首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The pathological hallmark of Parkinson's disease is the presence of intracellular inclusions, Lewy bodies, and Lewy neurites, in the dopaminergic neurons of the substantia nigra and several other brain regions. Filamentous alpha-synuclein is the major component of these deposits and its aggregation is believed to play an important role in Parkinson's disease and several other neurodegenerative diseases. Two homologous proteins, beta- and gamma-synucleins, are also abundant in the brain. The synucleins are natively unfolded proteins. beta-Synuclein, which lacks 11 central hydrophobic residues compared with its homologs, exhibited the properties of a random coil, whereas alpha- and gamma-synucleins were slightly more compact and structured. gamma-Synuclein, unlike its homologs, formed a soluble oligomer at relatively low concentrations, which appears to be an off-fibrillation pathway species. Here we show that, although they have similar biophysical properties to alpha-synuclein, beta- And gamma-synucleins inhibit alpha-synuclein fibril formation. Complete inhibition of alpha-synuclein fibrillation was observed at 4:1 molar excess of beta- and gamma-synucleins. No significant incorporation of beta-synuclein into the fibrils was detected. The lack of fibrils formed by beta-synuclein is most readily explained by the absence of a stretch of hydrophobic residues from the middle region of the protein. A model for the inhibition is proposed.  相似文献   

2.
Parkinson's disease involves the aggregation of alpha-synuclein to form fibrils, which are the major constituent of intracellular protein inclusions (Lewy bodies and Lewy neurites) in dopaminergic neurons of the substantia nigra. Occupational exposure to specific metals, especially manganese, copper, lead, iron, mercury, zinc, aluminum, appears to be a risk factor for Parkinson's disease based on epidemiological studies. Elevated levels of several of these metals have also been reported in the substantia nigra of Parkinson's disease subjects. We examined the effect of various metals on the kinetics of fibrillation of recombinant alpha-synuclein and in inducing conformational changes, as monitored by biophysical techniques. Several di- and trivalent metal ions caused significant accelerations in the rate of alpha-synuclein fibril formation. Aluminum was the most effective, along with copper(II), iron(III), cobalt(III), and manganese(II). The effectiveness correlated with increasing ion charge density. A correlation was noted between efficiency in stimulating fibrillation and inducing a conformational change, ascribed to formation of a partially folded intermediate. The potential for ligand bridging by polyvalent metal ions is proposed to be an important factor in the metal-induced conformational changes of alpha-synuclein. The results indicate that low concentrations of some metals can directly induce alpha-synuclein fibril formation.  相似文献   

3.
Cohlberg JA  Li J  Uversky VN  Fink AL 《Biochemistry》2002,41(5):1502-1511
Parkinson's disease is the second most common neurodegenerative disease and results from loss of dopaminergic neurons in the substantia nigra. The aggregation and fibrillation of alpha-synuclein have been implicated as a causative factor in the disease. Glycosaminoglycans (GAGs) are routinely found associated with amyloid deposits in most amyloidosis diseases, and there is evidence to support an active role of GAGs in amyloid fibril formation in some cases. In contrast to the extracellular amyloid deposits, the alpha-synuclein deposits in Lewy body diseases are intracellular, and thus it is less clear whether GAGs may be involved. To determine whether the presence of GAGs does affect the fibrillation of alpha-synuclein, the kinetics of fibril formation were investigated in the presence of a number of GAGs and other charged polymers. Certain GAGs (heparin, heparan sulfate) and other highly sulfated polymers (dextran sulfate) were found to significantly stimulate the formation of alpha-synuclein fibrils. Interestingly, the interaction of GAGs with alpha-synuclein is quite specific, since some GAGs, e.g., keratan sulfate, had negligible effect. Heparin not only increased the rate of fibrillation but also apparently increased the yield of fibrils. The molar ratio of heparin to alpha-synuclein and the incorporation of fluorescein-labeled heparin into the fibrils demonstrate that the heparin is integrated into the fibrils and is not just a catalyst for fibrillation. The apparent dissociation constant for heparin in stimulating alpha-synuclein fibrillation was 0.19 microM, indicating a strong affinity. Similar effects of heparin were observed with the A53T and A30P mutants of alpha-synuclein. Since there is some evidence that Lewy bodies may contain GAGs, these observations may be very relevant in the context of the etiology of Parkinson's disease.  相似文献   

