首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Respiratory neuronal network activity is thought to require efficient functioning of astrocytes. Here, we analyzed neuron-astrocyte communication in the pre-Bötzinger Complex (preBötC) of rhythmic slice preparations from neonatal mice. In astrocytes that exhibited rhythmic potassium fluxes and glutamate transporter currents, we did not find a translation of respiratory neuronal activity into phase-locked astroglial calcium signals. In up to 20% of astrocytes, 2-photon calcium imaging revealed spontaneous calcium fluctuations, although with no correlation to neuronal activity. Calcium signals could be elicited in preBötC astrocytes by metabotropic glutamate receptor activation or after inhibition of glial glutamate uptake. In the latter case, astrocyte calcium elevation preceded a surge of respiratory neuron discharge activity followed by network failure. We conclude that astrocytes do not exhibit respiratory-rhythmic calcium fluctuations when they are able to prevent synaptic glutamate accumulation. Calcium signaling is, however, observed when glutamate transport processes in astrocytes are suppressed or neuronal discharge activity is excessive.  相似文献   

2.
Astrocytes send processes to synapses and blood vessels, communicate with other astrocytes through gap junctions and by release of ATP, and thus are an integral component of the neurovascular unit. Electrical field stimulations in brain slices demonstrate an increase in intracellular calcium in astrocyte cell bodies transmitted to perivascular end-feet, followed by a decrease in vascular smooth muscle calcium oscillations and arteriolar dilation. The increase in astrocyte calcium after neuronal activation is mediated, in part, by activation of metabotropic glutamate receptors. Calcium signaling in vitro can also be influenced by adenosine acting on A2B receptors and by epoxyeicosatrienoic acids (EETs) shown to be synthesized in astrocytes. Prostaglandins, EETs, arachidonic acid, and potassium ions are candidate mediators of communication between astrocyte end-feet and vascular smooth muscle. In vivo evidence supports a role for cyclooxygenase-2 metabolites, EETs, adenosine, and neuronally derived nitric oxide in the coupling of increased blood flow to increased neuronal activity. Combined inhibition of the EETs, nitric oxide, and adenosine pathways indicates that signaling is not by parallel, independent pathways. Indirect pharmacological results are consistent with astrocytes acting as intermediaries in neurovascular signaling within the neurovascular unit. For specific stimuli, astrocytes are also capable of transmitting signals to pial arterioles on the brain surface for ensuring adequate inflow pressure to parenchymal feeding arterioles. Therefore, evidence from brain slices and indirect evidence in vivo with pharmacological approaches suggest that astrocytes play a pivotal role in regulating the fundamental physiological response coupling dynamic changes in cerebral blood flow to neuronal synaptic activity. Future work using in vivo imaging and genetic manipulation will be required to provide more direct evidence for a role of astrocytes in neurovascular coupling.  相似文献   

3.
A typical feature of astrocytes is their high degree of intercellular communication through gap junction channels. Using different models of astrocyte cultures and astrocyte/neuron cocultures, we have demonstrated that neurons upregulate gap-junctional communication and the expression of connexin 43 (Cx43) in astrocytes. The propagation of intercellular calcium waves triggered in astrocytes by mechanical stimulation was also increased in cocultures. This facilitation depends on the age and number of neurons, indicating that the state of neuronal differentiation and neuron density constitute two crucial factors of this interaction. The effects of neurons on astrocytic communication and Cx43 expression were reversed completely after neurotoxic treatments. Moreover, the neuronal facilitation of glial coupling was suppressed, without change in Cx43 expression, after prolonged pharmacological treatments that prevented spontaneous synaptic activity. Altogether, these results demonstrate that neurons exert multiple and differential controls on astrocytic gap-junctional communication. Since astrocytes have been shown to facilitate synaptic efficacy, our findings suggest that neuronal and astrocytic networks interact actively through mutual setting of their respective modes of communication.  相似文献   

