首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Eucalyptus tereticornis was grown in a green house in a low phosphorus (0.67 ppm Olsen's P) soil (Typic Haplustalf) inoculated with mixed indigenous arbuscular mycorrhizal (AM) fungi. Soil was amended to achieve P levels of 10, 20, 25, 30 and 40 ppm to evaluate the growth response and dependence of E. tereticornis to inoculation with AM fungi. A positive response to mycorrhizal inoculation was evident at the first two levels of soil P, i.e., at 0.67 and 10 ppm but not at the higher levels of soil P. Dry matter yield of inoculated plants beyond 20 ppm soil P was similar or even less compared to their uninoculated counterparts. Inoculated plants produced maximum dry matter (root and shoot) at 10 ppm soil P, whereas uninoculated plants did not produce until the level reached 20 ppm. The percentage root length colonized by AM fungi decreased from 31% to 3% as the concentration of P increased beyond 10 ppm soil P. Higher levels of soil P depressed the AM colonization significantly. Inoculated plants had higher shoot P and N contents compared to their uninoculated counterparts at all levels of soil P. However, at the first two lower levels of soil P, inoculated plants showed significantly higher shoot P and N contents over their respective uninoculated counterparts. The increasing shoot P accumulation beyond 10 ppm did not enhance dry matter yields. Inoculated plants had lower values of phosphorus utilization efficiency (PUE) and nitrogen utilization efficiency (NUE) at all levels of soil P except at the unamended level (0.67 ppm) where the inoculated plants showed higher values of NUE compared to uninoculated control plants. Taking dry matter yield into consideration, Eucalyptus plants were found to be highly dependent on 10 ppm of soil P for maximum dry matter production. Any further amendment of P to soil was not beneficial neither for AM symbiosis nor plant growth.  相似文献   

2.
Summary Nursery beds were inoculated with four different VA mycorrhizal fungi,Glomus fasciculatus and three local isolates I4, I6 and I14, and mycorrhizal seedlings were transplanted to field plots with two levels of phosphatic fertilizer. Of the fungi studied, isolate I4 increased significantly growth, P and Zn nutrition, flowering, yield of chilli plants and also the ascorbic acid content of green chillies. Yield of I4 inoculated plants given half the recommended level of P was slightly more than the uninoculated plants given the full level of phosphatic fertilizer. This suggests the possibility of extending the simple technology of inoculating nursery beds with mycorrhiza to farmers in order to improve plant growth and save phosphatic fertilizer.  相似文献   

3.
Summary Tomato plants were inoculated withGlomus fasciculatus mycorrhizal fungi while growing in sand through which recycled nutrient solution was automatically passed several times daily. Concentration of P and N in the solution were maintained at relatively low levels. Roots of inoculated plants became highly infected with mycorrhizal fungi, and yield parameters were significantly increased with inoculation over uninoculated control plants.  相似文献   

4.
Arbuscular mycorrhizal (AM) fungi and plant growth-promoting bacteria (PGPB) can increase the growth and yield of major crops, and improve the quality of fruits and leaves. However, little is known about their impact on seed composition. Plants were inoculated with AM fungi and/or the bacterial strain Pseudomonas fluorescens Pf4 and harvested after 7 months of growth in open-field conditions. Plant growth parameters were measured (biomass, length and circumference of spikes, number of grains per cob, grain yield, and grain size) and protein, lipid, and starch content in grains were determined. Plant growth and yield were increased by inoculation with the microorganisms. Moreover, spikes and grains of inoculated plants were bigger than those produced by uninoculated plants. Regarding grain composition, the bacterial strain increased grain starch content, especially the digestible components, whereas AM fungi-enhanced protein, especially zein, content. Plant inoculation with the fluorescent pseudomonad and mycorrhizal fungi resulted in additive effects on grain composition. Overall, results showed that the bacterial strain and the AM fungi promoted maize growth cultivated in field conditions and differentially affected the grain nutritional content. Consequently, targeted plant inoculation with beneficial microorganisms can lead to commodities fulfilling consumer and industrial requirements.  相似文献   

