首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The paraoxonase (PON) family contains three genes (PON1/2/3) that are believed to be involved in the protection against oxidative stress. PON1 and PON3 are circulating in serum attached to high-density lipoprotein fraction (HDL), whereas PON2 is ubiquitously expressed. The intestine is the second major organ that synthesizes lipoproteins; therefore, we examined PON mRNA expression and protein levels in gastrointestinal biopsies from humans, from C57BL6 mice, and from Caco-2 cells, a colon carcinoma-derived cell line that exhibits properties of intestinal epithelium at differentiation. PON 1/2/3 mRNA and proteins were present in human biopsies with variable expression among different gastrointestinal segments. Only PON2 and PON3 were present in mice. All PON mRNA, proteins, and enzymatic activities were present in Caco-2 cells. Oxidation of CaCo-2 cells with ferrum ascorbate had no significant effect on PON mRNA expression, but it increased paraoxonase and lactonase activity, whereas statinase activity was decreased. We showed polarized secretion of PON1 (basolateral) and PON2 (apical) into Caco-2 culture medium, raising the possibility that intestine is capable of producing and releasing PON1 and PON3 to the circulation, whereas PON2 is released at the brush-border membrane to intestinal lumen where it may perform another yet unclear function.  相似文献   

2.
Endoplasmic reticulum (ER) stress and apoptotic cell death play an important role in the pathogenesis and perpetuation of inflammatory bowel disease (IBD). We aimed to explore the potential of glutamine to reduce ER stress and apoptosis in a rat model of experimental IBD. Colitis was induced in male Wistar rats by intracolonic administration of 30 mg of 2,4,6-trinitrobenzene sulfonic acid (TNBS). Glutamine (25 mg/dL) was given by rectal route daily for 2 d or 7 d. Both oxidative stress (TBARS concentration and oxidised/reduced glutathione ratio) and ER stress markers (CHOP, BiP, calpain-1 and caspase-12 expression) increased significantly within 48 h of TNBS instillation, and glutamine attenuated the extent of the changes. Glutamine also inhibited the significant increases of ATF6, ATF4 and spliced XBP-1 mRNA levels induced by TNBS instillation. TNBS-colitis resulted in a significant increase in p53 and cytochrome c expression, and a reduced Bcl-xL expression and Bax/Bcl-2 ratio. These effects were significantly inhibited by glutamine. Treatment with the amino acid also resulted in significant decreases of caspase-9, caspase-8 and caspase-3 activities. Double immunofluorescence staining showed co-localization of CHOP and cleaved caspase-3 in colon sections. Phospho-JNK and PARP-1 expression was also significantly higher in TNBS-treated rats, and treatment with glutamine significantly decreased JNK phosphorylation and PARP-1 proteolysis. To directly address the effect of glutamine on ER stress and apoptosis in epithelial cells, the ER stress inducers brefeldin A and tunicamycin were added to Caco-2 cells that were treated with glutamine (5 mM and 10 mM). The significant enhancement in PERK, ATF6 phosphorylated IRE1, BiP and cleaved caspase-3 expression induced by brefeldin A and tunicamycin was partly prevented by glutamine. Data obtained indicated that modulation of ER stress signalling and anti-apoptotic effects contribute to protection by glutamine against damage in TNBS-induced colitis.  相似文献   

3.
Impaired epithelial barrier function and estrogens are recognized as factors influencing inflammatory bowel disease (IBD) pathology and disease course. Estrogen receptor-β (ERβ) is the most abundant estrogen receptor in the colon and a complete absence of ERβ expression is associated with disrupted tight-junction formation and abnormal colonic architecture. The aim of this study was to determine whether ERβ signaling has a role in the maintenance of epithelial permeability in the colon. ERβ mRNA levels and colonic permeability were assessed in IL-10-deficient mice and HLA-B27 rats by RT-PCR and Ussing chambers. ERβ expression and monolayer resistance were measured in HT-29 and T84 colonic epithelial monolayers by RT-PCR and electric cell-substrate impedance sensing. The effect of 17β-estradiol and an estrogen agonist [diarylpropionitrile (DPN)] and antagonist (ICI 182780) on epithelial resistance in T84 cells was measured. Expression of ERβ and proinflammatory cytokines was investigated in colonic biopsies from IBD patients. Levels of ERβ mRNA were decreased, whereas colonic permeability was increased, in IL-10-deficient mice and HLA-B27 transgenic rats prior to the onset of colitis. T84 cells demonstrated higher resistance and increased levels of ERβ mRNA compared with HT-29 cells. 17β-estradiol and DPN induced increased epithelial resistance in T84 cells, whereas an ERβ blocker prevented the increased resistance. Decreased ERβ mRNA levels were observed in colonic biopsies from IBD patients. This study suggests a potential role for ERβ signaling in the modulation of epithelial permeability and demonstrates reduced ERβ mRNA in animal models of colitis and colon of patients with inflammatory bowel disease.  相似文献   