4.
Close to two decades of research has established that astrocytes in situ and in vivo express numerous G protein-coupled receptors (GPCRs) that can be stimulated by neuronally-released transmitter. However, the ability of astrocytic receptors to exhibit plasticity in response to changes in neuronal activity has received little attention. Here we describe a model system that can be used to globally scale up or down astrocytic group I metabotropic glutamate receptors (mGluRs) in acute brain slices. Included are methods on how to prepare parasagittal hippocampal slices, construct chambers suitable for long-term slice incubation, bidirectionally manipulate neuronal action potential frequency, load astrocytes and astrocyte processes with fluorescent Ca2+ indicator, and measure changes in astrocytic Gq GPCR activity by recording spontaneous and evoked astrocyte Ca2+ events using confocal microscopy. In essence, a “calcium roadmap” is provided for how to measure plasticity of astrocytic Gq GPCRs. Applications of the technique for study of astrocytes are discussed. Having an understanding of how astrocytic receptor signaling is affected by changes in neuronal activity has important implications for both normal synaptic function as well as processes underlying neurological disorders and neurodegenerative disease.  相似文献   

5.
Neuron-astrocyte communication is an important regulatory mechanism in various brain functions but its complexity and role are yet to be fully understood. In particular, the temporal pattern of astrocyte response to neuronal firing has not been fully characterized. Here, we used neuron-astrocyte cultures on multi-electrode arrays coupled to Ca2+ imaging and explored the range of neuronal stimulation frequencies while keeping constant the amount of stimulation. Our results reveal that astrocytes specifically respond to the frequency of neuronal stimulation by intracellular Ca2+ transients, with a clear onset of astrocytic activation at neuron firing rates around 3-5 Hz. The cell-to-cell heterogeneity of the astrocyte Ca2+ response was however large and increasing with stimulation frequency. Astrocytic activation by neurons was abolished with antagonists of type I metabotropic glutamate receptor, validating the glutamate-dependence of this neuron-to-astrocyte pathway. Using a realistic biophysical model of glutamate-based intracellular calcium signaling in astrocytes, we suggest that the stepwise response is due to the supralinear dynamics of intracellular IP3 and that the heterogeneity of the responses may be due to the heterogeneity of the astrocyte-to-astrocyte couplings via gap junction channels. Therefore our results present astrocyte intracellular Ca2+ activity as a nonlinear integrator of glutamate-dependent neuronal activity.  相似文献   

6.
A number of studies have contributed to demonstrate that neurons and astrocytes tightly and actively interact. Indeed, the presence of astrocytes in neuronal cultures increases the number of synapses and their efficiency, and thanks to enzymatic and uptake processes, astrocytes play a role in neuroprotection. A typical feature of astrocytes is that they establish cell-cell communication in vitro, as well as in situ, through intercellular channels forming specialized membrane areas defined as gap junctions. These channels are composed of junctional proteins termed connexins (Cxs): in astrocytes connexin 43 (Cx43) and 30 (Cx30) have been shown to prevail. Several recent works indicate that gap junctional communication (GJC) and/or connexin expression in astrocytes are controlled by neurons. Altogether, these observations lead to the concept that neuronal and astrocytic networks interact through mutual setting of their respective mode of communication and that astrocyte gap junctions represent a target in neuroglial interaction.  相似文献   

7.
Astrocytes are the first cells infected by murine cytomegalovirus (MCMV) in primary cultures of brain. These cells play key roles in intercellular signaling and neuronal development, and they modulate synaptic activity within the nervous system. Using ratiometric fura-2 digital calcium imaging of >8,000 neurons and glia, we found that MCMV-infected astrocytes showed an increase in intracellular basal calcium levels and an enhanced response to neuroactive substances, including glutamate and ATP, and to high potassium levels. Cultured neurons with no sign of MCMV infection showed attenuated synaptic signaling after infection of the underlying astrocyte substrate, and intercellular communication between astrocytes with no sign of infection was reduced by the presence of infected glia. These bystander effects would tend to cause further deterioration of cellular communication in the brain in addition to the problems caused by the loss of directly infected cells.  相似文献   