4.
The aggregation of normally soluble alpha-synuclein in the dopaminergic neurons of the substantia nigra is a crucial step in the pathogenesis of Parkinson's disease. Oxidative stress is believed to be a contributing factor in this disorder. We have previously established that oxidation of all four methionine residues in alpha-synuclein (to the sulfoxide, MetO) inhibits fibrillation of this protein in vitro and that the MetO protein also inhibits fibrillation of unmodified alpha-synuclein. Here we show that the degree of inhibition of fibrillation by MetO alpha-synuclein is proportional to the number of oxidized methionines. This was accomplished be selectively converting Met residues into Leu, prior to Met oxidation. The results showed that with one oxidized Met the kinetics of fibrillation were comparable to those for the control (nonoxidized), and with increasing numbers of methionine sulfoxides the kinetics of fibrillation became progressively slower. Electron microscope images showed that the fibril morphology was similar for all species examined, although fewer fibrils were observed with the oxidized forms. The presence of zinc was shown to overcome the Met oxidation-induced inhibition. Interestingly, substitution of Met by Leu led to increased propensity for aggregation (soluble oligomers) but slower formation of fibrils.  相似文献   

5.
Park JY  Lansbury PT 《Biochemistry》2003,42(13):3696-3700
Parkinson's disease (PD) is an age-associated and progressive movement disorder that is characterized by dopaminergic neuronal loss in the substantia nigra and, at autopsy, by fibrillar alpha-synuclein inclusions, or Lewy bodies. Despite the qualitative correlation between alpha-synuclein fibrils and disease, in vitro biophysical studies strongly suggest that prefibrillar alpha-synuclein oligomers, or protofibrils, are pathogenic. Consistent with this proposal, transgenic mice that express human alpha-synuclein develop a Parkinsonian movement disorder concurrent with nonfibrillar alpha-synuclein inclusions and the loss of dopaminergic terminii. Double-transgenic progeny of these mice that also express human beta-synuclein, a homologue of alpha-synuclein, show significant amelioration of all three phenotypes. We demonstrate here that beta- and gamma-synuclein (a third homologue that is expressed primarily in peripheral neurons) are natively unfolded in monomeric form, but structured in protofibrillar form. Beta-synuclein protofibrils do not bind to or permeabilize synthetic vesicles, unlike protofibrils comprising alpha-synuclein or gamma-synuclein. Significantly, beta-synuclein inhibits the generation of A53T alpha-synuclein protofibrils and fibrils. This finding provides a rationale for the phenotype of the double-transgenic mice and suggests a therapeutic strategy for PD.  相似文献   

6.
The aggregation of normally soluble alpha-synuclein in the dopaminergic neurons of the substantia nigra is a crucial step in the pathogenesis of Parkinson's disease. Oxidative stress is believed to be a contributing factor in this disorder. Because it lacks Trp and Cys residues, mild oxidation of alpha-synuclein in vitro with hydrogen peroxide selectively converts all four methionine residues to the corresponding sulfoxides. Both oxidized and non-oxidized alpha-synucleins have similar unfolded conformations; however, the fibrillation of alpha-synuclein at physiological pH is completely inhibited by methionine oxidation. The inhibition results from stabilization of soluble oligomers of Met-oxidized alpha-synuclein. Furthermore, the Met-oxidized protein also inhibits fibrillation of unmodified alpha-synuclein. The degree of inhibition of fibrillation by Met-oxidized alpha-synuclein is proportional to the number of oxidized methionines. However, the presence of metals can completely overcome the inhibition of fibrillation of the Met-oxidized alpha-synuclein. Since oligomers of aggregated alpha-synuclein may be cytotoxic, these findings indicate that both oxidative stress and environmental metal pollution could play an important role in the aggregation of alpha-synuclein, and hence possibly Parkinson's disease. In addition, if the level of Met-oxidized alpha-synuclein was under the control of methionine sulfoxide reductase (Msr), then this could also be factor in the disease.  相似文献   