4.
5.
6.
To explore the relationship between UPR and autophagy in intestinal epithelial cells, we investigated whether autophagy was induced by endoplasmic reticulum (ER) stress in colon cancer cell lines. We demonstrated that autophagy was induced by ER stress in HT29, SW480, and Caco-2 cells. In these cells, inositol-requiring enzyme1α (IRE1α) and C/EBP homologous protein (CHOP) were involved in the ER stress–autophagy pathway, and CHOP was a regulator of IRE1α protein expression. Our findings suggest that CHOP promotes IRE1α and autophagy especially in ER stress conditions. This study will provide important insights into the disclosure of the ER stress–autophagy pathway.  相似文献   

7.
Oxidative stress is a cardinal manifestation of various intestinal disorders. However, very little knowledge is available on the intestine's inherent defense mechanisms against free radicals. This study was designed to determine the protein expression, subcellular localization and oxidative stress response of paraoxonase 2 (PON2), a member of a powerful antioxidant family in human and rat intestine. Biochemical and ultrastructural experiments all showed a substantial expression of PON2 in human and rat intestine. Western blot analysis disclosed higher levels of PON2 in the jejunum than in the duodenum, ileum, and colon. Cell fractionation revealed a predominant PON2 association with microsomes and lysosomes in the human jejunum, which differed from that in rats. PON2 was detected in the intestine as early as week 15 of gestation and was significantly increased by week 20. Iron ascorbate-mediated lipid peroxidation induced a marked decrease in PON2 expression in intestinal specimens coincidental to an abundant rise in malondialdehyde (MDA). On the other hand, preincubation with potent antioxidants, such as butylated hydroxytoluene, Trolox, and N-acetylcysteine, prevented iron-ascorbate-generating PON2 reduction in parallel with MDA suppression. Finally, the preincubation of permeabilized Caco-2 cells with purified PON2 led to a protection against iron-ascorbate-induced lipid peroxidation. These observations demonstrate that the human intestine is preferentially endowed with a marked PON2 expression compared with the rat intestine and this expression shows a developmental and intracellular pattern of distribution. Furthermore, our observations suggest PON2 protective effects against prooxidant stimuli in the small intestine.  相似文献   

8.
The human intestinal epithelium is composed of several cell types, mainly enterocytes and goblet (mucin-secreting) cells. This study compares the cellular response of Fe transporters in Caco-2, HT29-MTX, and Caco-2/HT29-MTX co-culture models for Fe bioavailability. Caco-2 cells in vitro differentiate into enterocyte-like cells and HT29-MTX cell lineage into a mucin-secreting cellular population. Cell cultures were exposed to digests of Fe+3, Fe+3/ascorbic acid, cooked fish (high-available Fe) or white beans (low-available Fe). Cell responses as shown by mRNA expression of the main Fe transporters, DMT1 and DcytB, and cell ferritin formation were monitored. In Caco-2/HT29-MTX co-cultures, the mucin layer lowered the pool of free Fe to diffuse towards the cell brush border membrane of enterocytes, which was accompanied of an upregulation of DMT1 mRNA expression. In contrast, cultures exposed to digests of fish or white beans showed no significant differences in the regulation of Fe transporters.  相似文献   