8.
Waves of elevated intracellular free Ca2+ that propagate between neighboring astrocytes (Ca2+ waves) are important for the communication among astrocytes. We have previously revealed that focal photolysis of a caged calcium ionophore results in an increase in the concentration of intracellular Ca2+ in the target astrocytes, then the increase propagates to neighboring astrocytes through gap junctions. The extracellular ATP-purinoceptors signaling pathways are not primarily responsible for the propagation of the photolytic flash-induced Ca2+ waves. Here we examined whether and if so how the dynamics of Ca2+ waves changed after treatment with sublethal simulated ischemia; oxygen-glucose deprivation (OGD). OGD treatment increased the astrocytic expression of P2Y1 and P2Y2 receptors early during reperfusion, resulting in an increase in the propagating waves speed. In contrast, the expression of a gap junction protein was not changed significantly by the OGD suggesting that the extracellular ATP-P2Y receptors signaling pathways were preferentially enhanced after OGD. The present method to induce Ca2+ waves by focal photolysis of a caged calcium ionophore may provide a valuable tool with which to analyze glial Ca2+ waves under not only normal but also pathologic conditions.  相似文献   

9.
Astrocytes can sense local synaptic release of glutamate by metabotropic glutamate receptors. Receptor activation in turn can mediate transient increases of astrocytic intracellular calcium concentration through inositol 1,4,5-trisphosphate production. Notably, the perturbation of calcium concentration can propagate to other adjacent astrocytes. Astrocytic calcium signaling can therefore be linked to synaptic information transfer between neurons. On the other hand, astrocytes can also modulate neuronal activity by feeding back onto synaptic terminals in a fashion that depends on their intracellular calcium concentration. Thus, astrocytes can also be active partners in neuronal network activity. The aim of our study is to provide a computationally simple network model of mutual neuron–astrocyte interactions, in order to investigate the possible roles of astrocytes in neuronal network dynamics. In particular, we focus on the information entropy of neuronal firing of the whole network, considering how it could be affected by neuron–glial interactions.  相似文献   

10.
For decades, studies have been focusing on the neuronal abnormalities that accompany neurodegenerative disorders. Yet, glial cells are emerging as important players in numerous neurological diseases. Astrocytes, the main type of glia in the central nervous system , form extensive networks that physically and functionally connect neuronal synapses with cerebral blood vessels. Normal brain functioning strictly depends on highly specialized cellular cross-talk between these different partners to which Ca2 +, as a signaling ion, largely contributes. Altered intracellular Ca2 + levels are associated with neurodegenerative disorders and play a crucial role in the glial responses to injury. Intracellular Ca2 + increases in single astrocytes can be propagated toward neighboring cells as intercellular Ca2 + waves, thereby recruiting a larger group of cells. Intercellular Ca2+ wave propagation depends on two, parallel, connexin (Cx) channel-based mechanisms: i) the diffusion of inositol 1,4,5-trisphosphate through gap junction channels that directly connect the cytoplasm of neighboring cells, and ii) the release of paracrine messengers such as glutamate and ATP through hemichannels (‘half of a gap junction channel’). This review gives an overview of the current knowledge on Cx-mediated Ca2 + communication among astrocytes as well as between astrocytes and other brain cell types in physiology and pathology, with a focus on the processes of neurodegeneration and reactive gliosis. Research on Cx-mediated astroglial Ca2 + communication may ultimately shed light on the development of targeted therapies for neurodegenerative disorders in which astrocytes participate. This article is part of a Special Issue entitled: Calcium signaling in health and disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.  相似文献   