7.
Macromolecular crowding is expected to have several significant effects on protein aggregation; the major effects will be those due to excluded volume and increased viscosity. In this report we summarize data demonstrating that macromolecular crowding may lead to a dramatic acceleration in the rate of protein aggregation and formation of amyloid fibrils, using the protein alpha-synuclein. The aggregation of alpha-synuclein has been implicated as a critical factor in development of Parkinson's disease. Various types of polymers, from neutral polyethylene glycols and polysaccharides (Ficolls, dextrans) to inert proteins, are shown to accelerate alpha-synuclein fibrillation. The stimulation of fibrillation increases with increasing length of polymer, as well as increasing polymer concentration. At lower polymer concentrations (typically up to approximately 100 mg/ml) the major effect is ascribed to excluded volume, whereas at higher polymer concentrations evidence of opposing viscosity effects become apparent. Pesticides and metals, which are linked to increased risk of Parkinson's disease by epidemiological studies, are shown to accelerate alpha-synuclein fibrillation under conditions of molecular crowding.  相似文献   

8.
The aggregation of alpha-synuclein has been implicated as a critical step in the development of Parkinson's disease. Parkinson's disease is a progressive neurodegenerative disorder caused by the loss of dopaminergic neurons from the substantia nigra; currently, no cure exists. Baicalein is a flavonoid with antioxidant properties; upon oxidation, it forms several products including quinones. We show here that low micromolar concentrations of baicalein, and especially its oxidized forms, inhibit the formation of alpha-synuclein fibrils. In addition, existing fibrils of alpha-synuclein are disaggregated by baicalein. The product of the inhibition reaction is predominantly a soluble oligomer of alpha-synuclein, in which the protein molecules have been covalently modified by baicalein quinone to form a Schiff base with a lysine side chain in alpha-synuclein. The binding of baicalein was abolished by conversion of the Tyr residues into Phe, demonstrating that Tyr is involved in the interaction of alpha-synuclein with baicalein. In disaggregation baicalein causes fragmentation throughout the length of the fibril. These observations suggest that baicalein and similar compounds may have potential as therapeutic leads in combating Parkinson's disease and that diets rich in flavonoids may be effective in preventing the disorder.  相似文献   

9.
The aggregation and fibrillation of alpha-synuclein has been implicated as a key step in the etiology of Parkinson's disease and several other neurodegenerative disorders. In addition, oxidative stress and certain environmental factors, including metals, are believed to play an important role in Parkinson's disease. Previously, we have shown that methionine-oxidized human alpha-synuclein does not fibrillate and also inhibits fibrillation of unmodified alpha-synuclein (Uversky, V. N., Yamin, G., Souillac, P. O., Goers, J., Glaser, C. B., and Fink, A. L. (2002) FEBS Lett. 517, 239-244). Using dynamic light scattering, we show that the inhibition results from stabilization of the monomeric form of Met-oxidized alpha-synuclein. We have now examined the effect of several metals on the structural properties of methionine-oxidized human alpha-synuclein and its propensity to fibrillate. The presence of metals induced partial folding of both oxidized and non-oxidized alpha-synucleins, which are intrinsically unstructured under conditions of neutral pH. Although the fibrillation of alpha-synuclein was completely inhibited by methionine oxidation, the presence of certain metals (Ti3+, Zn2+, Al3+, and Pb2+) overcame this inhibition. These findings indicate that a combination of oxidative stress and environmental metal pollution could play an important role in triggering the fibrillation of alpha-synuclein and thus possibly Parkinson's disease.  相似文献   

10.
Dusa A  Kaylor J  Edridge S  Bodner N  Hong DP  Fink AL 《Biochemistry》2006,45(8):2752-2760
The aggregation of the presynaptic protein alpha-synuclein is associated with Parkinson's disease (PD). The details of the mechanism of aggregation, as well as the cytotoxic species, are currently not well understood. alpha-Synuclein has four tyrosine and no tryptophan residues. We introduced a tyrosine to tryptophan mutation at position 39 to create an intrinsic fluorescence probe and allow additional characterization of the aggregation process. Y39W alpha-synuclein had similar fibrillation kinetics (2-fold slower), pH-induced conformational changes, and fibril morphology to wild-type alpha-synuclein. In addition to intrinsic Trp fluorescence, acrylamide quenching, fluorescence anisotropy, ANS binding, dynamic light scattering, and FTIR were employed to monitor the kinetics of aggregation. These biophysical probes revealed the significant population of two classes of oligomeric intermediates, one formed during the lag period of fibrillation and the other present at the completion of fibrillation. As expected for a natively unfolded protein, Trp 39 was highly solvent-exposed in the monomer and is solvent-exposed in the two oligomeric intermediates; however, it is partially, but not fully, buried in the fibrils. These observations demonstrate the utility of Trp fluorescence labeled alpha-synuclein and demonstrate the existence of an oligomeric intermediate that exists as a transient reservoir of alpha-synuclein for fibrillation.  相似文献   