5.
采用盆栽法研究了不同施氮水平下接种丛枝菌根(arbuscular mycorrhiza,AM)真菌Glomus mosseae对茶树生长、矿质元素吸收及茶叶品质的影响。结果表明,适量的施氮利于AM真菌的侵染和菌根发育,当施氮过量时则会抑制菌根发育。在不同施氮水平下接种AM真菌均提高了茶树地上部、地下部和总干物质量,其中又以接种AM真菌同时施氮量为0.53g kg-1的茶树总干物质量最大,为对照的1.63倍。不同矿质元素受AM真菌和氮肥的影响不一致,在一定施氮水平下接种AM真菌可提高茶树叶片中N、P、K、Ca、Zn和Fe含量,降低Mn和Cu含量;显著增加根中N、P、K、Mg和Zn含量,降低Mn含量,施高浓度的氮(1.06 g kg-1)显著降低了根系Ca和Fe含量。不同施氮水平下AM真菌处理可增加茶叶中可溶性糖和可溶性蛋白含量,提高了茶叶中茶多酚、咖啡碱、氨基酸和水浸出物含量,降低酚氨比,显著改善茶叶品质。本实验条件下,茶树施氮量为0.53 g kg-1时,接种AM真菌改善茶叶品质的效果最佳。  相似文献   

6.
陈秀华  赵斌 《菌物学报》2006,25(3):416-423
通过5个土壤Cu2 水平(0,20,50,100,150mgkg-1)的盆栽试验,研究了不同土壤Cu2 水平接种AM真菌对紫云英生长的影响。结果表明:(1)随着土壤Cu2 水平升高,紫云英生物量下降,与未接种相比,接种AM真菌明显提高了紫云英的生物量,接种G.intraradices对紫云英生物量的提高比接种G.mosseae更为明显,两者间呈显著性差异。(2)随着土壤Cu2 水平升高,紫云英根段浸染率下降,菌丝琥珀酸脱氢酶、碱性磷酸酶活性也下降。(3)在相同土壤Cu2 水平接种不同的AM真菌,紫云英根段浸染率有显著差异,接种G.intraradices的紫云英根段浸染率显著高于接种G.mosseae的处理,其菌丝琥珀酸脱氢酶活性及碱性磷酸酶活性也显著高于接种G.mosseae的处理。(4)接种G.intraradices能显著抑制Cu2 从紫云英地下部分向地上部分的运转,降低Cu2 的毒害,接种G.mosseae相对促进了Cu2 的运转。以上结果显示,Cu2 污染土壤中接种G.intraradices对紫云英生长具有促进作用。  相似文献   

7.
丛枝菌根真菌对郁金香生长及其切花生理的影响   总被引:2,自引:0,他引:2  
为认识丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)对郁金香Tulipa gesneriana生长、光合特性以及切后瓶插期生理的影响,通过温室盆栽接种试验,以摩西斗管囊霉Funneliformis mosseae和幼套近明球囊霉Claroideoglomus etunicatum分别单独接种和共同接种,进行温室盆栽实验。结果表明,共同接种F. mosseaeC. etunicatum的郁金香叶片叶绿素a含量、叶绿素b含量和总叶绿素含量均显著高于不接种对照,分别增加了32%、18%和28%。与不接种对照相比,接种AMF处理的郁金香叶片的净光合速率、气孔导度、胞间CO2浓度和蒸腾速率均显著提高,共同接种F. mosseaeC. etunicatum的郁金香在正午12点达到光合参数最大值。接种AMF处理的郁金香花葶长、地上干物质质量、地上鲜物质质量和叶面积均高于不接种对照,开花期早于不接种对照。切花瓶插期间,接种AMF处理的郁金香切花花瓣可溶性糖含量、可溶性蛋白质含量、超氧化物歧化酶(SOD)和过氧化物酶(POD)等抗氧化酶活性比不接种对照显著提高;且降低了膜脂过氧化产物丙二醛(MDA)含量和相对电导率。接种处理有效地改善切花花枝的水分平衡,并延长郁金香切花的瓶插寿命、最佳观赏期和花期。  相似文献   