11.
In the modern view of synaptic transmission, astrocytes are no longer confined to the role of merely supportive cells. Although they do not generate action potentials, they nonetheless exhibit electrical activity and can influence surrounding neurons through gliotransmitter release. In this work, we explored whether optogenetic activation of glial cells could act as an amplification mechanism to optical neural stimulation via gliotransmission to the neural network. We studied the modulation of gliotransmission by selective photo-activation of channelrhodopsin-2 (ChR2) and by means of a matrix of individually addressable super-bright microLEDs (μLEDs) with an excitation peak at 470 nm. We combined Ca2+ imaging techniques and concurrent patch-clamp electrophysiology to obtain subsequent glia/neural activity. First, we tested the μLEDs efficacy in stimulating ChR2-transfected astrocyte. ChR2-induced astrocytic current did not desensitize overtime, and was linearly increased and prolonged by increasing μLED irradiance in terms of intensity and surface illumination. Subsequently, ChR2 astrocytic stimulation by broad-field LED illumination with the same spectral profile, increased both glial cells and neuronal calcium transient frequency and sEPSCs suggesting that few ChR2-transfected astrocytes were able to excite surrounding not-ChR2-transfected astrocytes and neurons. Finally, by using the μLEDs array to selectively light stimulate ChR2 positive astrocytes we were able to increase the synaptic activity of single neurons surrounding it. In conclusion, ChR2-transfected astrocytes and μLEDs system were shown to be an amplifier of synaptic activity in mixed corticalneuronal and glial cells culture.  相似文献   

12.
Calcium dynamics of cortical astrocytic networks in vivo   总被引:3,自引:1,他引:2  
Large and long-lasting cytosolic calcium surges in astrocytes have been described in cultured cells and acute slice preparations. The mechanisms that give rise to these calcium events have been extensively studied in vitro. However, their existence and functions in the intact brain are unknown. We have topically applied Fluo-4 AM on the cerebral cortex of anesthetized rats, and imaged cytosolic calcium fluctuation in astrocyte populations of superficial cortical layers in vivo, using two-photon laser scanning microscopy. Spontaneous [Ca2+]i events in individual astrocytes were similar to those observed in vitro. Coordination of [Ca2+]i events among astrocytes was indicated by the broad cross-correlograms. Increased neuronal discharge was associated with increased astrocytic [Ca2+]i activity in individual cells and a robust coordination of [Ca2+]i signals in neighboring astrocytes. These findings indicate potential neuron–glia communication in the intact brain.  相似文献   

13.
The high level of intercellular communication mediated by gap junctions between astrocytes indicates that, besides individual astrocytic domains, a second level of organization might exist for these glial cells as they form communicating networks. Therefore,the contribution of astrocytes to brain function should also be considered to result from coordinated groups of cells. To evaluate the shape and extent of these networks we have studied the expression of connexin 43, a major gap junction protein in astrocytes, and the intercellular diffusion of gap junction tracers in two structures of the developing brain, the hippocampus and the cerebral cortex. We report that the shape of astrocytic networks depends on their location within neuronal compartments ina defined brain structure. Interestingly, not all astrocytes are coupled, which indicates that connections within these networks are restricted. As gap junctional communication in astrocytes is reported to contribute to several glial functions, differences in the shape of astrocytic networks might have consequences on neuronal activity and survival.  相似文献   

14.
Astrocytes possess different, efficient ways to generate complex changes in intracellular calcium concentrations, which allow them to communicate with each other and to interact with adjacent neuronal cells. Here we show that cultured hippocampal astrocytes coexpress the ectoenzyme CD38, directly involved in the metabolism of the calcium mobilizer cyclic ADP-ribose, and the NAD+ transporter connexin 43. We also demonstrate that hippocampal astrocytes can release NAD+ and respond to extracellular NAD+ or cyclic ADP-ribose with intracellular calcium increases, suggesting the existence of an autocrine cyclic ADP-ribose-mediated signalling. Cyclic ADP-ribose-induced calcium changes are in turn responsible for an increased glutamate and GABA release, this effect being completely inhibited by the cyclic ADP-ribose specific antagonist 8-NH2-cADPR. Furthermore, addition of NAD+ to astrocyte-neuron co-cultures results in a delayed intracellular calcium transient in neuronal cells, which is strongly but not completely inhibited by glutamate receptor blockers. These data indicate that an astrocyte-to-neuron calcium signalling can be triggered by the CD38/cADPR system, which, through the activation of intracellular calcium responses in astrocytes, is in turn responsible for the increased release of neuromodulators from glial cells.  相似文献   