11.
Recent studies have shown that the neurodegenerative process in disorders with Lewy body formation, such as Parkinson's disease and dementia with Lewy bodies, is associated with alpha-synuclein accumulation and that beta-synuclein might protect the central nervous system from the neurotoxic effects of alpha-synuclein. However, the mechanisms are unclear. The main objective of the present study was to investigate the potential involvement of the serine threonine kinase Akt (also known as protein kinase B) signaling pathway in the mechanisms of beta-synuclein neuroprotection. For this purpose, Akt activity and cell survival were analyzed in synuclein-transfected B103 neuroblastoma cells and primary cortical neurons. Beta-synuclein transfection resulted in increased Akt activity and conferred protection from the neurotoxic effects of rotenone. Down-regulation of Akt expression resulted in an increased susceptibility to rotenone toxicity, whereas transfection with a lentiviral vector encoding for beta-synuclein was protective. The effects of beta-synuclein on the Akt pathway appear to be by direct interaction between these molecules and were independent of upstream signaling molecules. Taken together, these results indicate that the mechanisms of beta-synuclein neuroprotection might involve direct interactions between beta-synuclein and Akt and suggest that this signaling pathway could be a potential therapeutic target for neurological conditions associated with parkinsonism and alpha-synuclein aggregation.  相似文献   

12.
Alpha- and beta-synuclein are closely related proteins, the first of which is associated with deposits formed in neurodegenerative conditions such as Parkinson's disease while the second appears to have no relationship to any such disorders. The aggregation behavior of alpha- and beta-synuclein as well as a series of chimeric variants were compared by exploring the structural transitions that occur in the presence of a widely used lipid mimetic, sodium dodecyl sulfate (SDS). We found that the aggregation rates of all these protein variants are significantly enhanced by low concentrations of SDS. In particular, we inserted the 11-residue sequence of mainly hydrophobic residues from the non-amyloid-beta-component (NAC) region of alpha-synuclein into beta-synuclein and show that the fibril formation rate of this chimeric protein is only weakly altered from that of beta-synuclein. These intrinsic propensities to aggregate are rationalized to a very high degree of accuracy by analysis of the sequences in terms of their associated physicochemical properties. The results begin to reveal that the differences in behavior are primarily associated with a delicate balance between the positions of a range of charged and hydrophobic residues rather than the commonly assumed presence or absence of the highly aggregation-prone region of the NAC region of alpha-synuclein. This conclusion provides new insights into the role of alpha-synuclein in disease and into the factors that regulate the balance between solubility and aggregation of a natively unfolded protein.  相似文献   

13.
Ghee M  Melki R  Michot N  Mallet J 《The FEBS journal》2005,272(16):4023-4033
Parkinson's disease is characterized by the loss of dopaminergic neurons in the nigrostriatal pathway accompanied by the presence of intracellular cytoplasmic inclusions, termed Lewy bodies. Fibrillized alpha-synuclein forms the major component of Lewy bodies. We reported a specific interaction between rat alpha-synuclein and tat binding protein 1, a subunit of PA700, the regulatory complex of the 26S proteasome. It has been demonstrated that PA700 prevents the aggregation of misfolded, nonubiquinated substrates. In this study, we examine the effect of PA700 on the aggregation of wild-type and A53T mutant alpha-synuclein. PA700 inhibits both wild-type and A53T alpha-synuclein fibril formation as measured by Thioflavin T fluorescence. Using size exclusion chromatography, we present evidence for a stable PA700-alpha-synuclein complex. Sedimentation analyses reveal that PA700 sequesters alpha-synuclein in an assembly incompetent form. Analysis of the morphology of wild-type and A53T alpha-synuclein aggregates during the course of fibrillization by electron microscopy demonstrate the formation of amyloid-like fibrils. Secondary structure analyses of wild-type and A53T alpha-synuclein assembled in the presence of PA700 revealed a decrease in the overall amount of assembled alpha-synuclein with no significant change in protein conformation. Thus, PA700 acts on alpha-synuclein assembly and not on the structure of fibrils. We hypothesize that PA700 sequesters alpha-synuclein oligomeric species that are the precursors of the fibrillar form of the protein, thus preventing its assembly into fibrils.  相似文献   