9.
10.
Xenotoxic damage in inflammatory diseases, including IBD (inflammatory bowel disease), is compounded by reduced activity of the xenobiotic transporter ABCG2 (ATP-binding-cassette G2) during the inflammatory state. An association between the activation of the unfolded protein response pathway and inflammation prompted us to investigate the possibility that reduced ABCG2 activity is causally linked to this response. To this end, we correlated expression of ABCG2 and the unfolded protein response marker GRP78 (glucose-regulated protein of 78?kDa) in colon biopsies from healthy individuals (n=9) and patients with inactive (n=67) or active (n=55) IBD, ischaemic colitis (n=10) or infectious colitis (n=14). In addition, tissue specimens throughout the small bowel from healthy individuals (n=27) and from patients with inactive (n=9) or active (n=25) Crohn's disease were co-stained for ABCG2 and GRP78. In all biopsies from patients with active inflammation, irrespective of the underlying disease, an absolute negative correlation was observed between epithelial ABCG2 expression and GRP78 expression, suggesting that inflammation-dependent activation of the unfolded protein response is responsible for suppression of ABCG2 function. The link between the unfolded protein response and functional ABCG2 expression was further corroborated by live imaging of ABCG2-expressing cells, which showed that various inflammatory mediators, including nitric oxide, activate the unfolded protein response and concomitantly reduce plasma membrane localization as well as transport function of ABCG2. Thus a novel mechanism for explaining xenobiotic stress during inflammation emerges in which intestinal inflammation activates the unfolded protein response, in turn abrogating defences against xenobiotic challenge by impairing ABCG2 expression and function.  相似文献   

11.
Selenoproteins are candidate mediators of selenium-dependent protection against tumorigenesis and inflammation in the gut. Expression and roles of only a limited number of intestinal selenoproteins have been described so far. Selenoprotein S (SelS) has been linked to various inflammatory diseases and is suggested to be involved in endoplasmic reticulum (ER) homeostasis regulation and antioxidative protection in a cell-type-dependent manner, but its protein expression, regulation, and function in the gut are not known. We here analyzed the expression and localization of SelS in the healthy and inflamed gut and studied its regulation and function in intestinal epithelial cell lines. SelS was expressed in the intestinal epithelium of the small and large intestine and colocalized with markers of Paneth cells and macrophages. It was upregulated in inflamed ileal tissue from Crohn's disease patients and in two models of experimental colitis in mice. We detected SelS in colorectal cell lines, where it colocalized with the ER marker calnexin. SelS protein expression was unaffected by enterocytic differentiation but increased in response to selenium supplementation and after treatment with the ER stress inducer tunicamycin. On the other hand, depletion of SelS in LS174T, HT29, and Caco-2 cells by RNA interference did not cause or modulate ER stress and had no effect on hydrogen peroxide-induced cell death. In summary, we introduce SelS as a novel marker of Paneth cells and intestinal ER stress. Although it is upregulated in Crohn's disease, its role in disease etiology remains to be established.  相似文献   

12.
In inflammatory bowel diseases (IBD), intestinal barrier function is impaired as a result of deteriorations in epithelial tight junction (TJ) structure. IL-6, a pleiotropic cytokine, is elevated in IBD patients, although the role of IL-6 in barrier function remains unknown. We present evidence that IL-6 increases TJ permeability by stimulating the expression of channel-forming claudin-2, which is required for increased caudal-related homeobox (Cdx) 2 through the MEK/ERK and PI3K pathways in intestinal epithelial cells. IL-6 increases the cation-selective TJ permeability without any changes to uncharged dextran flux or cell viability in Caco-2 cells. IL-6 markedly induces claudin-2 expression, which is associated with increased TJ permeability. The colonic mucosa of mice injected with IL-6 also exhibits an increase in claudin-2 expression. The claudin-2 expression and TJ permeability induced by IL-6 are sensitive to the inhibition of gp130, MEK, and PI3K. Furthermore, expression of WT-MEK1 induces claudin-2 expression in Caco-2 cells. Claudin-2 promoter activity is increased by IL-6 in a MEK/ERK and PI3K-dependent manner, and deletion of Cdx binding sites in the promoter sequence results in a loss of IL-6-induced promoter activity. IL-6 increases Cdx2 protein expression, which is suppressed by the inhibition of MEK and PI3K. These observations may reveal an important mechanism by which IL-6 can undermine the integrity of the intestinal barrier.  相似文献   