8.
Fan Y  Luan Y  An L  Yu K 《Biotechnology letters》2008,30(8):1489-1494
Penicillium pinophilum was isolated from the soil in a commercial strawberry field. The strain readily formed arbuscular mycorrhizae (AM) with the roots of strawberry 'Zoji' (Fragaria x ananassa Duch. CV.) when plants were inoculated with either fresh cultured hyphae or root/soil mixtures. Fresh hyphae, however, resulted in higher amounts of colonization than root/soil inoculum. Compared with uninoculated strawberries, inoculation increased plant dry weight by 31%, as well as nitrogen content (47%), phosphorus content (57%), and photosynthetic rate (71%). AM inoculation also shortened the blossom and ripening date by 3 and 4 days, respectively. This is the first report of a P. pinophilum strain resulting in mycorrhiza with strawberry roots. The significant advantages of this strain are that it is easy to culture and inoculation of plants results in significant growth benefits that may be useful in strawberry production.  相似文献   

9.
Many clonal plants live in symbiosis with ubiquitous arbuscular mycorrhizal (AM) fungi, however, little is known about their interaction with respect to clonal reproduction and resource acquisition. The effects of arbuscular mycorrhiza on the growth and intraclonal integration between ramets of two stoloniferous species were studied experimentally in a nutritionally homogenous soil environment. Two species coexisting at the same field site, Potentilla reptans and Fragaria moschata, were selected as model plants for the study. Pairs of their ramets were grown in neighbouring pots with each ramet rooted separately. Four inoculation treatments were established: (1) both mother and daughter ramets remained non-inoculated, (2) both ramets were inoculated with a mixture of three native AM fungi from the site of plant origin, (3) only mother or (4) daughter ramet was inoculated. The stolons connecting the ramets were either left intact or were disrupted. Despite the consistent increase in phosphorus concentrations in inoculated plants, a negative growth response of both plant species to inoculation with AM fungi was observed and inoculated ramets produced fewer stolons and fewer offspring ramets and had lower total shoot dry weights as compared to non-inoculated ones. A difference in the extent of the negative mycorrhizal growth response was recorded between mother and daughter ramets of P. reptans, with daughter ramets being more susceptible. Due to AM effect on ramet performance, and thereby on the source-sink relationship, inoculation also significantly influenced biomass allocation within clonal fragments. Physiological integration between mother and daughter ramets was observed when their root systems were heterogeneous in terms of AM colonization. These results hence indicate the potential of mycorrhizal fungi to impact clonal growth traits of stoloniferous plant species, with possible consequences for their population dynamics.  相似文献   

10.
Ferreira  L.H.P.L.  Molina  J.C.  Brasil  C.  Andrade  G. 《Plant and Soil》2003,256(1):161-168
The effect of B. thuringiensis and its crystal protein on plant growth and on functional groups of microorganisms is not well understood. Soybean (Glycine max) var. Br 322 was grown in non-sterile soil infested with three B. thuringiensis (Bt) inocula: insecticidal crystal protein producer (Cry+), a mutant non-producer (Cry–), or insecticidal crystal protein (ICP), at a rate of 107 cells g–1 dry soil or 1.25 mg of protein g–1 dry soil. Non-inoculated plants were maintained as control. Measurements were carried out on soil samples before sowing (time zero) and after sowing and inoculation (5, 15, 25, 35 and 45 d) on samples of rhizosphere soil. The effect of spore and crystal protein produced by B. thuringiensis on the populations of functional groups of microorganisms (bacteria including actinomycetes and fungi) involved in the biogeochemical cycling of carbon (cellulolytic, amylolytic and proteolytic), phosphorus (arbuscular mycorrhizal fungi), and nitrogen (number of nodules and proteolytic) were evaluated. Population sizes of culturable heterotrophic bacteria and saprophytic fungi were also evaluated. No difference was found in heterotrophic bacterial populations inoculated with B. thuringiensis. Difference was observed in functional groups of C-cycling microorganisms. Nodule formation and plant growth were increased by Cry+ strain and ICP when compared with uninoculated plants. Crystal protein did not show any effect on arbuscular mycorrhiza (AM) colonization. However, a deleterious effect was observed with Cry+ and Cry– strains that inhibited colonization of AM fungi when compared with uninoculated plants.  相似文献   