15.
Numerous evidence demonstrates that astrocytes, a type of glial cell, are integral functional elements of the synapses, responding to neuronal activity and regulating synaptic transmission and plasticity. Consequently, they are actively involved in the processing, transfer and storage of information by the nervous system, which challenges the accepted paradigm that brain function results exclusively from neuronal network activity, and suggests that nervous system function actually arises from the activity of neuron–glia networks. Most of our knowledge of the properties and physiological consequences of the bidirectional communication between astrocytes and neurons resides at cellular and molecular levels. In contrast, much less is known at higher level of complexity, i.e. networks of cells, and the actual impact of astrocytes in the neuronal network function remains largely unexplored. In the present article, we summarize the current evidence that supports the notion that astrocytes are integral components of nervous system networks and we discuss some functional properties of intercellular signalling in neuron–glia networks.  相似文献   

16.
Astrocytes are ideally situated to integrate glial and neuronal functions and neurovascular coupling by way of their multiple contacts with neurons, glia and blood vessels. There is a high degree of specialisation of astroglial membranes at the different sites of contact, including the expression of neurotransmitter receptors, ion channels, transporters and gap junctional proteins. An apparently universal property of astrocytes throughout the CNS is their responsiveness to ATP acting via metabotropic P2Y receptors, with a prominent role for the P2Y1 receptor subtype. Activation of astroglial P2Y receptors triggers a rise in intracellular calcium, which is the substrate for astroglial excitability and intercellular communication. In addition, astrocytes have a number of mechanisms for the release of ATP, which can be considered a 'gliotransmitter'. Astrocytes may be the most widespread source of ATP release in the CNS, and astroglial ATP and its metabolite adenosine activate purine receptors on neurons, microglia, oligodendrocytes and blood vessels. There is compelling evidence that astroglial ATP and adenosine regulate neuronal synaptic strength, although the physiological significance of this astrocyte-to-neuron signalling is questioned. A less appreciated aspect of astrocyte signalling is that they also release neurotransmitters onto other glia. Notably, both ATP and adenosine control microglial behaviour and regulate oligodendrocyte differentiation and myelination. P2 receptors also mediate injury responses in all glial cell types, with a prominent role for the P2X7 receptor subtype. In addition, ATP is a potent vasoconstrictor and astrocytes provide a route for coupling blood flow to neuronal activity by way of their synaptic and perivascular connections. Thus, astrocytes are the fulcrum of neuron-glial-vascular networks and purinergic signalling is the primary mechanism by which astrocytes can integrate the functions of these diverse elements.  相似文献   

17.
Recent experimental studies have shown that astrocytes respond to external stimuli with a transient increase of the intracellular calcium concentration or can exhibit self-sustained spontaneous activity. Both evoked and spontaneous astrocytic calcium oscillations are accompanied by exocytosis of glutamate caged in astrocytes leading to paroxysmal depolarization shifts (PDS) in neighboring neurons. Here, we present a simple mathematical model of the interaction between astrocytes and neurons that is able to numerically reproduce the experimental results concerning the initiation of the PDS. The timing of glutamate release from the astrocyte is studied by means of a combined modeling of a vesicle cycle and the dynamics of SNARE-proteins. The neuronal slow inward currents (SICs), induced by the astrocytic glutamate and leading to PDS, are modeled via the activation of presynaptic glutamate receptors. The dependence of the bidirectional communication between neurons and astrocytes on the concentration of glutamate transporters is analyzed, as well. Our numerical results are in line with experimental findings showing that astrocyte can induce synchronous PDSs in neighboring neurons, resulting in a transient synchronous spiking activity.  相似文献   