13.
Inflammatory bowel diseases (IBD)--Crohn's disease and ulcerative colitis--are relapsing chronic inflammatory disorders which involve genetic, immunological, and environmental factors. The regulation of TNF-alpha, a key mediator in the inflammatory process in IBD, is interconnected with mitogen-activated protein kinase pathways. The aim of this study was to characterize the activity and expression of the four p38 subtypes (p38alpha-delta), c-Jun N-terminal kinases (JNKs), and the extracellular signal-regulated kinases (ERK)1/2 in the inflamed intestinal mucosa. Western blot analysis revealed that p38alpha, JNKs, and ERK1/2 were significantly activated in IBD, with p38alpha showing the most pronounced increase in kinase activity. Protein expression of p38 and JNK was only moderately altered in IBD patients compared with normal controls, whereas ERK1/2 protein was significantly down-regulated. Immunohistochemical analysis of inflamed mucosal biopsies localized the main expression of p38alpha to lamina propria macrophages and neutrophils. ELISA screening of the supernatants of Crohn's disease mucosal biopsy cultures showed that incubation with the p38 inhibitor SB 203580 significantly reduced secretion of TNF-alpha. In vivo inhibition of TNF-alpha by a single infusion of anti-TNF-alpha Ab (infliximab) resulted in a highly significant transient increase of p38alpha activity during the first 48 h after infusion. A significant infliximab-dependent p38alpha activation was also observed in THP-1 myelomonocytic cells. In human monocytes, infliximab enhanced TNF-alpha gene expression, which could be inhibited by SB 203580. In conclusion, p38alpha signaling is involved in the pathophysiology of IBD.  相似文献   

14.
The intestinal tract is covered by a total of 300 square metres of IECs (intestinal epithelial cells) that covers the entire intestinal mucosa. For protection against luminal xenobiotics, pathogens and commensal microbes, these IECs are equipped with membrane-bound transporters as well as the ability to secrete specific protective proteins. In patients with active IBD (inflammatory bowel disease), the expression of these proteins, e.g. ABC (ATP-binding cassette) transporters such as ABCG2 (ABC transporter G2) and defensins, is decreased, thereby limiting the protection against various luminal threats. Correct ER (endoplasmic reticulum)-dependent protein folding is essential for the localization and function of secreted and membrane-bound proteins. Inflammatory triggers, such as cytokines and nitric oxide, can impede protein folding, which causes the accumulation of unfolded proteins inside the ER. As a result, the unfolded protein response is activated which can lead to a cellular process named ER stress. The protein folding impairment affects the function and localization of several proteins, including those involved in protection against xenobiotics. In the present review, we discuss the possible inflammatory pathways affecting protein folding and eventually leading to IEC malfunction in patients with active IBD.  相似文献   

15.
Endoplasmic reticulum (ER) is a principal organelle responsible for energy and nutrient management. Its dysfunction has been viewed in the context of obesity and related glucolipid metabolic disorders. However, therapeutic approaches to improve ER adaptation and systemic energy balance in obesity are limited. Thus, we examined whether hydroxytyrosol (HT), an important polyphenolic compound found in virgin olive oil, could correct the metabolic impairments in diet-induced obesity (DIO) mice. Here, we found that HT gavage for 10 weeks significantly ameliorated glucose homeostasis and chronic inflammation and decreased hepatic steatosis in DIO mice. At the molecular level, ER stress indicators, inflammatory and insulin signaling markers demonstrated that high-fat diet (HFD)-induced ER stress and insulin resistance (IR) in insulin sensitive tissue were corrected by HT. In vitro studies confirmed that HT supplementation (100 μM) attenuated palmitate-evoked ER stress, thus rescuing the downstream JNK/IRS pathway. As a result from suppression of ER stress in the liver, HT further decreased hepatic sterol regulatory element-binding protein-1 expression (SREBP1). Additionally, aberrant expression of genes involved in hepatic lipogenesis (SREBP1, ACC, FAS, SCD1) caused by HFD was restored by HT. These findings suggested that HT ameliorated chronic inflammation and IR and decreased hepatic steatosis in obesity by beneficial modulation of ER stress.  相似文献   