11.
The effects of inoculation with arbuscular mycorrhizal (AM) fungi, organic fertilizer (F) applications, and soil sterilization on maize growth were evaluated in a pot experiment. The experiment was in a completely randomized factorial design (2 × 4 × 2) with six replicates for each treatment. There were two soil treatments (sterilized soil, SS and unsterilized soil, US), four organic fertilizer treatments (0.0, 0.5, 1.0 and 2.0 g kg?1 soil), and two AM fungi treatments (inoculation with Glomus mosseae, +AM and uninoculated control, ?AM). Inoculated plants generally had greater AM colonization, plant height, dry weight and phosphorus (P) uptake than uninoculated controls, and these parameters were significantly increased as the organic fertilizer application increased up to 0.5 g kg?1 but decreased or had no significant effect compared to the uninoculated plants at the highest fertilizer rate (2.0 g kg?1). Plant growth, P uptake and AM colonization of root system were significantly higher in sterilized soil compared to the unsterilized control. Our results indicated that the inoculation of AM fungi in field soil with optimal organic fertilizer application greatly improved maize growth and nutrient uptake, and the effect was greater under sterilized soil condition.  相似文献   

12.
The effects of inoculation with arbuscular mycorrhizal (AM) fungi, organic fertilizer (F) applications, and soil sterilization on maize growth were evaluated in a pot experiment. The experiment was in a completely randomized factorial design (2 × 4 × 2) with six replicates for each treatment. There were two soil treatments (sterilized soil, SS and unsterilized soil, US), four organic fertilizer treatments (0.0, 0.5, 1.0 and 2.0 g kg-1 soil), and two AM fungi treatments (inoculation with Glomus mosseae, +AM and uninoculated control, -AM). Inoculated plants generally had greater AM colonization, plant height, dry weight and phosphorus (P) uptake than uninoculated controls, and these parameters were significantly increased as the organic fertilizer application increased up to 0.5 g kg-1 but decreased or had no significant effect compared to the uninoculated plants at the highest fertilizer rate (2.0 g kg-1). Plant growth, P uptake and AM colonization of root system were significantly higher in sterilized soil compared to the unsterilized control. Our results indicated that the inoculation of AM fungi in field soil with optimal organic fertilizer application greatly improved maize growth and nutrient uptake, and the effect was greater under sterilized soil condition.  相似文献   

13.
Abstract

Growth, nutrient content and nodulation response of cowpea plants (Vigna unguiculata L. Walp) inoculated with a Arbuscular Mycorrhiza (AM) fungus (Glomus etunicatum) and Bradyrhizobium (BR) strain IRC 25B peat-based were assessed on an alfisol in a two-cropping cycle experiment conducted in the greenhouse. A total of 5 kg sieved unsterilized topsoil plastic pots was amended with compost consisting of 2.4% N, 1.7% P, 2.7% Ca, 0.4% Mg and 0.7% Fe. Analysis from this first cropping cycle showed that all cowpea plants were infected with mycorrhiza in both AM inoculated and uninoculated treatments. However, all the AM inoculated plants had higher infections than the uninoculated cowpea plants. Nevertheless, nodule number and nodule weight of cowpea plants generally increased in response to compost application when used alone, or when combined with BR or AM; except for nodule weight of BR + Compost treatment. At 13 weeks after planting, the plants were harvested for a second cropping cycle experimental analysis. Results showed higher mycorrhizal infections in all the treatments inoculated with AM. However, infection was highest in cowpea plants treated with AM + BR + Compost, followed by those treated with AM + BR. This shows an increase in the number of AM propagules during the period of cropping. All other parameters measured were found generally lower in their mean values compared to the first cropping cycle. It was observed in this study that compost applications with AM inoculation could substitute for inorganic fertilizer. Thus, tropical countries should direct their efforts towards making the best use of AM to improve conditions for the peasant farmers that account for over 70% agricultural productivity in the region.  相似文献   