18.
Communication from astrocytes to neurons has recently been reported by two laboratories, but different mechanisms were thought to underlie glial calcium wave activation of associated neurons. Neuronal calcium elevation by glia observed in the present report is similar to that reported previously, where an increase in neuronal calcium was demonstrated in response to glial stimulation. In the present study hippocampal neurons plated on a confluent glial monolayer displayed a transient increase in intracellular calcium following a short delay after the passage of a wave of increased calcium in underlying glia. Activated cells displayed action potentials in response to glial waves and showed antineurofilament immunoreactivity. Finally, the N-methyl-D -aspartate glutamate receptor antagonist DL -2-amino-5-phosphonovaleric acid and the non-NMDA glutamate receptor antagonist 6,7-dinitroquinoxaline-2,3-dione significantly reduced the responsiveness of neurons to glial calcium waves. Our results indicate that hippocampal neurons growing on hippocampal or cortical astrocytes respond to glial calcium waves with elevations in calcium and increased electrical activity. Furthermore, we show that in most cases this communication appears to be mediated by ionotropic glutamate receptor channels. © 1995 John Wiley & Sons, Inc.  相似文献   

19.
Calcium dynamics into astrocytes influence the activity of nearby neuronal structures. However, because previous reports show that astrocytic calcium signals largely mirror neighboring neuronal activity, current information coding models neglect astrocytes. Using simultaneous two-photon calcium imaging of astrocytes and neurons in the hippocampus of mice navigating a virtual environment, we demonstrate that astrocytic calcium signals encode (i.e., statistically reflect) spatial information that could not be explained by visual cue information. Calcium events carrying spatial information occurred in topographically organized astrocytic subregions. Importantly, astrocytes encoded spatial information that was complementary and synergistic to that carried by neurons, improving spatial position decoding when astrocytic signals were considered alongside neuronal ones. These results suggest that the complementary place dependence of localized astrocytic calcium signals may regulate clusters of nearby synapses, enabling dynamic, context-dependent variations in population coding within brain circuits.

A combination of functional imaging of astrocytes and neurons in the mouse hippocampus with information theory analysis shows that calcium dynamics in topographically-organized subcellular regions of astrocytes encode information about an animal’s position that is complementary and synergistic to that encoded in the spike output of surrounding neurons.  相似文献   

20.
Reduced astrocytic gap junctional communication and enhanced hemichannel activity were recently shown to increase astroglial and neuronal vulnerability to neuroinflammation. Moreover, increasing evidence suggests that neuroinflammation plays a pivotal role in the development of Niemann-Pick type C (NPC) disease, an autosomal lethal neurodegenerative disorder that is mainly caused by mutations in the NPC1 gene. Therefore, we investigated whether the lack of NPC1 expression in murine astrocytes affects the functional state of gap junction channels and hemichannels. Cultured cortical astrocytes of NPC1 knock-out mice (Npc1−/−) showed reduced intercellular communication via gap junctions and increased hemichannel activity. Similarly, astrocytes of newborn Npc1−/− hippocampal slices presented high hemichannel activity, which was completely abrogated by connexin 43 hemichannel blockers and was resistant to inhibitors of pannexin 1 hemichannels. Npc1−/− astrocytes also showed more intracellular Ca2+ signal oscillations mediated by functional connexin 43 hemichannels and P2Y1 receptors. Therefore, Npc1−/− astrocytes present features of connexin based channels compatible with those of reactive astrocytes and hemichannels might be a novel therapeutic target to reduce neuroinflammation in NPC disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号