16.
Immunological molecules are implicated in inflammatory disorders, including inflammatory bowel disease (IBD; Crohn disease [CD] and ulcerative colitis [UC]). Killer cell immunoglobulin‐like receptors (KIRs) are also genetically variable proteins involved in immune function. They are expressed by NK cells and certain T lymphocytes, regulate specificity and function by interaction with HLA Class I molecules, may be either inhibitory or activating and are polymorphic both in terms of alleles and haplotype gene content. Genetic associations between activating KIRs and certain autoimmune and inflammatory diseases have been reported; however, a possible association between KIR and IBD remains unclear. The aim of this study was to determine the relationship between KIR repertoire and IBD pathologies in a Spanish cohort. KIR variability was analyzed using PCR–sequence specific oligonucleotide probes (SSOP). Inhibitory KIR2DL5 was found more frequently in UC and IBD patient groups than in healthy controls (P = 0.028 and P = 0.01, respectively), as was activating KIR2DS1 (P = 0.02, Pc > 0.05, UC vs. Controls; P = 0.001, Pc = 0.01, IBD vs Controls; P = 0.01, Pc > 0.05, Controls vs CR), KIR2DS5 (P = 0.0028, Pc = 0.04, Controls vs UC; P = 0.0001, Pc = 0.0017, Controls vs IBD; P = 0.01, Pc > 0.05, Controls vs CD) and KIR3DS1 (P = 0.012, Pc > 0.05, Controls vs IBD). Our data suggest that imbalance between activating and inhibitory KIR may partially explain the different pathogeneses of these IBDs and that there is a hypothetical role for the telomeric B region (which contains both KIR2DS5 and KIR2DS1) in these diseases.  相似文献   

17.
Day RM  Mitchell TJ  Knight SC  Forbes A 《Cytokine》2003,21(5):224-233
Syndecan-1 is expressed on the basolateral surface of columnar epithelium and contributes to wound repair by facilitating increased growth factor binding. Inflammatory bowel disease (IBD) is associated with reduced syndecan-1 expression in areas of inflamed mucosa that is likely to impair mucosal healing. Reduced syndecan-1 expression in IBD may be related to the presence of increased inflammatory cytokines. To test this hypothesis, monolayers of HT29 and T84 colonic epithelial cells were stimulated with tumour necrosis factor (TNF)-alpha, interleukin (IL)-1beta or IL-6. Stimulation of HT29 cells with TNF-alpha and IL-1beta resulted in reversible down-regulation of syndecan-1 at both protein and mRNA levels but little effect was observed with IL-6. Loss of syndecan-1 expression was caused by shedding of the ectodomain as revealed by increased levels of soluble syndecan-1 measured in the conditioned medium of stimulated cells. No increase in cytoplasmic staining accompanied the loss of cell surface syndecan-1 expression. TNF-alpha and IL-1beta are capable of down-regulating syndecan-1 expression and may account in part for the reduced expression of syndecan-1 seen in IBD.  相似文献   

18.
Gut microbial metabolites of polyunsaturated fatty acids have attracted much attention because of their various physiological properties. Dysfunction of tight junction (TJ) in the intestine contributes to the pathogenesis of many disorders such as inflammatory bowel disease. We evaluated the effects of five novel gut microbial metabolites on tumor necrosis factor (TNF)-α-induced barrier impairment in Caco-2 cells and dextran sulfate sodium-induced colitis in mice. 10-Hydroxy-cis-12-octadecenoic acid (HYA), a gut microbial metabolite of linoleic acid, suppressed TNF-α and dextran sulfate sodium-induced changes in the expression of TJ-related molecules, occludin, zonula occludens-1, and myosin light chain kinase. HYA also suppressed the expression of TNF receptor 2 (TNFR2) mRNA and protein expression in Caco-2 cells and colonic tissue. In addition, HYA suppressed the protein expression of TNFR2 in murine intestinal epithelial cells. Furthermore, HYA significantly up-regulated G protein-coupled receptor (GPR) 40 expression in Caco-2 cells. It also induced [Ca2+]i responses in HEK293 cells expressing human GPR40 with higher sensitivity than linoleic acid, its metabolic precursor. The barrier-recovering effects of HYA were abrogated by a GPR40 antagonist and MEK inhibitor in Caco-2 cells. Conversely, 10-hydroxyoctadacanoic acid, which is a gut microbial metabolite of oleic acid and lacks a carbon-carbon double bond at Δ12 position, did not show these TJ-restoring activities and down-regulated GPR40 expression. Therefore, HYA modulates TNFR2 expression, at least partially, via the GPR40-MEK-ERK pathway and may be useful in the treatment of TJ-related disorders such as inflammatory bowel disease.  相似文献   