14.
The effect of arbuscular mycorrhizal (AM) fungi on the accumulation and transport of lead was studied in a pot experiment on maize plants grown in anthropogenically-polluted substrate. The plants remained uninoculated or were inoculated with different Glomus intraradices isolates, either indigenous to the polluted substrate used or reference from non-polluted soil. A considerably lower tolerance to the conditions of polluted substrate was observed for the reference isolate that showed significantly lower frequency of root colonisation as well as arbuscule and vesicule abundance. Plants inoculated with the reference isolate also had significantly lower shoot P concentrations than plants inoculated with the isolate from polluted substrate. Nevertheless, inoculation with either indigenous or reference G. intraradices isolate resulted in higher shoot and root biomass and inoculated plants showed lower Pb concentrations in their shoots than uninoculated plants, regardless of differences in root colonisation. Root biomass of maize plants was divided according to AM-induced colouration into brightly yellow segments intensively colonised by AM fungus and non-colonised or only slightly colonised whitish ones. Intensively colonised segments of the isolate from polluted substrate contained significantly higher concentrations of phosphorus and lead than non-colonised ones, which suggest significant participation of fungal structures in element accumulation. Responsible Editor: Peter Christie.  相似文献   

15.
Gazey C  Abbott LK  Robson AD 《Mycorrhiza》2004,14(6):355-362
Arbuscular mycorrhizal (AM) fungi occur in all agricultural soils but it is not easy to assess the contribution they make to plant growth under field conditions. Several approaches have been used to investigate this, including the comparison of plant growth in the presence or absence of naturally occurring AM fungi following soil fumigation or application of fungicides. However, treatments such as these may change soil characteristics other than factors directly involving AM fungi and lead to difficulties in identifying the reason for changes in plant growth. In a glasshouse experiment, we assessed the contribution of indigenous AM fungi to growth of subterranean clover in undisturbed cores of soil from two agricultural field sites (a cropped agricultural field at South Carrabin and a low input pasture at Westdale). We used the approach of estimating the benefit of AM fungi by comparing the curvature coefficients ( C) of the Mitscherlich equation for subterranean clover grown in untreated field soil, in field soil into which inoculum of Glomus invermaium was added and in soil fumigated with methyl bromide. It was only possible to estimate the benefit of mycorrhizas using this approach for one soil (Westdale) because it was the only soil for which a Mitscherlich response to the application of a range of P levels was obtained. The mycorrhizal benefit ( C of mycorrhizal vs. non-mycorrhizal plants or C of inoculated vs. uninoculated plants) of the indigenous fungi corresponded with a requirement for phosphate by plants that were colonised by AM fungi already present in the soil equivalent to half that required by non-mycorrhizal plants. This benefit was independent of the plant-available P in the soil. There was no additional benefit of inoculation on plant growth other than that due to increased P uptake. Indigenous AM fungi were present in both soils and colonised a high proportion of roots in both soils. There was a higher diversity of morphotypes of mycorrhizal fungi in roots of plants grown in the Westdale soil than in the South Carrabin soil that had a history of high phosphate fertilizer use in the field. Inoculation with G. invermaium did not increase the level of colonisation of roots by mycorrhizal fungi in either soil, but it replaced approximately 20% of the root length colonised by the indigenous fungi in Westdale soil at all levels of applied P. The proportion of colonised root length replaced by G. invermaium in South Carrabin soil varied with the level of application of P to the soil; it was higher at intermediate levels of recently added soil P.  相似文献   

16.
The occurrence of arbuscular mycorrhiza (AM) in nickel-(Ni)-hyperaccumulating plants of the Asteraceae family growing on Ni-enriched ultramafic soils in South Africa was surveyed. All plants were found to be consistently colonised by AM fungi, with the abundant formation of arbuscules. Berkheya coddii, which is an important species for phytomining, formed well-developed mycorrhiza under greenhouse conditions. Plants cultivated under greenhouse conditions and inoculated with native fungi had a higher shoot biomass and Ni content than noninoculated plants. Inoculation of B. coddii with Glomus intraradices (BEG) was successful, but only plants with abundantly developed arbuscules showed increased yield. In other cases, shoot biomass was similar to noninoculated plants. Dense depositions localised on top of the arbuscules were often observed in roots collected from the field and from pot cultures.  相似文献   