14.
Lee D  Paik SR  Choi KY 《FEBS letters》2004,576(1-2):256-260
Beta-synuclein exhibits high sequence homology and structural similarity with alpha-synuclein, a protein implicated in the pathogenesis of Parkinson's disease. We investigated the chaperone function of beta-synuclein and its anti-fibrillar activity in comparison with alpha-synuclein. beta-Synuclein suppressed the heat-induced aggregation of aldolase, alcohol dehydrogenase, and citrate synthase, and its anti-aggregative activity was remarkably higher than that of alpha-synuclein. Heat-induced inactivation of citrate synthase was significantly protected by beta-synuclein. Moreover, beta-synuclein inhibited the amyloid formation of both Abeta(1-40) and alpha-synuclein. It is, therefore, suggested that beta-synuclein can prevent abnormal protein aggregations more effectively than alpha-synuclein by acting as a molecular chaperone.  相似文献   

15.
Intracellular proteinaceous inclusions (Lewy bodies and Lewy neurites) of alpha-synuclein are pathological hallmarks of neurodegenerative diseases such as Parkinson's disease, dementia with Lewy bodies (DLB), and multiple systemic atrophy. The molecular mechanisms underlying the aggregation of alpha-synuclein into such filamentous inclusions remain unknown, although many factors have been implicated, including interactions with lipid membranes. To model the effects of membrane fields on alpha-synuclein, we analyzed the structural and fibrillation properties of this protein in mixtures of water with simple and fluorinated alcohols. All solvents that were studied induced folding of alpha-synuclein, with the common first stage being formation of a partially folded intermediate with an enhanced propensity to fibrillate. Protein fibrillation was completely inhibited due to formation of beta-structure-enriched oligomers with high concentrations of methanol, ethanol, and propanol and moderate concentrations of trifluoroethanol (TFE), or because of the appearance of a highly alpha-helical conformation at high TFE and hexafluoro-2-propanol concentrations. At least to some extent, these conformational effects mimic those observed in the presence of phospholipid vesicles, and can explain some of the observed effects of membranes on alpha-synuclein fibrillation.  相似文献   

16.
The cellular polyamines putrescine, spermidine, and spermine accelerate the aggregation and fibrillization of alpha-synuclein, the major protein component of Lewy bodies associated with Parkinson's disease. Circular dichroism and fluorometric thioflavin T kinetic studies showed a transition of alpha-synuclein from unaggregated to highly aggregated states, characterized by lag and transition phases. In the presence of polyamines, both the lag and transition times were significantly shorter. All three polyamines accelerated the aggregation and fibrillization of alpha-synuclein to a degree that increased with the total charge, length, and concentration of the polyamine. Electron and scanning force microscopy of the reaction products after the lag phase revealed the presence of aggregated particles (protofibrils) and small fibrils. At the end of the transition phase, alpha-synuclein formed long fibrils in all cases, although some morphological variations were apparent. In the presence of polyamines, fibrils formed large networks leading ultimately to condensed aggregates. In the absence of polyamines, fibrils were mostly isolated. We conclude that the polyamines at physiological concentrations can modulate the propensity of alpha-synuclein to form fibrils and may hence play a role in the formation of cytosolic alpha-synuclein aggregates.  相似文献   

17.
Intracellular proteinaceous aggregates (Lewy bodies and Lewy neurites) of alpha-synuclein are hallmarks of neurodegenerative diseases such as Parkinson's disease, dementia with Lewy bodies, and multiple systemic atrophy. However, the molecular mechanisms underlying alpha-synuclein aggregation into such filamentous inclusions remain unknown. An intriguing aspect of this problem is that alpha-synuclein is a natively unfolded protein, with little or no ordered structure under physiological conditions. This raises the question of how an essentially disordered protein is transformed into highly organized fibrils. In the search for an answer to this question, we have investigated the effects of pH and temperature on the structural properties and fibrillation kinetics of human recombinant alpha-synuclein. Either a decrease in pH or an increase in temperature transformed alpha-synuclein into a partially folded conformation. The presence of this intermediate is strongly correlated with the enhanced formation of alpha-synuclein fibrils. We propose a model for the fibrillation of alpha-synuclein in which the first step is the conformational transformation of the natively unfolded protein into the aggregation-competent partially folded intermediate.  相似文献   