19.
Inflammatory bowel disease (IBD) is characterized by chronic inflammation of the gastrointestinal tract. It is unknown whether β-1,3;1,6-glucan can induce immune suppressive effects. Here, we study intestinal anti-inflammatory activity of Lentinula edodes-derived β-1,3;1,6-glucan, which is known as lentinan. Dextran sulfate sodium (DSS)-induced colitis mice were used to elucidate effects of lentinan in vivo. In the cellular level assessment, lentinan was added into a co-culture model consisting of intestinal epithelial Caco-2 cells and LPS-stimulated macrophage RAW264.7 cells. Ligated intestinal loop assay was performed for assessing effects of lentinan on intestinal epithelial cells (IECs) in vivo. Oral administration of lentinan (100 µg/mouse) significantly ameliorated DSS-induced colitis in body weight loss, shortening of colon lengths, histological score, and inflammatory cytokine mRNA expression in inflamed tissues. Lentinan reduced interleukin (IL)-8 mRNA expression and nuclear factor (NF)-κB activation in Caco-2 cells without decreasing of tumor necrosis factor (TNF)-α production from RAW264.7 cells. Flow cytometric analysis revealed that surface levels of TNF receptor (TNFR) 1 were decreased by lentinan treatment. A clathrin-mediated endocytosis inhibitor, monodansylcadaverine, canceled lentinan inhibition of IL-8 mRNA expression. Moreover, lentinan inhibited TNFR1 expression in Caco-2 cells in both protein and mRNA level. Lentinan also inhibited TNFR1 mRNA expression in mouse IECs. These results suggest that lentinan exhibits intestinal anti-inflammatory activity through inhibition of IL-8 mRNA expression associated with the inhibition of NF-κB activation which is triggered by TNFR1 endocytosis and lowering of their expression in IECs. Lentinan may be effective for the treatment of gut inflammation including IBD.  相似文献   

20.
P-glycoprotein (P-gp) mediates efflux of xenobiotics and bacterial toxins from the intestinal mucosa into the lumen. Dysregulation of P-gp has been implicated in inflammatory bowel disease. Certain probiotics have been shown to be effective in treating inflammatory bowel disease. However, direct effects of probiotics on P-gp are not known. Current studies examined the effects of Lactobacilli on P-gp function and expression in intestinal epithelial cells. Caco-2 monolayers and a mouse model of dextran sulfate sodium-induced colitis were utilized. P-gp activity was measured as verapamil-sensitive [(3)H]digoxin transepithelial flux. Multidrug resistant 1 (MDR1)/P-gp expression was measured by real-time quantitative PCR and immunoblotting. Culture supernatant (CS; 1:10 or 1:50, 24 h) of Lactobacillus acidophilus or Lactobacillus rhamnosus treatment of differentiated Caco-2 monolayers (21 days postplating) increased (~3-fold) MDR1/P-gp mRNA and protein levels. L. acidophilus or L. rhamnosus CS stimulated P-gp activity (~2-fold, P < 0.05) via phosphoinositide 3-kinase and ERK1/2 MAPK pathways. In mice, L. acidophilus or L. rhamnosus treatment (3 × 10(9) colony-forming units) increased mdr1a/P-gp mRNA and protein expression in the ileum and colon (2- to 3-fold). In the dextran sulfate sodium (DSS)-induced colitis model (3% DSS in drinking water for 7 days), the degree of colitis as judged by histological damage and myeloperoxidase activity was reduced by L. acidophilus. L. acidophilus treatment to DSS-treated mice blocked the reduced expression of mdr1a/P-gp mRNA and protein in the distal colon. These findings suggest that Lactobacilli or their soluble factors stimulate P-gp expression and function under normal and inflammatory conditions. These data provide insights into a novel mechanism involving P-gp upregulation in beneficial effects of probiotics in intestinal inflammatory disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号