17.
A greenhouse experiment was conducted to examine the effects of inoculation with two Methylobacterium oryzae strains (CBMB20 and CBMB110) and a consortium of three arbuscular mycorrhizal (AM) fungi on the growth of red pepper (Capsicum annum L.). Inoculation of red pepper plants with the M. oryzae strains resulted in a significant increase in root length and root fresh weight compared to untreated control plants. The combined inoculation of M. oryzae strains and AM fungi significantly increased various plant growth parameters and chlorophyll content compared to uninoculated controls. Mycorrhizal colonisation and the number of AM fungal spores were higher in co-inoculation treatments. In addition, the combined inoculation of M. oryzae strains and AM fungi resulted in significantly higher nitrogen (N) accumulation in the roots and shoots of red pepper plants compared to uninoculated controls. The combined inoculation of M. oryzae strain CBMB110 and AM fungi increased the phosphorus (P) content by 23.3% compared to untreated controls. The micronutrient content of the red pepper plants also increased in most of the inoculation treatments. A perfect mutualism among CBMB100-AMF was found which was attributed to the improved macro- and micronutrient uptake along with higher chlorophyll content in red pepper. Further research on in-depth understanding of the co-operative microbial interactions will facilitate the successful application of Methylobacterium-AM fungi products in biotechnology.  相似文献   

18.
Synthesis of mycorrhiza in guayule plants was achieved by inoculation of 8-day-old seedlings with hyphae and chlamydospores of an undescribed Glomus species. There was a five-fold increase in total dry weight of 30-day-old mycorrhizal- compared to nonmycorrhizal-guayule grown in sterile loamy-sand without additional fertiliser. Thirty-day-old, inoculated- and uninoculated-seedlings were transplanted to sterile or unsterile soil and grown an additional 60 days. The greatest total dry weight of guayule was attained by inoculated transplants grown in sterile soil. Inoculated transplants increased two- to three-fold in total dry weight compared to uninoculated transplants, both grown in unsterile soil. After 90 days, uninoculated plants grown in unsterile soil had formed mycorrhizae with resident vesicular-arbuscular mycorrhizal fungi to the same extent as inoculated-plants grown in unsterile soil. Total mineral uptake increased in inoculated guayule, irrespective of soil treatment or the presence of resident VA mycorrhizal fungi.  相似文献   

19.
矿区分离丛枝菌根真菌对万寿菊吸Cd潜力影响   总被引:2,自引:0,他引:2  
盆栽试验研究土壤不同施Cd水平(0、5、20、50μg/g)下,接种矿区污染土壤中丛枝菌根真菌对万寿菊根系侵染率、植株生物量及Cd吸收与分配的影响。结果表明:接种丛枝菌根真菌显著提高Cd胁迫下万寿菊的根系侵染率和植株生物量;随着施Cd水平提高,各处理植株Cd浓度显著增加。各施Cd水平下万寿菊地上部Cd吸收量远远高于根系Cd吸收量,在土壤施Cd量达到50μg/g时,接种处理地上部Cd吸收量是根系的3.48倍,对照处理地上部Cd吸收量是根系的1.67倍;同一施Cd水平下接种处理植株Cd吸收量要显著高于对照。总体上,试验条件下污染土壤中分离的丛枝菌根真菌促进了万寿菊对土壤中Cd的吸收,并在一定程度上增加Cd向地上部分的运转,表现出植物提取的应用潜力。  相似文献   

20.
A field trial was conducted to study the response of sunflower (Helianthus annuus L.) to different phosphorus levels (16, 24 or 32 kg P ha–1) and inoculation with vesicular-arbuscular mycorrhizal fungus, Glomus fasciculatum on vertisol during summer 1993. At the vegetative stage of sunflower, percent mycorrhizal root colonization, spore count, dry biomass and P uptake did not differ significantly between inoculated and uninoculated control plants. However, at later stages (flowering and maturity) percent root colonization, spore count, total dry biomass and total P uptake were significantly higher in inoculated plants than in uninoculated control plants. The total dry biomass, P content and seed yield increased with increasing P level in uninoculated plants, whereas no significant difference was observed between 16 and 32 kg P ha–1 in inoculated plants. The positive effect of mycorrhizal inoculation decreased with increasing P level above 16 kg P ha–1, due to decreased percent root colonization and spore count at higher P levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号