18.
Parkinson's disease (PD) is a neurodegenerative disorder that is pathologically characterized by the presence of intracytoplasmic Lewy bodies. Recently, two point mutations in alpha-synuclein were found to be associated with familial PD, but as of yet no mutations have been described in the homologous genes beta- and gamma-synuclein. alpha-Synuclein forms the major fibrillar component of Lewy bodies, but these do not stain for beta- or gamma-synuclein. This result is very surprising, given the extent of sequence conservation and the high similarity in expression and subcellular localization, in particular between alpha- and beta-synuclein. Here we compare in vitro fibrillogenesis of all three purified synucleins. We show that fresh solutions of alpha-, beta-, and gamma- synuclein show the same natively unfolded structure. While over time alpha-synuclein forms the previously described fibrils, no fibrils could be detected for beta- and gamma-synuclein under the same conditions. Most importantly, beta- and gamma-synuclein could not be cross-seeded with alpha-synuclein fibrils. However, under conditions that drastically accelerate aggregation, gamma-synuclein can form fibrils with a lag phase roughly three times longer than alpha-synuclein. These results indicate that beta- and gamma-synuclein are intrinsically less fibrillogenic than alpha-synuclein and cannot form mixed fibrils with alpha-synuclein, which may explain why they do not appear in the pathological hallmarks of PD, although they are closely related to alpha-synuclein and are also abundant in brain.  相似文献   

19.
We characterized beta-synuclein, the non-amyloidogenic homolog of alpha-synuclein, as an inhibitor of aggregation of alpha-synuclein, a molecule implicated in Parkinson's disease. For this, doubly transgenic mice expressing human (h) alpha- and beta-synuclein were generated. In doubly transgenic mice, beta-synuclein ameliorated motor deficits, neurodegenerative alterations, and neuronal alpha-synuclein accumulation seen in halpha-synuclein transgenic mice. Similarly, cell lines transfected with beta-synuclein were resistant to alpha-synuclein accumulation. halpha-synuclein was coimmunoprecipitated with hbeta-synuclein in the brains of doubly transgenic mice and in the double-transfected cell lines. Our results raise the possibility that beta-synuclein might be a natural negative regulator of alpha-synuclein aggregation and that a similar class of endogenous factors might regulate the aggregation state of other molecules involved in neurodegeneration. Such an anti-amyloidogenic property of beta-synuclein might also provide a novel strategy for the treatment of neurodegenerative disorders.  相似文献   

20.
Accumulation of alpha-synuclein resulting in the formation of oligomers and protofibrils has been linked to Parkinson's disease and Lewy body dementia. In contrast, beta-synuclein (beta-syn), a close homologue, does not aggregate and reduces alpha-synuclein (alpha-syn)-related pathology. Although considerable information is available about the conformation of alpha-syn at the initial and end stages of fibrillation, less is known about the dynamic process of alpha-syn conversion to oligomers and how interactions with antiaggregation chaperones such as beta-synuclein might occur. Molecular modeling and molecular dynamics simulations based on the micelle-derived structure of alpha-syn showed that alpha-syn homodimers can adopt nonpropagating (head-to-tail) and propagating (head-to-head) conformations. Propagating alpha-syn dimers on the membrane incorporate additional alpha-syn molecules, leading to the formation of pentamers and hexamers forming a ring-like structure. In contrast, beta-syn dimers do not propagate and block the aggregation of alpha-syn into ring-like oligomers. Under in vitro cell-free conditions, alpha-syn aggregates formed ring-like structures that were disrupted by beta-syn. Similarly, cells expressing alpha-syn displayed increased ion current activity consistent with the formation of Zn(2+)-sensitive nonselective cation channels. These results support the contention that in Parkinson's disease and Lewy body dementia, alpha-syn oligomers on the membrane might form pore-like structures, and that the beneficial effects of beta-synuclein might be related to its ability to block the formation of pore-like structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号