involved in oxidative phosphorylation inV. alginolyticus. Interrelation of H+ and Na+ cycles in bacteria is discussed.Abbreviations and electrochemical gradients of H+ and Na+, respectively - transmembrane electric potential difference - pH, pNa, and pK concentration gradients of H+, Na+, and K+, respectively - CCCP carbonyl cyanidem-chlorophenylhydrazone - DCCD N,N-dicyclohexylcarbodiimide - DES diesthylstilbestrol - HQNO 2-heptyl-4-hydroxyquinolineN-oxide - Tricine N[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]glycine  相似文献   

18.
Cadmium‐induced apoptosis and phenotypic changes in mouse thymocytes   总被引:6,自引:0,他引:6  
At present cadmium (Cd)induced immunotoxicity and the mechanisms involved have not been fully elucidated. The main objective of the present study is to explore the apoptogenic property of Cd in primary cultured mouse thymocytes and its effect on cell surface marker expression and phenotypic changes. Cdinduced thymocyte apoptosis was determined by TdTmediated dUTP nick end labeling (TUNEL) assay, DNA content/cell cycle analysis and DNA gel electrophoresis. The results showed that Cd was able to cause apoptosis in mouse thymocytes in a time and dosedependent manner. Moreover, different subsets of thymocytes possessed different susceptibility to the apoptotic effect of Cd, in the order of CD8+ > CD4CD8 (double negative cells, DN) > CD4+CD8+ (double positive cells, DP) > CD4+. Cd treatment also altered thymocyte surface marker expression, leading to evident phenotypic changes. Such changes were characterized by a decline in DP cells and a marked decrease in CD4+/CD8+ ratio, mainly due to a significant increase in CD8+ subsets. These observations help to obtain a better understanding of the immunotoxic and immunomodulatory effects of Cd.  相似文献   

19.
Na+/H+ antiporter activity is wide-spread and plays essential physiological roles. We found that several Enterobacteriaceae share conserved sequences with nhaA, the gene coding for an E. coli antiporter. A nhaA strain which is sensitive to Na+ and Li+, was used to clone by complementation a DNA fragment from Salmonella enteritidis which confers resistance to the ions. The cloned fragment increased Na+/H+ antiport activity in membranes isolated from strains carrying the respective hybrid plasmid. DNA sequence analysis of the insert revealed two open reading frames. Both encode putative polypeptides which are closely homologous to the nhaA and nhaR gene products from Escherichia coli. The antiporter activity displays properties very similar to that of the E. coli NhaA, namely, it is activiated by alkaline pH and recognizes Li+ with high affinity.Abbreviations H + Proton electrochemical potential - pH transmembrane pH gradient - Na + Sodium electrochemical potential - SDS Sodium dodecyl sulfate - CIP Calf intestine alkaline phosphates - ORF open reading frame  相似文献   

20.
The effect of carbonnitrogenphosphorus (CNP) ratio of organic substrates on the regeneration of ammonium and phosphate was investigated by growing natural assemblages of freshwater bacteria in mineral media supplemented with the simple organic C, N, and P sources (glucose, asparagine, and sodium glycerophosphate, respectively) to give 25 different substrate CNP ratios. Both ammonium and phosphate were regenerated when CN and NP atomic ratios of organic substrates were 101 and 161, respectively. Only ammonium was regenerated when CN and NP ratios were 101 and 10–201, respectively. On the other hand, neither ammonium nor phosphate was regenerated when CN and NP ratios were 151 and 51, respectively. In no case was phosphate alone regenerated. As bacteria were able to alter widely the CNP ratio of their biomass, the growth yield of bacteria appeared primarily dependent on the substrate carbon concentration, irrespective of a wide variation in the substrate CNP ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号